Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = pH-sensitive indicator films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 12329 KiB  
Article
Red Cabbage Anthocyanin-Loaded Bacterial Cellulose Hydrogel for Colorimetric Detection of Microbial Contamination and Skin Healing Applications
by Hanna Melnyk, Olesia Havryliuk, Iryna Zaets, Tetyana Sergeyeva, Ganna Zubova, Valeriia Korovina, Maria Scherbyna, Lilia Savinska, Lyudmila Khirunenko, Evzen Amler, Maria Bardosova, Oleksandr Gorbach, Sergiy Rogalsky and Natalia Kozyrovska
Polymers 2025, 17(15), 2116; https://doi.org/10.3390/polym17152116 - 31 Jul 2025
Viewed by 198
Abstract
Developing innovative, low-cost halochromic materials for diagnosing microbial contamination in wounds and burns can effectively facilitate tissue regeneration. Here, we combine the pH-sensing capability of highly colorful red cabbage anthocyanins (RCAs) with their healing potential within a unique cellulose polymer film that mimics [...] Read more.
Developing innovative, low-cost halochromic materials for diagnosing microbial contamination in wounds and burns can effectively facilitate tissue regeneration. Here, we combine the pH-sensing capability of highly colorful red cabbage anthocyanins (RCAs) with their healing potential within a unique cellulose polymer film that mimics the skin matrix. Biological activities of RCA extract in bacterial cellulose (BC) showed no cytotoxicity and skin-sensitizing potential to human cells at concentrations of RCAs similar to those released from BC/RCA dressings (4.0–40.0 µg/mL). A decrease in cell viability and apoptosis was observed in human cancer cells with RCAs. The invisible eye detection of the early color change signal from RCAs in response to pH alteration by bacteria was recorded with a smartphone application. The incorporation of RCAs into BC polymer has altered the morphology of its matrix, resulting in a denser cellulose microfibril network. The complete coincidence of the vibrational modes detected in the absorption spectra of the cellulose/RCA composite with the modes in RCAs most likely indicates that RCAs retain their structure in the BC matrix. Affordable, sensitive halochromic BC/RCA hydrogels can be recommended for online monitoring of microbial contamination, making them accessible to patients. Full article
Show Figures

Graphical abstract

16 pages, 5151 KiB  
Article
Design and Characterization of Curcumin-Modified Polyurethane Material with Good Mechanical, Shape-Memory, pH-Responsive, and Biocompatible Properties
by Man Wang, Hongying Liu, Wei Zhao, Huafen Wang, Yuwei Zhuang, Jie Yang, Zhaohui Liu, Jing Zhu, Sichong Chen and Jinghui Cheng
Biomolecules 2025, 15(8), 1070; https://doi.org/10.3390/biom15081070 - 24 Jul 2025
Viewed by 226
Abstract
In the context of critical challenges in curcumin-modified polyurethane synthesis—including limited curcumin bioavailability and suboptimal biodegradability/biocompatibility—a novel polyurethane material (Cur-PU) with good mechanical, shape memory, pH-responsive, and biocompatibility was synthesized via a one-pot, two-step synthetic protocol in which HO-PCL-OH served as the soft [...] Read more.
In the context of critical challenges in curcumin-modified polyurethane synthesis—including limited curcumin bioavailability and suboptimal biodegradability/biocompatibility—a novel polyurethane material (Cur-PU) with good mechanical, shape memory, pH-responsive, and biocompatibility was synthesized via a one-pot, two-step synthetic protocol in which HO-PCL-OH served as the soft segment and curcumin was employed as the chain extender. The experimental results demonstrate that with the increase in Cur units, the crystallinity of the Cur-PU material decreases from 32.6% to 5.3% and that the intensities of the diffraction peaks at 2θ = 21.36°, 21.97°, and 23.72° in the XRD pattern gradually diminish. Concomitantly, tensile strength decreased from 35.5 MPa to 19.3 MPa, and Shore A hardness declined from 88 HA to 65 HA. These observations indicate that the sterically hindered benzene ring structure of Cur imposes restrictions on HO-PCL-OH crystallization, leading to lower crystallinity and retarded crystallization kinetics in Cur-PU. As a consequence, the material’s tensile strength and hardness are diminished. Except for the Cur-PU-3 sample, all other variants exhibited exceptional shape-memory functionality, with Rf and Rr exceeding 95%, as determined by three-point bending method. Analogous to pure curcumin solutions, Cur-PU solutions demonstrated pH-responsive chromatic transitions: upon addition of hydroxide ion (OH) solutions at increasing concentrations, the solutions shifted from yellow-green to dark green and finally to orange-yellow, enabling sensitive pH detection across alkaline gradients. Hydrolytic degradation studies conducted over 15 weeks in air, UPW, and pH 6.0/8.0 phosphate buffer solutions revealed mass loss <2% for Cur-PU films. Surface morphological analysis showed progressive etching with the formation of micro-to-nano-scale pores, indicative of a surface-erosion degradation mechanism consistent with pure PCL. Biocompatibility assessments via L929 mouse fibroblast co-culture experiments demonstrated ≥90% cell viability after 72 h, while relative red blood cell hemolysis rates remained below 5%. Collectively, these findings establish Cur-PU as a biocompatible material with tunable mechanical properties, and pH responsiveness, underscoring its translational potential for biomedical applications such as drug delivery systems and tissue engineering scaffolds. Full article
Show Figures

Figure 1

17 pages, 2685 KiB  
Article
Co-Effect of pH Control Agent and pH Value on the Physical Properties of ZnO Thin Films Obtained by Chemical Bath Deposition for Potential Application in Dye-Sensitized Solar Cells
by Alphonse Déssoudji Gboglo, Mazabalo Baneto, Komlan Segbéya Gadedjisso-Tossou, Ognanmi Ako, Ayayi Claude Ahyi, Muthiah Haris, Muthusamy Senthilkumar, Kekeli N’konou, Bruno Grandidier, Katawoura Beltako, Komi Apélété Amou and Milohum Mikesokpo Dzagli
Surfaces 2025, 8(3), 46; https://doi.org/10.3390/surfaces8030046 - 1 Jul 2025
Viewed by 361
Abstract
This study presents the influence of pH control agents and pH value on the physical properties of ZnO thin films obtained by chemical bath deposition. ZnO thin films were synthesized on glass substrates using precursor solutions of different pHs prepared from two bases: [...] Read more.
This study presents the influence of pH control agents and pH value on the physical properties of ZnO thin films obtained by chemical bath deposition. ZnO thin films were synthesized on glass substrates using precursor solutions of different pHs prepared from two bases: sodium hydroxide (NaOH) and ammonia (NH3). The effect of pH values on the morphological, structural, and optical properties of ZnO thin films was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and UV–Visible spectroscopy. XRD results showed that all the synthesized ZnO thin films are polycrystalline and crystallize in a hexagonal wurtzite structure. The crystallite size, calculated using the Debye–Scherrer formula, varied from 10.50 nm to 11.69 nm for ZnO thin films obtained with NH3 and from 20.79 nm to 27.76 nm for those obtained with NaOH. FTIR analysis confirmed the presence of functional groups. SEM images indicated that not only the base but also the pH affects the morphology of the films, giving rise to different granular shapes. Overall, the ZnO thin films obtained with NaOH looked more mesoporous compared to those obtained with NH3. Optical characterization results showed that whatever the base used, the pH of the precursor solution affected the ZnO thin film transmittance. Films synthesized with NH3 exhibited the best transmittance (80%) at pH 8.5, while the best transmittance (81%) of films synthesized with NaOH was obtained at pH 8 in the visible region. Based on optical and morphological properties, ZnO films obtained from NH3 at pH 8.5 are found to be more suitable as photoanodes in dye-sensitized solar cells. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Figure 1

22 pages, 3787 KiB  
Article
Development of Smart pH-Sensitive Collagen-Hydroxyethylcellulose Films with Naproxen for Burn Wound Healing
by Elena-Emilia Tudoroiu, Mădălina Georgiana Albu Kaya, Cristina Elena Dinu-Pîrvu, Lăcrămioara Popa, Valentina Anuța, Mădălina Ignat, Emilia Visileanu, Durmuș Alpaslan Kaya, Răzvan Mihai Prisada and Mihaela Violeta Ghica
Pharmaceuticals 2025, 18(5), 689; https://doi.org/10.3390/ph18050689 - 7 May 2025
Cited by 1 | Viewed by 909
Abstract
Background: Developing versatile dressings that offer wound protection, maintain a moist environment, and facilitate healing represents an important therapeutic approach for burn patients. Objectives: This study presents the development of new smart pH-sensitive collagen-hydroxyethylcellulose films, incorporating naproxen and phenol red, designed [...] Read more.
Background: Developing versatile dressings that offer wound protection, maintain a moist environment, and facilitate healing represents an important therapeutic approach for burn patients. Objectives: This study presents the development of new smart pH-sensitive collagen-hydroxyethylcellulose films, incorporating naproxen and phenol red, designed to provide controlled drug release while enabling real-time pH monitoring for burn care. Methods: Biopolymeric films were prepared by the solvent-casting method using ethanol and glycerol as plasticizers. Results: Orange-colored films were thin, flexible, and easily peelable, with uniform, smooth, and nonporous morphology. Tensile strength varied from 0.61 N/mm2 to 3.33 N/mm2, indicating improved mechanical properties with increasing collagen content, while wetting analysis indicated a hydrophilic surface with contact angle values between 17.61° and 75.51°. Maximum swelling occurred at pH 7.4, ranging from 5.65 g/g to 9.20 g/g and pH 8.5, with values from 4.74 g/g to 7.92 g/g, suggesting effective exudate absorption. In vitro degradation proved structural stability maintenance for at least one day, with more than 40% weight loss. Films presented a biphasic naproxen release profile with more than 75% of the drug released after 24 h, properly managing inflammation and pain on the first-day post-burn. The pH variation mimicking the stages of the healing process demonstrated the color transition from yellow (pH 5.5) to orange (pH 7.4) and finally to bright fuchsia (pH 8.5), enabling easy visual evaluation of the wound environment. Conclusions: New multifunctional films combine diagnostic and therapeutic functions, providing a promising platform for monitoring wound healing, making them suitable for real-time wound assessment. Full article
(This article belongs to the Special Issue Development of Specific Dosage Form: Wound Dressing)
Show Figures

Figure 1

15 pages, 4917 KiB  
Article
Evaluation of the Performance of Static Mixers in 3D Printed Millireactors Using Integrated pH-Sensitive Films
by Marijan-Pere Marković, Elizabeta Forjan, Petar Kassal, Anđela Nosić and Domagoj Vrsaljko
Appl. Sci. 2025, 15(5), 2488; https://doi.org/10.3390/app15052488 - 25 Feb 2025
Cited by 1 | Viewed by 800
Abstract
The aim of this research was to prepare pH sensor films based on litmus using the sol–gel method with tetraethoxysilane (TEOS) and phenyltrimethoxysilane (PTMS) as precursors. The pH sensor film was then applied to millireactors to evaluate its performance on the intricate geometries [...] Read more.
The aim of this research was to prepare pH sensor films based on litmus using the sol–gel method with tetraethoxysilane (TEOS) and phenyltrimethoxysilane (PTMS) as precursors. The pH sensor film was then applied to millireactors to evaluate its performance on the intricate geometries of static mixers commonly found in millireactor designs. Millireactors were made from Formlabs High Temp resin using stereolithography (SLA) and from Anycubic Basic resin using digital light processing (DLP) technology. The performance of the pH sensor films was evaluated by tracking color changes in the pH sensor films and analyzing RGB (red, green, blue) and hue values through a smartphone application. The experiment involved mixing solutions with different pH values at varying flow rates within the millireactor channels. Furthermore, along with analyzing the hue values, characterization techniques involved measuring contact angles with water and diiodomethane. A film combining a litmus indicator with titanium dioxide (TiO2) displayed a color change within one minute and maintained this color throughout the study, confirming its reusability. Sensor films exhibited excellent reversibility (RSD = 2.4–3.3%) and stability. The findings demonstrate that the pH-sensitive films perform robustly across varying geometries, paving the way for their integration into advanced millireactor systems with static mixers and continuous chemical monitoring within Industry 4.0. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

18 pages, 13512 KiB  
Article
Preparation and Characterization of Antioxidative and pH-Sensitive Films Based on κ-Carrageenan/Carboxymethyl Cellulose Blended with Purple Cabbage Anthocyanin for Monitoring Hairtail Freshness
by Manni Ren, Ning Wang, Yueyi Lu and Cuntang Wang
Foods 2025, 14(4), 694; https://doi.org/10.3390/foods14040694 - 18 Feb 2025
Cited by 3 | Viewed by 1615
Abstract
Developing pH-sensitive materials for real-time freshness monitoring is critical for ensuring seafood safety. In this study, pH-responsive indicator films were prepared by incorporating purple cabbage anthocyanin (PCA) into a κ-carrageenan/carboxymethyl cellulose (CA/CMC) matrix via solution casting, with PCA concentrations of 2.5%, 5.0%, 7.5%, [...] Read more.
Developing pH-sensitive materials for real-time freshness monitoring is critical for ensuring seafood safety. In this study, pH-responsive indicator films were prepared by incorporating purple cabbage anthocyanin (PCA) into a κ-carrageenan/carboxymethyl cellulose (CA/CMC) matrix via solution casting, with PCA concentrations of 2.5%, 5.0%, 7.5%, and 10% (w/w). The films exhibited remarkable pH sensitivity, with distinct color changes across pH 2.0–11.0. Incorporating PCA enhanced film crystallinity, antioxidant properties, and opacity while reducing water vapor transmission (WVP). High PCA content resulted in rougher morphology, lowering tensile strength (TS) but improving elongation at break (EB). The indicator film had good environmental stability, and the color difference was not visible after 10 days in the dark and 4 °C conditions. The CA/CMC/PCA-10% film showed the most pronounced pH-responsive color changes, transitioning from purple to green as hairtail freshness deteriorated. This innovative approach highlights the potential of CA/CMC/PCA films as reliable, eco-friendly indicators for real-time seafood freshness monitoring, offering significant advancements in smart packaging technology. Full article
Show Figures

Graphical abstract

13 pages, 5486 KiB  
Article
Development of Gelatin/Zein Electrospun Nanofiber Films Containing Purple Sweet Potato Anthocyanin for Real-Time Freshness Monitoring of Aquatic Products
by Chenyu Wang, Aixia Huang, Jiaxuan Fang, Shuangdie Li, Siyu Wu, Di Sun, Qingbao Ma, Zhongjie Yu, Yu Liu and Wei Jiang
Coatings 2025, 15(1), 79; https://doi.org/10.3390/coatings15010079 - 13 Jan 2025
Viewed by 1025
Abstract
In the present study, an electrospinning freshness monitoring film prepared by gelatin/zein loading with purple sweet potato anthocyanins (PSPA) was produced to track the freshness state of Penaeus vannamei. The electrospun nanofiber films with the gelatin and zein weight ratio of 1:0, [...] Read more.
In the present study, an electrospinning freshness monitoring film prepared by gelatin/zein loading with purple sweet potato anthocyanins (PSPA) was produced to track the freshness state of Penaeus vannamei. The electrospun nanofiber films with the gelatin and zein weight ratio of 1:0, 3:1, 2:1, and 1:1 were named GA, GZA 3:1, GZA 2:1, and GZA 1:1, respectively. The impacts of zein concentration on the electrospun nanofiber film properties were investigated. SEM results showed that a smooth surface was observed for the electrospun nanofiber films. As the zein content increased, the average diameter decreased. No new characteristic peaks were shown by FTIR and XRD, indicating the good compatibility between gelatin, zein, and PSPA. The incorporation of zein decreased the swelling ratio (from completely dissolved to 100.7%) and water solubility (from 100% to 30%) and increased the water contact angle (from 0° to 113.3°). The GA, GZA 3:1, GZA 2:1, and GZA 1:1 had apparent color changes to NH3 and demonstrated good stability and reversibility. Furthermore, the freshness states (fresh, sub-fresh, and spoiled) of Penaeus vannamei storage at 4 °C could be effectively distinguished by GZA 3:1 by showing different colors (from pink to grayish purple to blue). Consequently, GZA3:1 exhibited improved hydrophobicity and pH sensitivity and has great potential in real-time monitoring of aquatic product quality. Full article
(This article belongs to the Special Issue New Advance in Nanoparticles, Fiber, and Coatings)
Show Figures

Figure 1

31 pages, 12442 KiB  
Article
Poly (Lactic Acid) Fibrous Film with Betalains from Pitaya (Stenocereus thurberi) by Electrospinning for Potential Use as Smart Food Packaging
by Dalila Fernanda Canizales-Rodríguez, Francisco Rodríguez-Félix, José Agustín Tapia-Hernández, Carmen Lizette Del-Toro-Sánchez, Saúl Ruíz-Cruz, Santiago P. Aubourg, Victor Manuel Ocaño-Higuera, María Irene Silvas-García, Cielo Estefanía Figueroa-Enríquez and Milagros Guadalupe Álvarez-Moreno
Coatings 2024, 14(12), 1581; https://doi.org/10.3390/coatings14121581 - 18 Dec 2024
Cited by 1 | Viewed by 1694
Abstract
The incorporation of biopolymers and natural colorants in smart packaging has garnered significant attention in the food packaging industry. This study investigates the design and characterization of novel fibrous films incorporating betalain extract (BE) from Stenocereus thurberi in poly (lactic acid) (PLA). An [...] Read more.
The incorporation of biopolymers and natural colorants in smart packaging has garnered significant attention in the food packaging industry. This study investigates the design and characterization of novel fibrous films incorporating betalain extract (BE) from Stenocereus thurberi in poly (lactic acid) (PLA). An electrospinning technique was developed with varying PLA concentrations (2%–12% w/v) and BE concentrations (8%–12% w/v) to create a colorimetric freshness indicator. BE was characterized by quantifying its phytochemical content and assessing its antioxidant capacity. Morphological and structural analyses included scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), polydispersity index (PI), mechanical properties, and functional characteristics such as ammonia sensitivity and total antioxidant activity. The results indicated that the incorporation of BE significantly influenced the average diameter of the nanofibers, ranging from 313 ± 74 nm to 657 ± 99 nm. SEM micrographs showed that PLA12-BE12 films exhibited smooth surfaces without bead formation. The FTIR analysis confirmed effective BE incorporation, revealing intermolecular interactions between the betalain molecules and the PLA matrix, which contributed to enhanced structural and functional stability. The mechanical properties analysis revealed that moderate BE additions (8%–10% w/v) enhanced the Young’s modulus and tensile strength, while higher BE concentrations (12% w/v) disrupted the polymer network, reducing these properties. Additionally, the strain at break decreased significantly with BE incorporation, reflecting limited molecular chain mobility. Increasing BE concentration notably improved antioxidant activity, with the BE concentration of 12% (w/v), the ABTS•+, DPPH•, and FRAP radical scavenging activities at the highest values of 84.28 ± 1.59%, 29.95 ± 0.34%, and 710.57 ± 28.90 µM ET/g, respectively. Ammonia sensitivity tests demonstrated a significant halochromic transition from reddish-pink to yellow, indicating high sensitivity to low ammonia concentrations. The possible mechanism is alkaline pH induces aldimine bond hydrolysis and generates betalamic acid (yellow) and cyclo-DOPA-5-O-ß-glucoside (colorless) The fibrous films also exhibited reversible color changes and maintained good color stability over 30 days, emphasizing their potential for use in smart packaging applications for real-time freshness monitoring and food quality assessment. Full article
(This article belongs to the Special Issue Novel Advances in Food Contact Materials)
Show Figures

Figure 1

20 pages, 25446 KiB  
Article
Preparation and Characterization of Bio-Based Freshness Indicator Labels Loaded with Natural Pigments with High Stability and Sensitivity
by Yinglin Tan, Xiao Liu, Zhi Cheng, Qiping Zhan and Liyan Zhao
Foods 2024, 13(24), 4049; https://doi.org/10.3390/foods13244049 - 15 Dec 2024
Cited by 3 | Viewed by 1749
Abstract
Freshness indicator labels are crucial for food quality monitoring. However, existing labels often lack stability and sensitivity. This study aims to develop a safe freshness indicator label with high stability and sensitivity. By evaluating the pH response characteristics and stability of four natural [...] Read more.
Freshness indicator labels are crucial for food quality monitoring. However, existing labels often lack stability and sensitivity. This study aims to develop a safe freshness indicator label with high stability and sensitivity. By evaluating the pH response characteristics and stability of four natural pigments, purple potato anthocyanin (PA) was identified as having the best color properties. Mixing the more stable alizarin (AL) with PA improved the stability of the pigment solution without reducing sensitivity. These film labels are prepared with three natural biomolecules and polymers that are a two-by-two composite of them: soybean isolate protein, acacia bean gum, and sodium alginate. Through comparisons of ammonia response, color stability, water solubility, and mechanical properties, the soy protein isolate and locust bean gum composite were determined to be the optimal substrate system. The label of soybean protein isolate and locust bean gum was initially applied to the freshness identification of shrimp and chicken. The results show that the label can effectively respond to the spoilage of aquatic products and meat products and has great application potential in the field of food packaging. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

22 pages, 5400 KiB  
Article
Bioactive Properties of Microencapsulated Anthocyanins from Vaccinium floribundum and Rubus glaucus
by Carlos Barba-Ostria, Rebeca Gonzalez-Pastor, Fabián Castillo-Solís, Saskya E. Carrera-Pacheco, Orestes Lopez, Johana Zúñiga-Miranda, Alexis Debut and Linda P. Guamán
Molecules 2024, 29(23), 5504; https://doi.org/10.3390/molecules29235504 - 21 Nov 2024
Cited by 2 | Viewed by 1408
Abstract
Anthocyanins, widely recognized for their antioxidant properties and potential health benefits, are highly susceptible to degradation due to environmental factors such as light, temperature, and pH leading to reduced bioavailability and efficacy. Microencapsulation, which involves entrapment in a matrix to enhance stability and [...] Read more.
Anthocyanins, widely recognized for their antioxidant properties and potential health benefits, are highly susceptible to degradation due to environmental factors such as light, temperature, and pH leading to reduced bioavailability and efficacy. Microencapsulation, which involves entrapment in a matrix to enhance stability and bioavailability. This study aims to investigate the bioactive properties of microencapsulated anthocyanins derived from Vaccinium floribundum (Andean blueberry) and Rubus glaucus (Andean blackberry). The extracts from V. floribundum and R. glaucus were microencapsulated using maltodextrin as the carrier agent due to its film-forming properties and effectiveness in stabilizing sensitive compounds through a spray-drying process. The microcapsules were characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) to assess their chemical and morphological properties. The biological activities of these microencapsulated anthocyanins were evaluated using in vitro assays for their antibacterial, antioxidant, and anti-inflammatory effects. The results indicated enhanced bioactivity of the microencapsulated anthocyanins, suggesting their potential use in developing functional foods and pharmaceuticals. This study provides valuable insights into the effectiveness of microencapsulation in preserving anthocyanins’ functional properties and enhancing their health-promoting effects, highlighting the potential for application in the food and pharmaceutical industries. Full article
Show Figures

Figure 1

23 pages, 1696 KiB  
Review
Intelligent Packaging Systems with Anthocyanin: Influence of Different Polymers and Storage Conditions
by Leandro Neodini Remedio and Carolina Parada Quinayá
Polymers 2024, 16(20), 2886; https://doi.org/10.3390/polym16202886 - 14 Oct 2024
Cited by 4 | Viewed by 4070
Abstract
With the aim of meeting the growing demand for safe food, intelligent packaging has emerged, which monitors the conditions of the food and informs the consumer about its quality directly at the time of purchase. Among intelligent packaging options, colorimetric indicator films, which [...] Read more.
With the aim of meeting the growing demand for safe food, intelligent packaging has emerged, which monitors the conditions of the food and informs the consumer about its quality directly at the time of purchase. Among intelligent packaging options, colorimetric indicator films, which change color in response to changes in the food, such as the release of volatile compounds, have been widely studied. Among them, pH indicator films composed of dyes sensitive to small variations in the pH value of the food surface have received greater attention in recent years. Anthocyanins, which are natural pigments, have stood out as one of the most commonly used sources of dyes in the production of these indicator films. In this context, the present review aims to present an updated overview of research employing anthocyanins in indicator films, including their stability under different storage conditions, the influence of different polymers used in their production, and alternative techniques for maintaining stability. Full article
(This article belongs to the Special Issue Synthesis of Bio-Based Polymers: Challenges and Opportunities II)
Show Figures

Graphical abstract

22 pages, 6208 KiB  
Review
A Review on Gas Indicators and Sensors for Smart Food Packaging
by Wonyoung Heo and Seokwon Lim
Foods 2024, 13(19), 3047; https://doi.org/10.3390/foods13193047 - 25 Sep 2024
Cited by 11 | Viewed by 5600
Abstract
Real-time monitoring of changes in packaged food is crucial to ensure safety and alleviate environmental issues. Accordingly, the development of indicators and sensors for smart packaging has long been anticipated, especially for gases related to food deterioration and microbial growth. However, the characteristics [...] Read more.
Real-time monitoring of changes in packaged food is crucial to ensure safety and alleviate environmental issues. Accordingly, the development of indicators and sensors for smart packaging has long been anticipated, especially for gases related to food deterioration and microbial growth. However, the characteristics of indicators and sensors used in food packaging cannot be adjusted according to the specific food type, making it essential to select and apply suitable indicators and sensors for each type of food. In this review, the principles and characteristics of gas indicators and sensors for oxygen, carbon dioxide, and ammonia that are commercialized or in the development phase were summarized, and their application status and prospects were assessed. Indicators and sensors for smart packaging are applied in forms such as films, labels, sachets, and devices. Their detection methods include redox reactions, analyte binding, enzyme reactions, pH changes, electron transfer, conformational changes, and electrode reactions. In this work, 9 types of indicators and sensors for oxygen, carbon dioxide, and ammonia were evaluated based on their detection and indication methods, materials, sensitivity, detection range, limit of detection, and advantages and disadvantages in food applications. We anticipate our review will propose criteria for selecting the optimal indicators and sensors for specific foods. Furthermore, this review examines the current application status and future prospects of these indicators and sensors. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

16 pages, 8048 KiB  
Article
Intelligent Biopolymer-Based Films: Promising New Solutions for Food Packaging Applications
by Diana Ionela Dăescu, Diana Maria Dreavă, Anamaria Todea, Francisc Peter and Iulia Păușescu
Polymers 2024, 16(16), 2256; https://doi.org/10.3390/polym16162256 - 8 Aug 2024
Cited by 5 | Viewed by 2242
Abstract
The development of biopolymer-based films represents a promising direction in the packaging industry that responds to stringent needs for sustainability, reducing the ecological impact. Traditional fossil-derived polymers present major concerns because of their long decomposition time and their significant contribution to the pollution [...] Read more.
The development of biopolymer-based films represents a promising direction in the packaging industry that responds to stringent needs for sustainability, reducing the ecological impact. Traditional fossil-derived polymers present major concerns because of their long decomposition time and their significant contribution to the pollution of the environment. On the contrary, biopolymers such as chitosan, PVA, and PLA offer viable alternatives. This study aimed to obtain an innovative pH indicator for smart packaging using a synthetic non-toxic anthocyanin analogue dye incorporated in bio-based films to indicate meat freshness and quality. The pH-responsive color-changing properties of the dye make it suitable for developing intelligent films to monitor food freshness. The obtained polymeric films were characterized by FT-IR and UV–VIS spectroscopy, and their thermal properties were assessed using thermogravimetric methods. Moisture content, swelling capacity, and water solubility of the polymeric films were also evaluated. The sensitivity of the biopolymer–flavylium composite films to pH variations was studied in the pH range of 2 to 12 and noticeable color variations were observed, allowing the monitoring of the meat’s quality damage through pH changes. The pH-responsive films were applied directly on the surface or in the proximity of pork and chicken meat samples, to evaluate their colorimetric response to fresh and spoilt meat. This study can be the starting point for creating more durable packaging solutions leading to a circular economy. Full article
(This article belongs to the Special Issue Polymeric Materials in Food Science)
Show Figures

Figure 1

16 pages, 6685 KiB  
Article
Improving Structural, Physical, and Sensitive Properties of Sodium Alginate–Purple Sweet Potato Peel Extracts Indicator Films by Varying Drying Temperature
by Wenxin Li, Mengna Zhao, Xiufang Xia and Yingchun Zhu
Foods 2024, 13(16), 2477; https://doi.org/10.3390/foods13162477 - 6 Aug 2024
Cited by 3 | Viewed by 1736
Abstract
Sodium alginate (SA)–purple sweet potato peel extracts (PPE) from industrial waste indicator films were developed at different drying temperatures (25, 30, 35, 40, 45, 50, and 55 °C). The effects of drying temperatures on the film’s structural, physical, and sensitive properties were investigated. [...] Read more.
Sodium alginate (SA)–purple sweet potato peel extracts (PPE) from industrial waste indicator films were developed at different drying temperatures (25, 30, 35, 40, 45, 50, and 55 °C). The effects of drying temperatures on the film’s structural, physical, and sensitive properties were investigated. On the structural properties, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction indicated that compactness, intermolecular interactions, and crystallinity of indicator films were improved at a lower drying temperature. On the physical properties, with the drying temperature increasing, elongation at the break increased significantly (p < 0.05); ΔE and water-vapor permeability decreased significantly (p < 0.05); and thickness and tensile strength initially increased significantly (90.46 → 98.46, 62.99 → 95.73) and subsequently decreased significantly (98.46 → 71.93, 95.73 → 55.44) (p < 0.05), with the maximum values obtained at 30 °C. On sensitivity, the corresponding colors of the films became lighter as the drying temperature increased, and the films exhibited relatively excellent pH and NH3 sensitivity, with easily discernible color changes at lower temperatures. The results of this paper revealed that the overall film characteristics are improved at lower drying temperatures, which will provide valuable references for selecting the drying temperature for preparing indicator films as a guide for industrialized production. Full article
Show Figures

Graphical abstract

20 pages, 17343 KiB  
Article
Intelligent Food Packaging: Quaternary Ammonium Chitosan/Gelatin Blended Films Enriched with Blueberry Anthocyanin-Derived Cyanidin for Shrimp and Milk Freshness Monitoring
by Dan Chen, Jialiang Lv, Ao Wang, Huimin Yong and Jun Liu
Foods 2024, 13(14), 2237; https://doi.org/10.3390/foods13142237 - 16 Jul 2024
Cited by 15 | Viewed by 2994
Abstract
Blueberry anthocyanin-derived cyanidin (BAC) was used to prepare a series of responsive food freshness packaging films by compounding it with quaternary chitosan (QC) and gelatin (G). The fundamental properties, pH sensitivity, and functional attributes of the films were examined. The BAC solutions exhibited [...] Read more.
Blueberry anthocyanin-derived cyanidin (BAC) was used to prepare a series of responsive food freshness packaging films by compounding it with quaternary chitosan (QC) and gelatin (G). The fundamental properties, pH sensitivity, and functional attributes of the films were examined. The BAC solutions exhibited notable variations in color (from red to pink to violet) under different pH conditions. The incorporation of BAC resulted in improved UV–vis shielding capabilities but compromised the mechanical strength of the films (with tensile strength values from 85.02 to 44.89 MPa, elongation at break from 13.08% to 3.6%, and water vapor transmission rates from 5.24 × 10−9 to 7.80 × 10−9 g m−1 s−1 Pa−1). The QC-G-BAC films, containing 5–15 wt% BAC, exhibited noticeable color changes in acidic/ammonia environments within a short timeframe, easily discernible to the naked eye. Furthermore, the inclusion of BAC significantly enhanced the antioxidant and antimicrobial properties of the films. The addition of 5–15 wt% BAC to QC-G-BAC films could be employed for assessing the freshness of fresh shrimp (from red to dark red) and pasteurized milk (from red to dark earthy yellow). Among them, the total color difference (ΔE) of QC-G-BAC5 film was significantly correlated with the pH, acidity, and total colony count of pasteurized milk (R = 0.846, −0.930, −0.908, respectively). This new concept in smart packaging offers a straightforward and user-friendly freshness indicator. Full article
Show Figures

Figure 1

Back to TopTop