Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (194)

Search Parameters:
Keywords = ozone resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2584 KiB  
Article
Enhanced Catalytic Ozonation of Formaldehyde over MOFs- Derived MnOx Catalysts with Diverse Morphologies: The Role of Oxygen Vacancies
by Yulin Sun, Yiwei Zhang, Yong He, Wubin Weng, Yanqun Zhu and Zhihua Wang
Catalysts 2025, 15(8), 752; https://doi.org/10.3390/catal15080752 - 6 Aug 2025
Abstract
Metal–organic frameworks (MOFs) have become a hot topic in various research fields nowadays. And MOF-derived metal oxides prepared by the sacrificial template method have been widely applied as catalysts for pollutant removal. Accordingly, we prepared a series of MOF-derived MnOx catalysts with [...] Read more.
Metal–organic frameworks (MOFs) have become a hot topic in various research fields nowadays. And MOF-derived metal oxides prepared by the sacrificial template method have been widely applied as catalysts for pollutant removal. Accordingly, we prepared a series of MOF-derived MnOx catalysts with diverse morphologies (rod-like, flower-like, slab-like) via the pyrolysis of MOF precursors, and the as-prepared MnOx catalysts demonstrated superior performance compared to the one prepared using the co-precipitation method. MnOx-II, with a flower-like structure, exhibited excellent activity for formaldehyde (HCHO) catalytic ozonation at room temperature, reaching complete HCHO conversion at O3/HCHO of 1.5 and more than 90% CO2 selectivity at an O3/HCHO ratio of 2.5. On the basis of various characterization methods, it was clarified that the enhanced catalytic performance of MnOx-II benefited from its larger BET surface area, abundant oxygen vacancies, better redox ability at lower temperature, and more Lewis acid sites. The H2O resistance and stability tests were also conducted. Furthermore, DFT calculations substantiated the enhanced adsorption of HCHO and O3 on oxygen vacancies, while in–situ DRIFTS measurements elucidated the degradation pathway of HCHO during catalytic ozonation through detected intermediates. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

20 pages, 10391 KiB  
Article
Sustainable Substitution of Petroleum-Based Processing Oils with Soybean-Derived Alternatives in Styrene–Butadiene Rubber: Effects on Processing Behavior and Mechanical Properties
by Yang-Wei Lin, Tsung-Yi Chen, Chen-Yu Chueh, Yi-Ting Chen, Tsunghsueh Wu and Hsi-Ming Hsieh
Polymers 2025, 17(15), 2129; https://doi.org/10.3390/polym17152129 - 1 Aug 2025
Viewed by 289
Abstract
This study evaluates the replacement of petroleum-based naphthenic oil with four types of soybean-derived alternatives—virgin soybean oil (SBO), epoxidized SBO (ESBO), expired SBO, and recycled SBO—in styrene–butadiene rubber (SBR) composites. The materials were tested in both staining rubber (SR) and non-staining rubber (NSR) [...] Read more.
This study evaluates the replacement of petroleum-based naphthenic oil with four types of soybean-derived alternatives—virgin soybean oil (SBO), epoxidized SBO (ESBO), expired SBO, and recycled SBO—in styrene–butadiene rubber (SBR) composites. The materials were tested in both staining rubber (SR) and non-staining rubber (NSR) systems to assess processing characteristics, mechanical performance, and environmental durability. Among the alternatives, SBO demonstrated the best overall performance, improving processability and tensile strength by over 10%, while ESBO enhanced ozone resistance by 35% due to its epoxide functionality. Expired and recycled SBOs maintained essential mechanical properties within 90% of virgin SBO values. The full replacement of CH450 with SBO in tire prototypes resulted in burst strength exceeding 1000 kPa and stable appearance after 5000 km of road testing. To validate industrial relevance, the developed green tire was exhibited at the 2025 Taipei International Cycle Show, attracting interest from international buyers and stakeholders for its eco-friendly composition and carbon footprint reduction potential, thereby demonstrating both technical feasibility and commercial viability. Full article
(This article belongs to the Special Issue Functional Polymers and Their Composites for Sustainable Development)
Show Figures

Graphical abstract

21 pages, 4988 KiB  
Article
Ozone Exposure Induces Prediabetic Symptoms Through Hepatic Glycogen Metabolism and Insulin Resistance
by Yuchai Tian, Xiaoyun Wu, Zhihua Gong, Xiaomin Liang, Huizhen Zhu, Jiyue Zhang, Yangcheng Hu, Bin Li, Pengchong Xu, Kaiyue Guo and Huifeng Yue
Toxics 2025, 13(8), 652; https://doi.org/10.3390/toxics13080652 - 31 Jul 2025
Viewed by 276
Abstract
(1) Background: Epidemiological studies link ozone (O3) exposure to diabetes risk, but mechanisms and early biomarkers remain unclear. (2) Methods: Female mice exposed to 0.5/1.0 ppm O3 were assessed for glucose tolerance and HOMA (homeostasis model assessment) index. Genes related [...] Read more.
(1) Background: Epidemiological studies link ozone (O3) exposure to diabetes risk, but mechanisms and early biomarkers remain unclear. (2) Methods: Female mice exposed to 0.5/1.0 ppm O3 were assessed for glucose tolerance and HOMA (homeostasis model assessment) index. Genes related to impaired glucose tolerance and insulin resistance were screened through the Comparative Toxicogenomics Database (CTD), and verified using quantitative real-time PCR. In addition, liver histopathological observations and the determination of basic biochemical indicators were conducted, and targeted metabolomics analysis was performed on the liver to verify glycogen levels and gene expression. In vitro validation was conducted with HepG2 and Min6 cell lines. (3) Results: Fasting blood glucose and insulin resistance were elevated following O3 exposure. Given that the liver plays a critical role in glucose metabolism, we further investigated hepatocyte apoptosis and alterations in glycogen metabolism, including reduced glycogen levels and genetic dysregulation. Metabolomics analysis revealed abnormalities in fructose metabolism and glycogen synthesis in the livers of the O3-exposed group. In vitro studies demonstrated that oxidative stress enhances both liver cell apoptosis and insulin resistance in pancreatic islet β cells. (4) Conclusions: O3 triggers prediabetes symptoms via hepatic metabolic dysfunction and hepatocyte apoptosis. The identified metabolites and genes offer potential as early biomarkers and therapeutic targets. Full article
Show Figures

Graphical abstract

13 pages, 1563 KiB  
Article
Activation of Peracetic Acid by Ozone for Recalcitrant Pollutant Degradation: Accelerated Kinetics, Byproduct Mitigation, and Microbial Inactivation
by Dihao Bai, Cong Liu, Siqing Zhang, Huiyu Dong, Lei Sun and Xiangjuan Yuan
Water 2025, 17(15), 2240; https://doi.org/10.3390/w17152240 - 28 Jul 2025
Viewed by 292
Abstract
Iopamidol (IPM), as a typical recalcitrant emerging pollutant and precursor of iodinated disinfection by-products (I-DBPs), is unsuccessfully removed by conventional wastewater treatment processes. This study comprehensively evaluated the ozone/peracetic acid (O3/PAA) process for IPM degradation, focusing on degradation kinetics, environmental impacts, [...] Read more.
Iopamidol (IPM), as a typical recalcitrant emerging pollutant and precursor of iodinated disinfection by-products (I-DBPs), is unsuccessfully removed by conventional wastewater treatment processes. This study comprehensively evaluated the ozone/peracetic acid (O3/PAA) process for IPM degradation, focusing on degradation kinetics, environmental impacts, transformation products, ecotoxicity, disinfection byproducts (DBPs), and microbial inactivation. The O3/PAA system synergistically activates PAA via O3 to generate hydroxyl radicals (OH) and organic radicals (CH3COO and CH3CO(O)O), achieving an IPM degradation rate constant of 0.10 min−1, which was significantly higher than individual O3 or PAA treatments. The degradation efficiency of IPM in the O3/PAA system exhibited a positive correlation with solution pH, achieving a maximum degradation rate constant of 0.23 min−1 under alkaline conditions (pH 9.0). Furthermore, the process demonstrated strong resistance to interference from coexisting anions, maintaining robust IPM removal efficiency in the presence of common aqueous matrix constituents. Furthermore, quenching experiments revealed OH dominated IPM degradation in O3/PAA system, while the direct oxidation by O3 and R-O played secondary roles. Additionally, based on transformation products (TPs) identification and ECOSAR predictions, the primary degradation pathways were elucidated and the potential ecotoxicity of TPs was systematically assessed. DBPs analysis after chlorination revealed that the O3/PAA (2.5:3) system achieved the lowest total DBPs concentration (99.88 μg/L), representing a 71.5% reduction compared to PAA alone. Amongst, dichloroacetamide (DCAM) dominated the DBPs profile, comprising > 60% of total species. Furthermore, the O3/PAA process achieved rapid 5–6 log reductions of E. coli. and S. aureus within 3 min. These results highlight the dual advantages of O3/PAA in effective disinfection and byproduct control, supporting its application in sustainable wastewater treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

30 pages, 12104 KiB  
Article
Efficacy, Kinetics, and Mechanism of Tetracycline Degradation in Water by O3/PMS/FeMoBC Process
by Xuemei Li, Qingpo Li, Xinglin Chen, Bojiao Yan, Shengnan Li, Huan Deng and Hai Lu
Nanomaterials 2025, 15(14), 1108; https://doi.org/10.3390/nano15141108 - 17 Jul 2025
Viewed by 350
Abstract
This study investigated the degradation efficacy, kinetics, and mechanism of the ozone (O3) process and two enhanced O3 processes (O3/peroxymonosulfate (O3/PMS) and O3/peroxymonosulfate/iron molybdates/biochar composite (O3/PMS/FeMoBC)), especially the O3/PMS/FeMoBC process, [...] Read more.
This study investigated the degradation efficacy, kinetics, and mechanism of the ozone (O3) process and two enhanced O3 processes (O3/peroxymonosulfate (O3/PMS) and O3/peroxymonosulfate/iron molybdates/biochar composite (O3/PMS/FeMoBC)), especially the O3/PMS/FeMoBC process, for the degradation of tetracycline (TC) in water. An FeMoBC sample was synthesized by the impregnation–pyrolysis method. The XRD results showed that the material loaded on BC was an iron molybdates composite, in which Fe2Mo3O8 and FeMoO4 accounted for 26.3% and 73.7% of the composite, respectively. The experiments showed that, for the O3/PMS/FeMoBC process, the optimum conditions were obtained at pH 6.8 ± 0.1, an initial concentration of TC of 0.03 mM, an FeMoBC dosage set at 200 mg/L, a gaseous O3 concentration set at 3.6 mg/L, and a PMS concentration set at 30 μM. Under these reaction conditions, the degradation rate of TC in 8 min and 14 min reached 94.3% and 98.6%, respectively, and the TC could be reduced below the detection limit (10 μg/L) after 20 min of reaction. After recycling for five times, the degradation rate of TC could still reach about 40%. The introduction of FeMoBC into the O3/PMS system significantly improved the TC degradation efficacy and resistance to inorganic anion interference. Meanwhile, it enhanced the generation of hydroxyl radicals (OH) and sulfate radicals (SO4•−), thus improving the oxidizing efficiency of TC in water. Material characterization analysis showed that FeMoBC has a well-developed porous structure and abundant active sites, which is beneficial for the degradation of pollutants. The reaction mechanism of the O3/PMS/FeMoBC system was speculated by the EPR technique and quenching experiments. The results showed that FeMoBC efficiently catalyzed the O3/PMS process to generate a variety of reactive oxygen species, leading to the efficient degradation of TC. There are four active oxidants in O3/PMS/FeMoBC system, namely OH, SO4•−, 1O2, and •O2. The order of their contribution importance was OH, 1O2, SO4•−, and •O2. This study provides an effective technological pathway for the removal of refractory organic matter in the aquatic environment. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

22 pages, 6102 KiB  
Review
Current Developments in Ozone Catalyst Preparation Techniques and Their Catalytic Oxidation Performance
by Jiajia Gao, Siqi Chen, Yun Gao, Wenquan Sun, Jun Zhou, Kinjal J. Shah and Yongjun Sun
Catalysts 2025, 15(7), 671; https://doi.org/10.3390/catal15070671 - 10 Jul 2025
Viewed by 404
Abstract
Through the use of heterogeneous catalysts, catalytic ozone oxidation technology, an effective and eco-friendly advanced oxidation process (AOP), facilitates the breakdown of ozone into reactive oxygen species (like ·OH) and greatly increases the mineralization efficiency of pollutants. This study examines the development of [...] Read more.
Through the use of heterogeneous catalysts, catalytic ozone oxidation technology, an effective and eco-friendly advanced oxidation process (AOP), facilitates the breakdown of ozone into reactive oxygen species (like ·OH) and greatly increases the mineralization efficiency of pollutants. This study examines the development of heterogeneous ozone catalysts through a critical evaluation of the five primary preparation techniques: ion exchange, sol–gel, coprecipitation, impregnation, and hydrothermal synthesis. Each preparation method’s inherent qualities, benefits, drawbacks, and performance variations are methodically investigated, with an emphasis on how they affect the breakdown of different resistant organic compounds. Even though heterogeneous catalysts are more stable and reusable than homogeneous catalysts, they continue to face issues like active component leaching, restricted mass transfer, and ambiguous mechanisms. In order to determine the key paths for catalyst selection in catalytic ozone treatment going forward, the main goal of this review is to provide an overview of the accomplishments in the field of the heterogeneous ozone catalyst treatment of wastewater that is difficult to degrade. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

17 pages, 5099 KiB  
Article
β-Secosterol, an Oxyphytosterol Produced Through the Reaction of β-Sitosterol with Ozone, Demonstrates Different Cytotoxic Effects on BRL-3A and HTC Cells
by Bianca S. Takayasu, Igor R. Martins, Miriam Uemi, Janice Onuki and Glaucia M. Machado-Santelli
Biomolecules 2025, 15(7), 939; https://doi.org/10.3390/biom15070939 - 27 Jun 2025
Viewed by 299
Abstract
Sitosterol (Sito) is a phytosterol with bioactive properties, including reducing atherosclerosis risk and anti-inflammatory and antitumoral effects. However, it can be oxidized by reactive oxygen species such as ozone (O3), producing oxyphytosterols with harmful effects such as cytotoxicity, oxidative stress, and [...] Read more.
Sitosterol (Sito) is a phytosterol with bioactive properties, including reducing atherosclerosis risk and anti-inflammatory and antitumoral effects. However, it can be oxidized by reactive oxygen species such as ozone (O3), producing oxyphytosterols with harmful effects such as cytotoxicity, oxidative stress, and proatherogenicity. Ozone, a strong oxidant and common pollutant, can alter plant steroid compounds, raising concerns about dietary oxyphytosterol intake. Studies identify β-Secosterol (βSec) as the primary ozone-derived oxyphytosterol from Sito, exhibiting cytotoxic effects on HepG2 human liver tumor cells. This study investigated βSec’s biological effects on two rat liver cell lines: BRL-3A (immortalized) and HTC (tumoral), examining cell death, cell cycle progression, morphology, and cytoskeleton organization. While Sito influenced cell metabolic activity without affecting cell survival or morphology, βSec demonstrated significant cytotoxicity in both cell lines. It induced G0/G1 cell cycle arrest and disrupted cytoskeleton organization, with different implications: BRL-3A cells showed persistent cytoskeletal changes potentially linked to tumor induction, while HTC cells displayed chemoresistance, restoring cytoskeletal integrity and enhancing metastatic potential. These findings reveal βSec’s complex, context-dependent effects, suggesting it may promote tumor-like behavior in non-tumoral cells and resistance mechanisms in cancer cells, contributing to understanding oxyphytosterols’ implications for physiological and pathological conditions. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Graphical abstract

16 pages, 3867 KiB  
Article
Ultralow-Resistance High-Voltage Loaded Woven Air Filter for Fine Particle/Bacteria Removal
by Weisi Fan, Sanqiang Wei, Ziyun Zhang, Lulu Shi, Jun Wang, Wenlan Hao, Kun Zhang and Qiuran Jiang
Polymers 2025, 17(13), 1765; https://doi.org/10.3390/polym17131765 - 26 Jun 2025
Viewed by 393
Abstract
Conventional filters for air filtration typically feature compact nonwoven structures, which not only lead to high pressure drop, significant energy consumption, and a decay in filtration efficacy, but are also uncleanable, resulting in substantial pollution upon disposal. In this study, filters with high-voltage [...] Read more.
Conventional filters for air filtration typically feature compact nonwoven structures, which not only lead to high pressure drop, significant energy consumption, and a decay in filtration efficacy, but are also uncleanable, resulting in substantial pollution upon disposal. In this study, filters with high-voltage electrostatic loading capability were developed with a dopamine binding layer to facilitate the establishment of an Ag conductive layer on the surface of ultraloose woven structure fabrics (pore size: 73.7 μm). The high-voltage-loaded woven structure filtration (VLWF) system was constructed with a negative-ion zone, a high-voltage filtration zone, and a grounded filter. The morphological, chemical, and electrical properties of the filters and the filtration performance of the VLWF system were evaluated. The single-pass filtration efficiencies for PM2.5 and E. coli were 67.4% and 97.0%, respectively. Notably, the pressure drop was reduced to 6.2 Pa, and the quality factor reached 0.1810 Pa−1 with no detectable ozone release. After three cycles of ultrasonic cleaning, approximately 58.4% of filtration efficiency was maintained without any increase in air resistance. The removal of PM2.5 and microorganisms by this system was not solely reliant on blocking and electrostatic attraction but may also involve induced repulsion and biostructure inactivation. By integrating the ultraloose woven structure with high-voltage assistance, this VLWF system effectively balanced the requirements for high filtration efficacy and low air resistance. More importantly, this VLWF system provided a cleanable filter model that reduced the pollution associated with conventional disposable filters and lowered costs for customers. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

21 pages, 2726 KiB  
Article
The Influence of Storage Conditions and Fruit Quality Parameters on the Minimization of Surface Pitting in Sweet Cherries
by Pavol Suran, Veronika Danková, Tomáš Nečas, Pavlína Knapová and Lucie Plecitá
Horticulturae 2025, 11(7), 716; https://doi.org/10.3390/horticulturae11070716 - 20 Jun 2025
Viewed by 322
Abstract
Surface pitting is a key postharvest disorder in sweet cherries (Prunus avium L.) that reduces visual quality and shortens shelf life. A three-year study evaluated 35 sweet cherry accessions (32 breeding lines, 3 cultivars) to assess the role of genotype, fruit quality [...] Read more.
Surface pitting is a key postharvest disorder in sweet cherries (Prunus avium L.) that reduces visual quality and shortens shelf life. A three-year study evaluated 35 sweet cherry accessions (32 breeding lines, 3 cultivars) to assess the role of genotype, fruit quality traits, and storage treatments in minimizing pitting damage. Mechanical damage-induced surface pitting was quantified using a resistance index (RI), which ranged from 1.31 ± 0.26 (‘10072’) to 2.72 ± 0.45 (‘16806’), highlighting strong genotypic differences. Fruit firmness showed a strong negative correlation with the resistance index (RI) (r = −0.606). In contrast, soluble solids content (SSC) and fruit size had weak or non-significant correlations with RI, with correlation coefficients of r = −0.022 and r = −0.070, respectively. Only in the second harvest, ultra-low oxygen (ULO) storage resulted in the lowest RI (2.35 ± 0.13). Pre- and post-treatment with 1-methylcyclopropene (1-MCP) gave similar results (2.50 ± 0.06 and 2.50 ± 0.15). Ozone pre-treatment was moderately effective (2.66 ± 0.14). Ozone post-treatment had the highest RI (2.85 ± 0.08). The results emphasize the importance of applying protective treatments prior to mechanical damage-induced surface pitting and selecting genotypes with high firmness and storage stability. This study provides a comprehensive framework for breeding and storage conditions aimed at reducing surface pitting in sweet cherries. Full article
Show Figures

Figure 1

16 pages, 2481 KiB  
Article
Application of Response Surface Methodology for the Optimization of Basic Red 46 Dye Degradation in an Electrocoagulation–Ozonation Hybrid System
by Nguyen Trong Nghia and Vinh Dinh Nguyen
Molecules 2025, 30(12), 2627; https://doi.org/10.3390/molecules30122627 - 17 Jun 2025
Viewed by 284
Abstract
The release of synthetic dyes like Basic Red 46 (BR46) from industrial wastewater has raised growing concerns due to their toxicity, long-term persistence, and resistance to standard biological treatment methods. In this work, we developed and tested a pilot-scale electrocoagulation–ozonation (EC–O) hybrid system [...] Read more.
The release of synthetic dyes like Basic Red 46 (BR46) from industrial wastewater has raised growing concerns due to their toxicity, long-term persistence, and resistance to standard biological treatment methods. In this work, we developed and tested a pilot-scale electrocoagulation–ozonation (EC–O) hybrid system aimed at removing BR46 from aqueous solutions. The system integrates electrocoagulation, using iron electrodes, with ozone-based advanced oxidation processes, facilitating a combination of coagulation, adsorption, and oxidative breakdown of dye molecules. The response surface methodology (RSM) with a central composite design (CCD) was applied to optimize the treatment process, focusing on five variables: current density, flow rate, ozone dosage, ozonation time, and initial dye concentration. The quadratic model exhibited strong predictive power, with an adjusted R2 of 0.9897 and a predicted R2 of 0.9812. The optimal conditions identified included a current density of 70 A/m2, flow rate of 1.6 L/min, ozone dose of 2.0 g/h, and an ozonation time of 20 min, achieving a predicted removal efficiency of 91.67% for a solution with BR46 at an initial concentration of 300 mg/L. Experiments conducted under these conditions confirmed the model’s reliability, with observed removal rates exceeding 90% and deviations under 2%. The EC–O system had a treatment capability of 26.19 L/h and an energy consumption of 3.04 kWh/m3. These findings suggest that the EC–O system is an effective and scalable option for treating dye-contaminated wastewater, offering faster and more efficient results than conventional techniques. Full article
Show Figures

Graphical abstract

13 pages, 1180 KiB  
Article
Impact of Ozonated Water on the Fungal Colonies, Diversity and Fruit Quality of Grapevine in Northern Europe
by Mariana Maante-Kuljus, Kaire Loit, Kadri Karp, Reelika Rätsep and Ulvi Moor
Agriculture 2025, 15(11), 1167; https://doi.org/10.3390/agriculture15111167 - 29 May 2025
Viewed by 639
Abstract
Due to the frequent use of fungicides in viticulture, resistant plant pathogens have emerged, necessitating environmentally friendly alternatives. This research aimed to determine the effect of ozonated water (OW) spraying on fungal colonies present on grapevine leaves and berries, as well as on [...] Read more.
Due to the frequent use of fungicides in viticulture, resistant plant pathogens have emerged, necessitating environmentally friendly alternatives. This research aimed to determine the effect of ozonated water (OW) spraying on fungal colonies present on grapevine leaves and berries, as well as on the biochemical composition of the berries. ‘Regent’ grapevines were grown in a high plastic tunnel and sprayed with OW from post-flowering to harvest. The fungal population on the phyllosphere of grapevine leaves and berries was evaluated using the serial dilution plating method. The taxonomic composition of the predominant fungal colonies was characterized using internal transcribed spacer amplicon sequencing. OW treatment significantly decreased fungal colonies on grapes but had no significant effect on grapevine leaves. The fungal colonies were dominated by Botrytis cinerea, Penicillium brevicompactum, and Fusarium sp. OW treatment significantly reduced the total sugar content in grapes (from 160 to 154 g L−1) and increased the total acid content (from 7.2 to 8.6 g L−1). The fruit polyphenol content increased from 431 to 508 mg 100 g−1, and antioxidant activity was significantly enhanced. It can be concluded that OW treatment is effective in reducing fungal colony forming units on grapes in vineyards. OW treatment affected the sugar, acid, and polyphenol content in grapes, but not to a degree that would present specific challenges for winemakers. Full article
(This article belongs to the Special Issue Sustainable Viticulture for Climate Change Adaptation)
Show Figures

Figure 1

26 pages, 2810 KiB  
Review
A Review of Various Advanced Oxidation Techniques for Pesticide Degradation for Practical Application in Aqueous Environments
by Mehary Dagnew, Qin Xue, Jian Zhang, Zizeng Wang, Anran Zhou, Min Li and Chun Zhao
Sustainability 2025, 17(10), 4710; https://doi.org/10.3390/su17104710 - 20 May 2025
Viewed by 854
Abstract
Pesticides are chemicals used in agriculture, industry, and households to control pests and enhance crop yields but have emerged as pollutants in soil and water due to their presence in domestic and agricultural wastewater effluents. The World Health Organization (WHO) has identified the [...] Read more.
Pesticides are chemicals used in agriculture, industry, and households to control pests and enhance crop yields but have emerged as pollutants in soil and water due to their presence in domestic and agricultural wastewater effluents. The World Health Organization (WHO) has identified the development of pesticide resistance as a significant threat to global public health. Consequently, removing pesticides in aqueous environments has gained considerable attention. Numerous methodologies, including biological, physical, and chemical methods, have been employed for their treatment. Among these methods, advanced oxidation processes (AOPs) have garnered particular interest due to their fast reaction rates and strong oxidizing abilities. This review focuses on various AOPs such as Fenton and Fenton-like oxidation, ozonation, the UV/H2O2 process, electrochemical oxidation, photocatalytic oxidation, and the UV/O3 process. The review analyzes and summarizes the current applications of these AOPs for treating pesticides in aqueous environments. It also compares various AOPs treatment methods and discusses the challenges, drawbacks, advantages, and strategies for addressing these issues, and provides insights into the future prospects. Finally, it propose potential strategies and areas of improvement for future research to enhance the efficiency and sustainability of AOPs in practical application. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

16 pages, 4306 KiB  
Article
Integration of Biofloc and Ozone Nanobubbles for Enhanced Pathogen Control in Prenursery of Pacific White Shrimp (Penaeus vannamei)
by Qinlang Liang, Yazhi Luan, Zhengwen Wang, Jiangbo Niu, Yasong Li, Hua Tang, Zengting Li and Gang Liu
Fishes 2025, 10(5), 218; https://doi.org/10.3390/fishes10050218 - 8 May 2025
Viewed by 608
Abstract
This study investigates the synergistic effects of integrating ozone nanobubbles (generated via a pure oxygen-fed reactor with nanobubble-diffusing air stones) and biofloc technology (BFT) on water quality optimization, pathogenic load reduction, and growth performance enhancement in Pacific white shrimp (Penaeus vannamei) [...] Read more.
This study investigates the synergistic effects of integrating ozone nanobubbles (generated via a pure oxygen-fed reactor with nanobubble-diffusing air stones) and biofloc technology (BFT) on water quality optimization, pathogenic load reduction, and growth performance enhancement in Pacific white shrimp (Penaeus vannamei) prenursery aquaculture systems. Four treatments were tested: a clear water control (CW), ozonated clear water (CW + O), biofloc (FLOC), and biofloc with ozone (FLOC + O). The FLOC + O group significantly improved water quality, reducing total ammonia nitrogen (TAN) by 61%, nitrite nitrogen (NO2-N) by 78% compared to CW, and total suspended solids (TSS) by 21% compared to FLOC (p = 0.0015). Ozone application (maintained above 0.3 mg/L, 15 min/day) demonstrated robust pathogen suppression, achieving a sharp reduction in Muscle Necrosis Virus (MNV), a 99.5% inhibition of Vibrio spp. (from 228,885 to 107 CFU/mL), and the clearance of Epistylis spp., as determined via optical microscope. These enhancements directly translated to superior biological outcomes, with the FLOC + O group exhibiting an 82% survival rate (vs. 40% in CW) and 13% higher final body weight (11.65 mg vs. 10.32 mg in CW). The integration of ozone and BFT also accelerated larval development and improved the Zoea II to Mysis I metamorphosis success rate. By maintaining stable microbial communities and reducing organic waste, the combined system lowered the water exchange frequency by 40% and eliminated the need for prophylactic antibiotics. These results demonstrate that ozone–BFT integration effectively addresses key challenges in shrimp prenursery—enhancing disease resistance, optimizing water conditions, and improving growth efficiency. The technology offers a sustainable strategy for the intensive prenursery of Pacific white shrimp, balancing ecological resilience with production scalability. Full article
(This article belongs to the Section Welfare, Health and Disease)
Show Figures

Figure 1

15 pages, 2743 KiB  
Article
Effects of Ozone Oxidation Process on Residual Antibiotics and Antibiotic Resistance Genes in a Swine Wastewater Treatment Plant
by Taeyoung Cha, Min-Sang Kim, Yuhoon Hwang, Eun Sook Jeong, Hongmok Jo and Si-Kyung Cho
Appl. Sci. 2025, 15(9), 5158; https://doi.org/10.3390/app15095158 - 6 May 2025
Viewed by 683
Abstract
Extensive antibiotic use in swine production contaminates manure and wastewater with antibiotics. Discharging this waste into the environment, even after treatment, potentially fuels the spread of antibiotic resistance. This study investigated a full-scale swine wastewater treatment plant that combines coagulation–sedimentation, sand filtration, ozonation, [...] Read more.
Extensive antibiotic use in swine production contaminates manure and wastewater with antibiotics. Discharging this waste into the environment, even after treatment, potentially fuels the spread of antibiotic resistance. This study investigated a full-scale swine wastewater treatment plant that combines coagulation–sedimentation, sand filtration, ozonation, activated carbon filtration, and a deaeration process. At each stage of this process, samples were collected and analyzed to determine their water quality parameters, antibiotic concentrations, and antibiotic resistance genes (ARGs). The experimental results showed coagulation–sedimentation effectively removed suspended solids (92.2%) and total phosphorus (96.9%). Ozonation significantly reduced antibiotic levels, including sulfamethazine by over 99.9%, although ARGs such as tetM, sul1, and sul2 were only removed at levels up to 95.9%. Interestingly, partial rebounds of sulfamethazine (438.9 μg/L) and marbofloxacin (0.40 μg/L) appeared in the final effluent, suggesting that desorption or operational factors (e.g., hydraulic fluctuation, filter media saturation, and pH) may affect the treatment process. In addition, strong correlations emerged between the levels of suspended solids and those of certain antibiotics (lincomycin, tiamulin), indicating particle-mediated sorption as a key mechanism. Even though ozonation and coagulation–sedimentation were found to contribute to the substantial removal of pollutants, the observed rebounds and residual ARGs highlight the need for optimized operational strategies and multi-barrier approaches to fully mitigate antibiotic contamination and inhibit the proliferation of resistant bacteria in swine wastewater. Full article
(This article belongs to the Special Issue New Approaches to Water Treatment: Challenges and Trends, 2nd Edition)
Show Figures

Figure 1

12 pages, 6811 KiB  
Article
The Fabrication and Characterization of Surface-Acoustic-Wave and Resistive Types of Ozone Sensors Based on Zinc Oxide: A Comparative Study
by Sheng-Hua Yan and Chia-Yen Lee
Sensors 2025, 25(9), 2723; https://doi.org/10.3390/s25092723 - 25 Apr 2025
Viewed by 2492
Abstract
Micro-Electro-Mechanical System (MEMS) technology is employed to fabricate surface acoustic wave (SAW)-type and resistive-type ozone sensors on quartz glass (SiO2) substrates. The fabrication process commences by using a photolithography technique to define interdigitated electrodes (IDEs) on the substrates. Electron-beam evaporation (EBE) [...] Read more.
Micro-Electro-Mechanical System (MEMS) technology is employed to fabricate surface acoustic wave (SAW)-type and resistive-type ozone sensors on quartz glass (SiO2) substrates. The fabrication process commences by using a photolithography technique to define interdigitated electrodes (IDEs) on the substrates. Electron-beam evaporation (EBE) followed by radio frequency (RF) magnetron sputtering is then used to deposit platinum (Pt) and chromium (Cr) electrode layers as well as a zinc oxide (ZnO) sensing layer, respectively. Finally, annealing is performed to improve the crystallinity and sensing performance of the ZnO films. The experimental results reveal that the ZnO thin films provide an excellent ozone-concentration sensing capability in both sensors. The SAW-type sensor demonstrates a peak sensitivity at a frequency of 200 kHz, with a rapid response time of just 35 s. Thus, it is suitable for applications requiring a quick response and high sensitivity, such as real-time monitoring and high-precision environmental detection. The resistive-type sensor shows optimal sensitivity at a relatively low operating temperature of 180 °C, but has a longer response time of approximately 103 s. Therefore, it is better suited for low-cost and large-scale applications such as industrial-gas-concentration monitoring. Full article
(This article belongs to the Special Issue Advanced Sensors for Gas Monitoring)
Show Figures

Figure 1

Back to TopTop