Impact of Ozonated Water on the Fungal Colonies, Diversity and Fruit Quality of Grapevine in Northern Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Treatments
2.2. Assessment of Fungal Colony Forming Units and Species Identification
2.3. Chemical Analyses of Grapes
2.4. Statistical Analyses
3. Results
3.1. Fungal Colonies on the Grapes and Grape Leaf Surface
3.2. Grape Chemical Parameters
4. Discussion
4.1. Fungal Colonies on the Grapes and Grapevine Leaf Surface
4.2. Grape Chemical Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OW | Ozonated water |
CFUs | Colony forming units |
References
- State of the World Vine and Wine Sector in 2023. Available online: www.oiv.int (accessed on 31 January 2025).
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Database. Available online: https://www.fao.org/faostat (accessed on 31 January 2025).
- Rogiers, S.Y.; Greer, D.H.; Liu, Y.; Baby, T.; Xiao, Z. Impact of climate change on grape berry ripening: An assessment of adaptation strategies for the Australian vineyard. Front. Plant Sci. 2022, 13, 1094633. [Google Scholar] [CrossRef]
- Appendix I of Annex VII to Regulation (EU) No 1308/2013. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32013R1308 (accessed on 31 January 2025).
- Wang, X.; Yan, L.; Wang, B.; Qian, Y.; Wang, Z.; Wu, W. Comparative proteomic analysis of grapevine rootstock in response to waterlogging stress. Front. Plant Sci. 2021, 12, 749184. [Google Scholar] [CrossRef]
- Massi, F.; Torriani, S.F.; Borghi, L.; Toffolatti, S.L. Fungicide resistance evolution and detection in plant pathogens: Plasmopara viticola as a case study. Microorganisms 2021, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Zhou, Y.; Zhan, R.; Zhu, L.; Chen, H.; Ma, Z.; Chen, X.; Lu, Y. Effects of different pesticides on the brewing of wine investigated by GC-MS-based metabolomics. Metabolites 2022, 12, 485. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Li, M.; Simal-Gandara, J.; Tian, J.; Chen, J.; Dai, X.; Kong, Z. Impact of chiral tebuconazole on the flavor components and color attributes of Merlot and Cabernet Sauvignon wines at the enantiomeric level. Food Chem. 2022, 373, 131577. [Google Scholar] [CrossRef]
- Komárek, M.; Čadková, E.; Chrastný, V.; Bordas, F.; Bollinger, J.-C. Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environ. Int. 2010, 36, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Calviño, D.; Pateiro-Moure, M.; López-Periago, E.; Arias-Estévez, M.; Nóvoa-Muñoz, J.C. Copper distribution and acid–base mobilization in vineyard soils and sediments from Galicia (NW Spain). Eur. J. Soil Sci. 2008, 59, 315–326. [Google Scholar] [CrossRef]
- Zyadah, M.A.; Abdel-Baky, T.E. Toxicity and bioaccumulation of copper, zinc, and cadmium in some aquatic organisms. Bull. Environ. Contam. Toxicol. 2000, 64, 740–747. [Google Scholar] [CrossRef]
- Bermúdez-Couso, A.; Arias-Estévez, M.; Nóvoa-Muñoz, J.C.; López-Periago, E.; Soto-González, B.; Simal-Gándara, J. Seasonal distributions of fungicides in soils and sediments of a small river basin partially devoted to vineyards. Water Res. 2007, 41, 4515–4525. [Google Scholar] [CrossRef]
- Khadre, M.A.; Yousef, A.E.; Kim, J.G. Microbial aspects of ozone applications in food: A review. J. Food Sci. 2001, 66, 1242–1252. [Google Scholar] [CrossRef]
- Wen, G.; Liang, Z.; Xu, X.; Cao, R.; Wan, Q.; Ji, G.; Lin, W.; Wang, J.; Yang, J.; Huang, T. Inactivation of fungal spores in water using ozone: Kinetics, influencing factors and mechanisms. Water Res. 2020, 185, 116218. [Google Scholar] [CrossRef] [PubMed]
- Cayuela, J.; Vázquez, A.; Pérez, A.; García, J. Control of Table Grapes Postharvest Decay by Ozone Treatment and Resveratrol Induction. Food Sci. Technol. Int. 2009, 15, 495–502. [Google Scholar] [CrossRef]
- Gabler, M.F.; Smilanick, J.; Mansour, M.; Karaca, H. Influence of fumigation with concentration of ozone gas on postharvest gray mold and fungicide residues on table grapes. Postharvest Biol. Technol. 2010, 55, 85–90. [Google Scholar] [CrossRef]
- Pierron, R.; Pages, M.; Couderc, C.; Compant, S.; Jacques, A.; Violleaun, F. In vitro and in planta fungicide properties of ozonated water against the esca-associated fungus Phaeoacremonium aleophilum. Sci. Hortic. 2015, 189, 184–191. [Google Scholar] [CrossRef]
- Meyer, C.T.; Lynch, G.K.; Stamo, D.F.; Miller, E.J.; Chatterjee, A.; Kralj, J.M. A high-throughput and low-waste viability assay for microbes. Nat. Microbiol. 2023, 8, 2304–2314. [Google Scholar] [CrossRef]
- Tanuwidjaja, I.; Fuka, M.M. Ozone in Droplets and Mist in Inhibition of Phytopathogenic Microbiota. Agriculture 2022, 12, 1875. [Google Scholar] [CrossRef]
- Röckel, F.; Maul, E.; Töpfer, R.; Kecke, S.; Ganesch, A.; Hausmann, L. Vitis International Variety Catalogue. Available online: www.vivc.de (accessed on 30 January 2025).
- Perazzolli, M.; Antonielli, L.; Storari, M.; Puopolo, G.; Pancher, M.; Giovannini, O.; Pindo, M.; Pertot, I. Resilience of the Natural Phyllosphere Microbiota of the Grapevine to Chemical and Biological Pesticides. Appl. Environ. Microbiol. 2014, 80, 3585–3596. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.D.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Eds.; Academic Press: London, UK, 1990; pp. 315–322. [Google Scholar]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes–application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Cozzolino, D.; Cynkar, W.; Shah, N.; Smith, P. Varietal Differentiation of Grape Juice Based on the Analysis of Near-and Mid-Infrared Spectral Data. Food Anal. Methods 2012, 5, 381–387. [Google Scholar] [CrossRef]
- Arendse, E.; Fawole, O.A.; Magwaza, L.S.; Nieuwoudt, H.; Opara, U.L. Comparing the Analytical Performance of Near and Mid Infrared Spectrometers for Evaluating Pomegranate Juice Quality. LWT 2018, 91, 180–190. [Google Scholar] [CrossRef]
- Wrolstad, E.; Acree, T.E.; Decker, E.A.; Penner, M.H.; Reid, D.S.; Smith, D.; Schwartz, S.J.; Shoemaker, C.F.; Sporns, P. Handbook of Food Analytical Chemistry: Pigments, Colorants, Flavors, Texture, and Bioactive Food Components; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Wong, P.; Engelbrech, R.; Chian, E. Mechanism of enteroviral inactivation by ozone. Appl. Environ. Microbiol. 1981, 41, 718–723. [Google Scholar] [CrossRef]
- Gao, C.; Lin, Q.; Dong, C.; Ji, H.; Yu, J.; Chen, C.; Zhu, Z.; Ban, Z.; Zhang, N.; Bao, Y. Effects of ozone concentration on the postharvest quality and microbial diversity of Muscat Hamburg grapes. RSC Adv. 2020, 10, 9037–9045. [Google Scholar] [CrossRef]
- Sinfort, C.; Cotteux, E.; Bonicelli, B.; Ruelle, B. Influence des conditions et matériels de pulvérisation sur les pertes de pesticides au sol et dans l’air en viticulture languedocienne. In Proceedings of the Colloque National du Groupe Français D’études et D’applications des Pesticides, Toulouse, France, 13–15 May 2009. [Google Scholar]
- Aslam, R.; Alam, M.S.; Saeed, P.A. Sanitization potential of ozone and its role in postharvest quality management of fruits and vegetables. Food Eng. Rev. 2020, 12, 48–67. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Y.Y.; Li, X.H.; Zhang, W.; Li, Y.H.; Wang, X.D.; Yan, J.Y. First Report of Fusarium commune Associated with a Root Rot of Grapevine in China. Plant Dis. 2023, 107, 1238. [Google Scholar] [CrossRef]
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage, 3rd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Torelli, E.; Firrao, G.; Locci, R.; Gobbi, E. Ochratoxin A-producing strains of Penicillium spp. isolated from grapes used for the production of “passito” wines. Int. J. Food Microbiol. 2006, 106, 307–312. [Google Scholar] [CrossRef]
- Williamson, B.; Tudzynski, B.; Tudzynski, P.; Van Kan, J.A.L. Botrytis cinerea: The cause of grey mould disease. Mol. Plant Pathol. 2007, 8, 561–580. [Google Scholar] [CrossRef] [PubMed]
- Veloukas, T.; Leroch, M.; Hahn, M.; Karaoglanidis, G.S. Detection and molecular characterization of boscalid-resistant Botrytis cinerea isolates from strawberry. Plant Dis. 2011, 95, 1302–1307. [Google Scholar] [CrossRef]
- Fernández-Ortuño, D.; Grabke, A.; Bryson, P.K.; Amiri, A.; Peres, N.A.; Schnabel, G. Fungicide resistance profiles in Botrytis cinerea from strawberry fields of seven southern U.S. States. Plant Dis. 2014, 98, 825–833. [Google Scholar] [CrossRef]
- Imran, M.; Ali, E.F.; Hassan, S.; Abo-Elyousr, K.A.M.; Sallam, N.M.A.; Khan, M.M.M.; Younas, M.W. Characterization and sensitivity of Botrytis cinerea to benzimidazole and succinate dehydrogenase inhibitors fungicides, and illustration of the resistance profile. Australas. Plant Pathol. 2021, 50, 589–601. [Google Scholar] [CrossRef]
- Hong, Y.S.; Cilindre, C.; Liger-Belair, G.; Jeandet, P.; Hertkorn, N.; Schmitt-Kopplin, P. Metabolic influence of Botrytis cinerea infection in champagne base wine. J. Agric. Food Chem. 2011, 59, 7237–7245. [Google Scholar] [CrossRef]
- Rousseaux, S.; Diguta, C.F.; Radoï-Matei, F.; Alexandre, H.; Guilloux-Bénatier, M. Non-Botrytis grape-rotting fungi responsible for earthy and moldy off-flavors and mycotoxins. Food Microbiol. 2014, 38, 104–121. [Google Scholar] [CrossRef]
- Fu, Q.; Wang, F.; Tang, T.; Liu, Z.; Wang, L.; Wang, Q.; Shi, X.; Wang, B. A Snapshot of Microbial Succession and Volatile Component Dynamics of Marselan Wine in Xinjiang During Spontaneous Fermentation. Foods 2025, 14, 994. [Google Scholar] [CrossRef] [PubMed]
- Barata, A.; Ferreira, M.; Loureiro, V. The microbial ecology of wine grape berries. Int. J. Food Microbiol. 2011, 153, 243–259. [Google Scholar] [CrossRef]
- Destanque, A.; Picot, A.; Pensec, F.; Pawtowski, A.; Rolland, N.; Treguer-Fernandez, S.; Coton, M. Grape berry mycobiota and its contribution to fresh mushroom aroma off-odour in wine. OENO One 2024, 58. [Google Scholar] [CrossRef]
- Martiniuk, J.T.; Hamilton, J.; Dodsworth, T.; Measday, V. Grape-associated fungal community patterns persist from berry to wine on a fine geographical scale. FEMS Yeast Res. 2023, 23, foac067. [Google Scholar] [CrossRef] [PubMed]
- Campayo, A.; Serrano de la Hoz, K.; García-Martínez, M.M.; Sánchez-Martínez, J.F.; Salinas, M.R.; Alonso, G.L. Spraying ozonated water on Bobal grapevines: Effect on grape quality. Food Res. Int. 2019, 116, 108540. [Google Scholar] [CrossRef]
- Campayo, A.; Cebrián-Tarancón, C.; García-Martínez, M.M.; Salinas, M.R.; Alonso, G.L.; Serrano de la Hoz, K. Preliminary Studies on Endotherapy Based Application of Ozonated Water to Bobal Grapevines: Effect on Wine Quality. Molecules 2022, 27, 5155. [Google Scholar] [CrossRef]
- Modesti, M.; Petriccione, M.; Forniti, R.; Zampella, L.; Scortichini, M.; Mencarelli, F. Postharvest ozone fumigation of grapes (cv Sangiovese) differently affects volatile organic compounds and polyphenol profiles of berries and wine. Aust. J. Grape Wine Res. 2023, 2023, 8244309. [Google Scholar] [CrossRef]
- Tazzini, N. Polyphenols: Definition, Structure and Classification. Available online: http://www.tuscany-diet.net/2014/01/12/polyphenols-definition-structure-classification/ (accessed on 12 December 2023).
- García-Martínez, M.M.; Campayo, A.; Carot, J.M.; Serrano de la Hoz, K.; Salinas, M.R.; Alonso, G.L. Oenological characteristics of Vitis vinifera L. Cabernet Sauvignon grapes from vineyards treated with ozonated water. Aust. J. Grape Wine Res. 2020, 26, 388–398. [Google Scholar] [CrossRef]
- Campayo, A.; Serrano de la Hoz, K.; García-Martínez, M.M.; Salinas, M.R.; Alonso, G.L. Novel Endotherapy-Based Applications of Ozonated Water to Bobal Grapevines: Effect on Grape Quality. Agronomy 2020, 10, 1218. [Google Scholar] [CrossRef]
- Modesti, M.; Baccelloni, S.; Brizzolara, S.; Aleandri, M.P.; Bellincontro, A.; Mencarelli, F.; Tonutti, P. Effects of treatments with ozonated water in the vineyard (cv Vermentino) on microbial population and fruit quality parameters. BIO Web Conf. 2019, 13, 04011. [Google Scholar] [CrossRef]
- Christopher, A.; Orwat, J.; Sarkar, D.; Hatterman–Valenti, H.; Shetty, K. Ozone Elicited Phenolic Bioactives in Grapes and Health Relevant Screening Targeted for Type 2 Diabetes using In Vitro Assay Models. J. Med. Act. Plants 2018, 7, 11-Jan. [Google Scholar] [CrossRef]
Sample Code | Fungal Collection Code in TFC-FP 1 | BLAST Best Hit | Sample Origin |
---|---|---|---|
FP285-1 | 101374 | Botrytis cinerea | Grape |
FP284-1 | 101375 | Penicillium brevicompactum | Grape |
FP278-1 | 101376 | Fusarium sp. | Grape |
FP221-2 | 101377 | Cladosporium cladosporioides | Grape |
FP222-1 | 101378 | Botrytis cinerea | Leaf |
FP226-1 | 101379 | Botrytis cinerea | Leaf |
FP277-1 | 101380 | Penicillium brevicompactum | Grape |
FP316-1 | 101381 | Botrytis cinerea | Leaf |
FP319-1 | 101382 | Gibellulopsis nigrescens | Leaf |
FP324-1 | 101383 | Cladosporium cladosporioides | Grape |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maante-Kuljus, M.; Loit, K.; Karp, K.; Rätsep, R.; Moor, U. Impact of Ozonated Water on the Fungal Colonies, Diversity and Fruit Quality of Grapevine in Northern Europe. Agriculture 2025, 15, 1167. https://doi.org/10.3390/agriculture15111167
Maante-Kuljus M, Loit K, Karp K, Rätsep R, Moor U. Impact of Ozonated Water on the Fungal Colonies, Diversity and Fruit Quality of Grapevine in Northern Europe. Agriculture. 2025; 15(11):1167. https://doi.org/10.3390/agriculture15111167
Chicago/Turabian StyleMaante-Kuljus, Mariana, Kaire Loit, Kadri Karp, Reelika Rätsep, and Ulvi Moor. 2025. "Impact of Ozonated Water on the Fungal Colonies, Diversity and Fruit Quality of Grapevine in Northern Europe" Agriculture 15, no. 11: 1167. https://doi.org/10.3390/agriculture15111167
APA StyleMaante-Kuljus, M., Loit, K., Karp, K., Rätsep, R., & Moor, U. (2025). Impact of Ozonated Water on the Fungal Colonies, Diversity and Fruit Quality of Grapevine in Northern Europe. Agriculture, 15(11), 1167. https://doi.org/10.3390/agriculture15111167