Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = over-etch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 19147 KB  
Article
Surface Assessment of a Novel Acid-Etching Solution on CAD/CAM Dental Ceramics
by Fabio Andretti, Carlos A. Jurado, Mark Antal, Alfredo I. Hernandez, Silvia Rojas-Rueda, Franklin Garcia-Godoy, Brian R. Morrow and Hamid Nurrohman
Biomimetics 2025, 10(8), 508; https://doi.org/10.3390/biomimetics10080508 - 4 Aug 2025
Viewed by 511
Abstract
Background: This study investigated a new multi-acid-etching formulation for zirconia ceramics, containing hydrochloric, hydrofluoric, nitric, orthophosphoric, and sulfuric acids. The solution was tested on polycrystalline (5Y-TZP zirconia), lithium disilicate, hybrid ceramic, and feldspathic porcelain to assess compatibility, etching selectivity, and surface conditioning. Methods: [...] Read more.
Background: This study investigated a new multi-acid-etching formulation for zirconia ceramics, containing hydrochloric, hydrofluoric, nitric, orthophosphoric, and sulfuric acids. The solution was tested on polycrystalline (5Y-TZP zirconia), lithium disilicate, hybrid ceramic, and feldspathic porcelain to assess compatibility, etching selectivity, and surface conditioning. Methods: Two-hundred-and-forty CAD/CAM specimens were etched for 20 s, 60 s, 30 min, or 1 h, and their surface roughness and etching patterns ware evaluated using 3D optical profilometry and scanning electron microscopy (SEM). Results: A positive correlation was observed between etching time and surface roughness (Ra values). The most pronounced changes were observed in lithium disilicate and feldspathic porcelain, with Ra values increasing from 0.733 ± 0.082 µm (Group 5) to 1.295 ± 0.123 µm (Group 8), and from 0.902 ± 0.102 µm (Group 13) to 1.480 ± 0.096 µm (Group 16), respectively. Zirconia increased from 0.181 ± 0.043 µm (Group 1) to 0.371 ± 0.074 µm (Group 4), and the hybrid ceramic from 0.053 ± 0.008 µm (Group 9) to 0.099 ± 0.016 µm (Group 12). Two-way ANOVA revealed significant effects of material and etching time, as well as a significant interaction between the two factors (p < 0.001). SEM observation revealed non-selective etching pattern for the lithium disilicate groups, indicating a risk of over-etching. Conclusions: The tested etching solution increased surface roughness, especially for the lithium disilicate and feldspathic porcelain specimens. In zirconia, one-hour etching improved surface characteristics with minimal observable damage. However, additional studies are necessary to validate the mechanical stability and bond effectives of this approach. Full article
(This article belongs to the Special Issue Biomimetic Bonded Restorations for Dental Applications)
Show Figures

Figure 1

11 pages, 3502 KB  
Technical Note
Defect Detection and Error Source Tracing in Laser Marking of Silicon Wafers with Machine Learning
by Hsiao-Chung Wang, Teng-To Yu and Wen-Fei Peng
Appl. Sci. 2025, 15(13), 7020; https://doi.org/10.3390/app15137020 - 22 Jun 2025
Viewed by 897
Abstract
Laser marking on wafers can introduce various defects such as inconsistent mark quality; under- or over-etching, and misalignment. Excessive laser power and inadequate cooling can cause burning or warping. These defects were inspected using machine vision, confocal microscopy, optical and scanning electron microscopy, [...] Read more.
Laser marking on wafers can introduce various defects such as inconsistent mark quality; under- or over-etching, and misalignment. Excessive laser power and inadequate cooling can cause burning or warping. These defects were inspected using machine vision, confocal microscopy, optical and scanning electron microscopy, acoustic/ultrasonic methods, and inline monitoring and coaxial vision. Machine learning has been successfully applied to improve the classification accuracy, and we propose a random forest algorithm with a training database to not only detect the defect but also trace its cause. Four causes have been identified as follows: unstable laser power, a dirty laser head, platform shaking, and voltage fluctuation of the electrical power. The object-matching technique ensures that a visible image can be utilized without a precise location. All inspected images were compared to the standard (qualified) product image pixel-by-pixel, and then the 2D matrix pattern for each type of defect was gathered. There were 10 photos for each type of defect included in the training to build the model with various labels, and the synthetic testing images altered by the defect cause model for laser marking defect inspection had accuracies of 97.0% and 91.6% in sorting the error cause, respectively Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

22 pages, 8327 KB  
Article
Surface Evaluation of a Novel Acid-Etching Solution for Zirconia and Lithium Disilicate
by Clint Conner, Fabio Andretti, Alfredo I. Hernandez, Silvia Rojas-Rueda, Francisco X. Azpiazu-Flores, Brian R. Morrow, Franklin Garcia-Godoy, Carlos A. Jurado and Abdulrahman Alshabib
Materials 2025, 18(12), 2912; https://doi.org/10.3390/ma18122912 - 19 Jun 2025
Cited by 1 | Viewed by 645
Abstract
The current investigation evaluated a novel acid-etching solution containing hydrochloric acid (HCl), hydrofluoric acid (HF), nitric acid (HNO3), orthophosphoric acid (H3PO4), and sulfuric acid (H2SO4) designed for etching zirconia ceramics. Achieving reliable bonding [...] Read more.
The current investigation evaluated a novel acid-etching solution containing hydrochloric acid (HCl), hydrofluoric acid (HF), nitric acid (HNO3), orthophosphoric acid (H3PO4), and sulfuric acid (H2SO4) designed for etching zirconia ceramics. Achieving reliable bonding to zirconia is challenging due to its chemical inertia, unlike lithium disilicate, which can be effectively conditioned with HF etching. One hundred and twenty specimens of zirconia and lithium disilicate underwent etching with the experimental solution for six different durations: control, 20 s, 60 s, 5 min, 30 min, and 1 h. Surface roughness was assessed using 3D optical profilometry and scanning electron microscopy (SEM). The roughness of both materials increased with etching time; however, lithium disilicate demonstrated a significantly greater response, with Ra values rising from 0.18 µm (control) to 1.26 µm (1 h), while zirconia increased from 0.21 µm to 0.60 µm. ANOVA revealed significant effects depending on the ceramic type, time, and their interaction (p < 0.001). SEM images revealed non-selective etching of lithium disilicate, suggesting potential over-etching. The novel acid-etching solution improved surface roughness, especially in lithium disilicate ceramics. An application duration of one hour appears optimal for zirconia, improving surface characteristics while reducing damage; however, further research is required to assess its clinical safety and long-term effects on the mechanical properties of this dental ceramic. Full article
(This article belongs to the Special Issue Characteristics of Dental Ceramics)
Show Figures

Figure 1

15 pages, 5041 KB  
Article
A Copper-Molybdenum Etchant with Wide Process Window, Long Bath Life and High Stability for Thin Film Transistor Liquid Crystal Display Applications
by Bing Zhang, Yafen Yang and David Wei Zhang
Materials 2025, 18(8), 1795; https://doi.org/10.3390/ma18081795 - 14 Apr 2025
Viewed by 743
Abstract
Conventional etchants for multi-metal/alloy stacked structures often suffer from nonuniform etching, residual layers, or undercutting, failing to meet high-generation production standards. This study presents a stable copper-molybdenum (Cu-Mo) etchant with extended bath life for thin film transistor liquid crystal display (TFT-LCD) applications, achieved [...] Read more.
Conventional etchants for multi-metal/alloy stacked structures often suffer from nonuniform etching, residual layers, or undercutting, failing to meet high-generation production standards. This study presents a stable copper-molybdenum (Cu-Mo) etchant with extended bath life for thin film transistor liquid crystal display (TFT-LCD) applications, achieved through compositional optimization. Systematic investigations have been conducted on the effects of etching time, copper ion (Cu2+) loading (bath life) and storage time on the etch performance, alongside evaluations of sudden-eruption point and material compatibility. Results demonstrate that over-etching beyond the “detected endpoint” by 10% to 90% maintains critical dimension (CD) bias and taper angle of MoNiTi(MTD)/Cu/MTD three-layer and Cu/MTD two-layer within process specifications, as well as the difference between the CD bias of the three-layer and two-layer structures at the same over-etch time. The optimized formulation exhibits a 20% broader process window and 20% longer bath life compared to the process-of-record (POR) etchant. Shelf stability exceeds 15 days with minimal performance degradation, while maintaining compatibility with industrial equipment materials. These advancements address key challenges in high-precision etching for advanced TFT-LCD manufacturing, providing a scalable solution for next-generation display production. Full article
Show Figures

Figure 1

17 pages, 4060 KB  
Article
An Assessment of Local Geometric Uncertainties in Polysilicon MEMS: A Genetic Algorithm and POD-Kriging Surrogate Modeling Approach
by Ananya Roy, Francesco Rizzini, Gabriele Gattere, Carlo Valzasina, Aldo Ghisi and Stefano Mariani
Micromachines 2025, 16(2), 127; https://doi.org/10.3390/mi16020127 - 23 Jan 2025
Viewed by 799
Abstract
On the way toward MEMS miniaturization, the quantification of geometric uncertainties stands as a primary challenge. In this paper, an approach that combines genetic algorithms and proper orthogonal decomposition with kriging surrogate modeling was proposed to accurately predict over-etch measures through an on-chip [...] Read more.
On the way toward MEMS miniaturization, the quantification of geometric uncertainties stands as a primary challenge. In this paper, an approach that combines genetic algorithms and proper orthogonal decomposition with kriging surrogate modeling was proposed to accurately predict over-etch measures through an on-chip test device. Despite being fabricated on a single wafer under nominally identical manufacturing conditions, MEMS can display different responses under the same actuation, due to a different characteristic geometry. It is shown that the uncertainties, given in terms of over-etch values, were not only different from die to die but also within the same die, depending on the local geometric features of the device. Therefore, the proposed method provided an alternative solution to estimate the uncertainties in MEMS devices, relying only on the capacitance–voltage response. A statistical analysis was carried out based on a batch of devices tested in the laboratory. These tests and the estimation procedure allowed us to quantify the mean values of the over-etch relative to the target as +12.2 % at comb fingers, +10.0 % at the supporting springs, and −4.8 % at stoppers, showing noteworthy variability induced by the environment. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

23 pages, 128368 KB  
Article
Optimization of Soft X-Ray Fresnel Zone Plate Fabrication Through Joint Electron Beam Lithography and Cryo-Etching Techniques
by Maha Labani, Vito Clericò, Enrique Diez, Giancarlo Gatti, Mario Amado and Ana Pérez-Rodríguez
Nanomaterials 2024, 14(23), 1898; https://doi.org/10.3390/nano14231898 - 26 Nov 2024
Cited by 1 | Viewed by 1546
Abstract
The ability to manufacture complex 3D structures with nanometer-scale resolution, such as Fresnel Zone Plates (FZPs), is crucial to achieve state-of-the-art control in X-ray sources for use in a diverse range of cutting-edge applications. This study demonstrates a novel approach combining Electron Beam [...] Read more.
The ability to manufacture complex 3D structures with nanometer-scale resolution, such as Fresnel Zone Plates (FZPs), is crucial to achieve state-of-the-art control in X-ray sources for use in a diverse range of cutting-edge applications. This study demonstrates a novel approach combining Electron Beam Lithography (EBL) and cryoetching to produce silicon-based FZP prototypes as a test bench to assess the strong points and limitations of this fabrication method. Through this method, we obtained FZPs with 100 zones, a diameter of 20 µm, and an outermost zone width of 50 nm, resulting in a high aspect ratio that is suitable for use across a range of photon energies. The process incorporates a chromium mask in the EBL stage, enhancing microstructure precision and mitigating pattern collapse challenges. This minimized issues of under- and over-etching, producing well-defined patterns with a nanometer-scale resolution and low roughness. The refined process thus holds promise for achieving improved optical resolution and efficiency in FZPs, making it viable for the fabrication of high-performance, nanometer-scale devices. Full article
(This article belongs to the Special Issue Mechanical Properties and Applications for Nanostructured Alloys)
Show Figures

Figure 1

14 pages, 5077 KB  
Article
Accurate Evaluation of Electro-Thermal Performance in Silicon Nanosheet Field-Effect Transistors with Schemes for Controlling Parasitic Bottom Transistors
by Jinsu Jeong, Sanguk Lee and Rock-Hyun Baek
Nanomaterials 2024, 14(12), 1006; https://doi.org/10.3390/nano14121006 - 10 Jun 2024
Cited by 1 | Viewed by 2005
Abstract
The electro-thermal performance of silicon nanosheet field-effect transistors (NSFETs) with various parasitic bottom transistor (trpbt)-controlling schemes is evaluated. Conventional punch-through stopper, trench inner-spacer (TIS), and bottom oxide (BOX) schemes were investigated from single-device to circuit-level evaluations to avoid overestimating heat’s [...] Read more.
The electro-thermal performance of silicon nanosheet field-effect transistors (NSFETs) with various parasitic bottom transistor (trpbt)-controlling schemes is evaluated. Conventional punch-through stopper, trench inner-spacer (TIS), and bottom oxide (BOX) schemes were investigated from single-device to circuit-level evaluations to avoid overestimating heat’s impact on performance. For single-device evaluations, the TIS scheme maintains the device temperature 59.6 and 50.4 K lower than the BOX scheme for n/pFETs, respectively, due to the low thermal conductivity of BOX. However, when the over-etched S/D recess depth (TSD) exceeds 2 nm in the TIS scheme, the RC delay becomes larger than that of the BOX scheme due to increased gate capacitance (Cgg) as the TSD increases. A higher TIS height prevents the Cgg increase and exhibits the best electro-thermal performance at single-device operation. Circuit-level evaluations are conducted with ring oscillators using 3D mixed-mode simulation. Although TIS and BOX schemes have similar oscillation frequencies, the TIS scheme has a slightly lower device temperature. This thermal superiority of the TIS scheme becomes more pronounced as the load capacitance (CL) increases. As CL increases from 1 to 10 fF, the temperature difference between TIS and BOX schemes widens from 1.5 to 4.8 K. Therefore, the TIS scheme is most suitable for controlling trpbt and improving electro-thermal performance in sub-3 nm node NSFETs. Full article
(This article belongs to the Special Issue Nanostructured Electronic Components and Devices)
Show Figures

Figure 1

11 pages, 46096 KB  
Article
Demonstration of HCl-Based Selective Wet Etching for N-Polar GaN with 42:1 Selectivity to Al0.24Ga0.76N
by Emmanuel Kayede, Emre Akso, Brian Romanczyk, Nirupam Hatui, Islam Sayed, Kamruzzaman Khan, Henry Collins, Stacia Keller and Umesh K. Mishra
Crystals 2024, 14(6), 485; https://doi.org/10.3390/cryst14060485 - 22 May 2024
Cited by 1 | Viewed by 2301
Abstract
A wet-etching technique based on a mixture of hydrochloric (HCl) and nitric (HNO3) acids is introduced, demonstrating exceptional 42:1 selectivity for etching N-polar GaN over Al0.24Ga0.76N. In the absence of an AlGaN etch stop layer, the etchant [...] Read more.
A wet-etching technique based on a mixture of hydrochloric (HCl) and nitric (HNO3) acids is introduced, demonstrating exceptional 42:1 selectivity for etching N-polar GaN over Al0.24Ga0.76N. In the absence of an AlGaN etch stop layer, the etchant primarily targets N-polar unintentionally doped (UID) GaN, indicating its potential as a suitable replacement for selective dry etches in the fabrication of GaN high-electron-mobility transistors (HEMTs). The efficacy and selectivity of this etchant were confirmed through its application to a gate recess module of a deep-recess HEMT, where, despite a 228% over-etch, the 2.6 nm AlGaN etch stop layer remained intact. We also evaluated the proposed method for the selective etching of the GaN cap in the n+ regrowth process, achieving a contact resistance matching that of a BCl3/SF6 ICP process. These findings underscore the applicability and versatility of the etchant in both the electronic and photonic domains and are particularly applicable to the development of N-polar deep-recess HEMTs. Full article
Show Figures

Figure 1

13 pages, 5417 KB  
Article
A Method for Improving Heat Dissipation and Avoiding Charging Effects for Cavity Silicon-on-Glass Structures
by Junduo Wang, Yuwei Hu, Lei Qian, Yameng Shan and Wenjiang Shen
Actuators 2023, 12(8), 337; https://doi.org/10.3390/act12080337 - 21 Aug 2023
Viewed by 1905
Abstract
Anode bonding is a widely used method for fabricating devices with suspended structures, and this approach is often combined with deep reactive-ion etching (DRIE) for releasing the device; however, the DRIE process with a glass substrate can potentially cause two critical issues: heat [...] Read more.
Anode bonding is a widely used method for fabricating devices with suspended structures, and this approach is often combined with deep reactive-ion etching (DRIE) for releasing the device; however, the DRIE process with a glass substrate can potentially cause two critical issues: heat accumulation on the suspended surface and charging effects resulting from the reflection of charged particles from the glass substrate. In particular, for torsional bars with narrow widths, the heat accumulated on the suspended surface may not dissipate efficiently, leading to photoresist burning and, subsequently, resulting in the fracture of the torsional bars; moreover, once etching is finished through the silicon diaphragm, the glass surface becomes charged, and incoming ions are reflected towards the back of the silicon, resulting in the etching of the back surface. To address these issues, we proposed a method of growing silicon oxide on the back of the device layer. By designing, simulating, and fabricating electrostatic torsional micromirrors with common cavity silicon-on-glass (SOG) structures, we successfully validated the feasibility of this approach. This approach ensures effective heat dissipation on the suspended surface, even when the structure is over-etched for an extended period, and enables the complete etching of torsional bars without adverse effects due to the overheating problem; additionally, the oxide layer can block ions from reaching the glass surface, thus avoiding the charging effect commonly observed in SOG structures during DRIE. Full article
(This article belongs to the Section Miniaturized and Micro Actuators)
Show Figures

Figure 1

15 pages, 6236 KB  
Communication
Long-Acting Real-Time Microscopic Monitoring Inside the Proton Exchange Membrane Water Electrolyzer
by Chi-Yuan Lee, Chia-Hung Chen, Hsian-Chun Chuang, Hsiao-Te Hsieh and Yen-Chen Chiu
Sensors 2023, 23(12), 5595; https://doi.org/10.3390/s23125595 - 15 Jun 2023
Cited by 4 | Viewed by 2143
Abstract
The proton exchange membrane water electrolyzer (PEMWE) requires a high operating voltage for hydrogen production to accelerate the decomposition of hydrogen molecules so that the PEMWE ages or fails. According to the prior findings of this R&D team, temperature and voltage can influence [...] Read more.
The proton exchange membrane water electrolyzer (PEMWE) requires a high operating voltage for hydrogen production to accelerate the decomposition of hydrogen molecules so that the PEMWE ages or fails. According to the prior findings of this R&D team, temperature and voltage can influence the performance or aging of PEMWE. As the PEMWE ages inside, the nonuniform flow distribution results in large temperature differences, current density drops, and runner plate corrosion. The mechanical stress and thermal stress resulting from pressure distribution nonuniformity will induce the local aging or failure of PEMWE. The authors of this study used gold etchant for etching, and acetone was used for the lift-off part. The wet etching method has the risk of over-etching, and the cost of the etching solution is also higher than that of acetone. Therefore, the authors of this experiment adopted a lift-off process. Using the flexible seven-in-one (voltage, current, temperature, humidity, flow, pressure, oxygen) microsensor developed by our team, after optimized design, fabrication, and reliability testing, it was embedded in PEMWE for 200 h. The results of our accelerated aging test prove that these physical factors affect the aging of PEMWE. Full article
Show Figures

Figure 1

14 pages, 6574 KB  
Article
Flexible Seven-in-One Microsensor Embedded in High-Pressure Proton Exchange Membrane Water Electrolyzer for Real-Time Microscopic Monitoring
by Chi-Yuan Lee, Chia-Hung Chen, Hsian-Chun Chuang, Shan-Yu Chen and Yu-Chen Chiang
Sensors 2023, 23(12), 5489; https://doi.org/10.3390/s23125489 - 10 Jun 2023
Cited by 3 | Viewed by 2315
Abstract
The voltage, current, temperature, humidity, pressure, flow, and hydrogen in the high-pressure proton exchange membrane water electrolyzer (PEMWE) can influence its performance and life. For example, if the temperature is too low to reach the working temperature of the membrane electrode assembly (MEA), [...] Read more.
The voltage, current, temperature, humidity, pressure, flow, and hydrogen in the high-pressure proton exchange membrane water electrolyzer (PEMWE) can influence its performance and life. For example, if the temperature is too low to reach the working temperature of the membrane electrode assembly (MEA), the performance of the high-pressure PEMWE cannot be enhanced. However, if the temperature is too high, the MEA may be damaged. In this study, the micro-electro-mechanical systems (MEMS) technology was used to innovate and develop a high-pressure-resistant flexible seven-in-one (voltage, current, temperature, humidity, pressure, flow, and hydrogen) microsensor. It was embedded in the upstream, midstream, and downstream of the anode and cathode of the high-pressure PEMWE and the MEA for the real-time microscopic monitoring of internal data. The aging or damage of the high-pressure PEMWE was observed through the changes in the voltage, current, humidity, and flow data. The over-etching phenomenon was likely to occur when this research team used wet etching to make microsensors. The back-end circuit integration was unlikely to be normalized. Therefore, this study used lift-off process to further stabilize the quality of the microsensor. In addition, the PEMWE is more prone to aging and damage under high pressure, so its material selection is very important. Full article
Show Figures

Figure 1

11 pages, 1601 KB  
Communication
Comparison of Fitting Current–Voltage Characteristics Curves of FinFET Transistors with Various Fixed Parameters
by Hsin-Chia Yang, Sung-Ching Chi and Wen-Shiang Liao
Appl. Sci. 2022, 12(20), 10519; https://doi.org/10.3390/app122010519 - 18 Oct 2022
Cited by 5 | Viewed by 2817
Abstract
In the deep submicron regime, FinFET successfully suppresses the leakage current using a 3D fin-like channel substrate, which gets depleted and blocks possible leakage as the gate is applied with a bias wholly wrapping the channel. Fortunately, a scanning photo-lithography using extensive ultraviolet [...] Read more.
In the deep submicron regime, FinFET successfully suppresses the leakage current using a 3D fin-like channel substrate, which gets depleted and blocks possible leakage as the gate is applied with a bias wholly wrapping the channel. Fortunately, a scanning photo-lithography using extensive ultraviolet (EUV) and multi-mask task carefully resolves critical dimension issues. The ensuing anisotropic plasma dry etching is somehow a subsequent challenging process, which consumes the edge of original ‘I’-shape epitaxial silicon and causes dimension loss, and thus produces fin-like bodies as prepared channels. In order to protect the transistors from malfunction due to dimension over-etching, fin width is taken to be 120 nanometers, while the channel lengths vary. The prepared transistors are measured and characteristic curves are fitted for analysis. Measured current versus voltage characteristic curves are fitted with three parameters (transistor geometry constant, threshold voltage, and Early voltage) in the conventional current-voltage formula, which are allowed to vary as the short channel effects or process-related issues are taken into account. In this paper, one of the three is deliberately set to be fixed for a transistor, and the others are freely chosen and determined to reach minimum variation. Various conclusions through comparisons and analysis may give important feasible applications in the future. Full article
(This article belongs to the Section Nanotechnology and Applied Nanosciences)
Show Figures

Figure 1

11 pages, 3281 KB  
Article
Identification of MEMS Geometric Uncertainties through Homogenization
by David Faraci, Valentina Zega, Alessandro Nastro and Claudia Comi
Micro 2022, 2(4), 564-574; https://doi.org/10.3390/micro2040037 - 23 Sep 2022
Cited by 3 | Viewed by 2715
Abstract
Fabrication imperfections strongly influence the functioning of Micro-Electro-Mechanical Systems (MEMS) if not taken into account during the design process. They must be indeed identified or precisely predicted to guarantee a proper compensation during the calibration phase or directly in operation. In this work, [...] Read more.
Fabrication imperfections strongly influence the functioning of Micro-Electro-Mechanical Systems (MEMS) if not taken into account during the design process. They must be indeed identified or precisely predicted to guarantee a proper compensation during the calibration phase or directly in operation. In this work, we propose an efficient approach for the identification of geometric uncertainties of MEMS, exploiting the asymptotic homogenization technique. In particular, the proposed strategy is experimentally validated on a MEMS filter, a device constituted by a complex periodic geometry, which would require high computational costs if simulated through full-order models. The complex periodic structure is replaced by an equivalent homogeneous medium, allowing a fast optimization procedure to identify imperfections by comparing a simplified analytical model with the experimental data available for the MEMS filter. The actual over-etch, obtained after the release phase, and the electrode offset of a fabricated MEMS filter are effectively identified through the proposed strategy. Full article
Show Figures

Figure 1

20 pages, 12439 KB  
Article
Inclination Effect on the Periodic Response of a Symmetrical MEMS Gyroscope
by Lijuan Zhang, Huabiao Zhang, Xinye Li and Yunxiao Ji
Micromachines 2022, 13(10), 1569; https://doi.org/10.3390/mi13101569 - 21 Sep 2022
Cited by 2 | Viewed by 1686
Abstract
The inclination effect caused by fabrication errors on the periodic response of a symmetric MEMS gyroscope is investigated. The dynamic equation is established considering the inclination effect on support stiffness and electrostatic forces. The periodic response is obtained by the averaging method. The [...] Read more.
The inclination effect caused by fabrication errors on the periodic response of a symmetric MEMS gyroscope is investigated. The dynamic equation is established considering the inclination effect on support stiffness and electrostatic forces. The periodic response is obtained by the averaging method. The two-variable singularity theory is employed to study the bifurcation characteristics and give transition sets on the DC-AC voltage plane, which divide the plane into four persistent regions. The amplitude-frequency curves demonstrate that only the two persistent regions with low voltages are feasible for the gyroscope. Both over-etching and under-etching reduce the feasible region. The effect of parameters on the performance is present. The mechanical sensitivity and nonlinearity increase with the voltages. With the increase in the inclination angle, the mechanical sensitivity and nonlinearity decrease first and then increase. The full temperature stability of the mechanical sensitivity is also considered. The variation in mechanical sensitivity with temperature is small at a large voltage and negative inclination angle. Under-etching, which leads to small nonlinearity and good temperature stability, is more beneficial to the performance of the gyroscope than over-etching. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

14 pages, 5022 KB  
Article
Bifunctional Metal Oleate as an Alternative Method to Remove Surface Oxide and Passivate Surface Defects of Aminophosphine-Based InP Quantum Dots
by Pin-Ru Chen, Minh-Son Hoang, Kuo-Yang Lai and Hsueh-Shih Chen
Nanomaterials 2022, 12(3), 573; https://doi.org/10.3390/nano12030573 - 8 Feb 2022
Cited by 19 | Viewed by 4443
Abstract
The optical properties of indium phosphide (InP) quantum dots (QDs) are significantly influenced by their surface native oxides, which are generally removed by treating InP cores with hydrofluoric acid (HF). Besides the harmful health effects of HF, its etching may cause over-etching or [...] Read more.
The optical properties of indium phosphide (InP) quantum dots (QDs) are significantly influenced by their surface native oxides, which are generally removed by treating InP cores with hydrofluoric acid (HF). Besides the harmful health effects of HF, its etching may cause over-etching or QD size broadening, and surface oxidation can also reoccur rapidly. In the present study, a safer bifunctional metal oleate treatment was developed to simultaneously remove the surface oxide layer and passivate the surface defects for aminophosphine-based InP QDs. Compared to conventional HF etching, the bifunctional metal oleate was able to more efficiently remove the surface oxide of InP cores and effectively preserve the oxide-free surface, leading to a 20% narrower photoluminescence (PL) bandwidth after growing a ZnSe/ZnS shell. The metal oleate treatment is thus considered a greener and safer post-synthetic method to remove InP surface oxide and provide additional passivation to improve the optical properties of aminophosphine-based InP QDs, which could have potential in industrial mass production. Full article
Show Figures

Figure 1

Back to TopTop