Surface Evaluation of a Novel Acid-Etching Solution for Zirconia and Lithium Disilicate
Abstract
:1. Introduction
2. Materials and Methods
- Prolonged application of the acid etchant significantly increases the surface roughness of zirconia, with longer application times resulting in greater roughness.
- There is a significant difference in surface roughness between zirconia and lithium disilicate ceramics following acid etching.
3. Results
3.1. Surface Roughness Measurements
3.2. Profilometer Images
3.3. Scanning Electron Microscope (SEM) Images
4. Discussion
4.1. Synergistic Acid Etching of 5Y-TZP Zirconia: Roles of HF, HCl, H2SO4, HNO3, and H3PO4
4.2. Rationale for the Multi-Acid Composition (Zircos-E)
4.3. Effects on Surface Chemistry and Phase Composition
4.4. Effects on Surface Roughness and Morphology
4.5. SEM Analysis
4.6. Influence of Moisture
4.7. Influence of the Sectioning Technique
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, L.; Engqvist, H.; Xia, W. Glass–ceramics in dentistry: A Review. Materials 2020, 13, 1049. [Google Scholar] [CrossRef]
- Streit, G.; Sykes, L.M. Overview of lithium disilicate as a restorative material in dentistry. S. Afr. Dent. J. 2022, 77, 495–499. [Google Scholar] [CrossRef]
- Denry, I.; Kelly, J.R. State of the art of zirconia for dental applications. Dent. Mater 2008, 24, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.R.; Denry, I. Stabilized zirconia as a structural ceramic: An overview. Dent. Mater 2008, 24, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Ruyter, E.I.; Vajeeston, N.; Knarvang, T.; Kvam, K. A novel etching technique for surface treatment of zirconia ceramics to improve adhesion of resin-based luting cements. Acta Biomater. Odontol. Scand 2017, 3, 36–46. [Google Scholar] [CrossRef]
- Rao, H.M.; Kumaraswamy, M.; Thomas, D.; Boraiah, S.; Singh Rana, K. Zirconia in Restorative Dentistry. In Zirconia—New Advances, Structure, Fabrication and Applications, 1st ed.; Al-Naib, U.M.B., Ed.; IntechOpen: London, UK, 2023; pp. 1–17. [Google Scholar]
- Guess, P.C.; Zhang, Y.; Kim, J.W.; Rekow, E.D.; Thompson, V.P. Damage and reliability of Y-TZP after cementation surface treatment. J. Dent. Res. 2010, 89, 592–596. [Google Scholar] [CrossRef]
- Hallmann, L.; Ulmer, P.; Wille, S.; Polonskyi, O.; Köbel, S.; Trottenberg, T.; Bornholdt, S.; Haase, F.; Kersten, H.; Kern, M. Effect of surface treatments on the properties and morphological change of dental zirconia. J. Prosthet. Dent. 2016, 115, 341–349. [Google Scholar] [CrossRef]
- Maroun, E.V.; Guimarães, J.G.A.; de Miranda, W.G., Jr.; Netto, L.R.C.; Elias, A.B.; Da Silva, E.M. Bond Strength Stability of Self-adhesive Resin Cement to Etched Vitrified Yttria-stabilized Tetragonal Zirconia Polycrystal Ceramic After Thermomechanical Cycling. Oper. Dent. 2019, 44, 545–555. [Google Scholar] [CrossRef]
- Sadid-Zadeh, R.; Strazzella, A.; Li, R.; Makwoka, S. Effect of zirconia etching solution on the shear bond strength between zirconia and resin cement. J. Prosthet. Dent. 2021, 126, 693–697. [Google Scholar] [CrossRef]
- Almirabi, R.S.; Alzahrani, K.M. Effect of the Intaglio Surface Treatment and Thickness of Different Types of Yttria-Stabilized Tetragonal Zirconia Polycrystalline Materials on the Flexural Strength: In-Vitro Study. Materials 2024, 17, 5256. [Google Scholar] [CrossRef]
- Yahyazadehfar, N.; Azimi Zavaree, M.; Shayegh, S.S.; Yahyazadehfar, M.; Hooshmand, T.; Hakimaneh, S.M.R. Effect of different surface treatments on surface roughness, phase transformation, and biaxial flexural strength of dental zirconia. J. Dent. Res. 2021, 15, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Freitas, J.S.; Souza, L.F.B.; Pereira, G.K.R.; May, L.G. Surface properties and flexural fatigue strength of an advanced lithium disilicate. J. Mech. Behav. Biomed. Mater. 2023, 147, 106154. [Google Scholar] [CrossRef] [PubMed]
- Mory, N.; Cascos, R.; Celemín-Viñuela, A.; Gómez-Polo, C.; Agustín-Panadero, R.; Gómez-Polo, M. Comparison of the Surface Roughness of CAD/CAM Metal-Free Materials Used for Complete-Arch Implant-Supported Prostheses: An In Vitro Study. Biomedicines 2023, 11, 3036. [Google Scholar] [CrossRef]
- Zhang, Y.; Lawn, B.R.; Malament, K.A.; Van Thompson, P.; Rekow, E.D. Damage accumulation and fatigue life of particle-abraded ceramics. Int. J. Prosthodont. 2006, 19, 442–448. [Google Scholar]
- Hjerppe, J.; Närhi, T.O.; Vallittu, P.K.; Lassila, L.V. Surface roughness and the flexural and bend strength of zirconia after different surface treatments. J. Prosthet. Dent. 2016, 116, 577–583. [Google Scholar] [CrossRef]
- Kim, M.; Kim, R.H.; Lee, S.C.; Lee, T.K.; Hayashi, M.; Yu, B.; Jo, D.-W. Evaluation of Tensile Bond Strength between Self-Adhesive Resin Cement and Surface-Pretreated Zirconia. Materials 2022, 15, 3089. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, C.; Josic, U.; Mazzitelli, C.; Maravic, T.; Graham, L.; Barausse, C.; Mazzoni, A.; Breschi, L.; Blatz, M.B. Is zirconia surface etching a viable alternative to airborne particle abrasion? A systematic review and meta-analysis of in vitro studies. J. Dent. 2024, 151, 105394. [Google Scholar] [CrossRef]
- Kim, S.-H.; Oh, K.C.; Moon, H.-S. Effects of Surface-Etching Systems on the Shear Bond Strength of Dual-Polymerized Resin Cement and Zirconia. Materials 2024, 17, 3096. [Google Scholar] [CrossRef]
- Eram, A.; Kr, R.V.; Chethan, K.N.; Keni, L.G.; Shetty, D.D.; Zuber, M.; Kumar, S.; Pradeep, S. Air-Abrasion in Dentistry: A Short Review of the Materials and Performance Parameters. J. Biomed. Phys. Eng. 2024, 14, 99–110. [Google Scholar]
- Sundfeld Neto, D.; Naves, L.Z.; Costa, A.R.; Correr, A.B.; Consani, S.; Borges, G.A.; Correr-Sobrinho, L. The Effect of Hydrofluoric Acid Concentration on the Bond Strength and Morphology of the Surface and Interface of Glass Ceramics to a Resin Cement. Oper. Dent. 2015, 40, 470–479. [Google Scholar] [CrossRef]
- Bajraktarova-Valjakova, E.; Grozdanov, A.; Guguvcevski, L.; Korunoska-Stevkovska, V.; Kapusevska, B.; Gigovski, N.; Mijoska, A.; Bajraktarova-Misevska, C. Acid Etching as Surface Treatment Method for Luting of Glass-Ceramic Restorations, part 1: Acids, Application Protocol and Etching Effectiveness. Open Access Maced. J. Med. Sci. 2018, 6, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Veríssimo, A.H.; Moura, D.M.D.; Tribst, J.P.M.; Araújo, A.M.M.; Leite, F.P.P.; Souza, R.O.A. Effect of hydrofluoric acid concentration and etching time on resin-bond strength to different glass ceramics. Brazilian Oral. Res. 2019, 33, e041. [Google Scholar] [CrossRef] [PubMed]
- Poulon-Quintin, A.; Ogden, E.; Large, A.; Vaudescal, M.; Labrugère, C.; Bartala, M.; Bertrand, C. Chemical surface modification of lithium disilicate needles of a silica-based ceramic after HF-etching and ultrasonic bath cleaning: Impact on the chemical bonding with silane. Dent. Mater 2021, 37, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Rueda, S.; Villalobos-Tinoco, J.; Conner, C.; Colvert, S.; Nurrohman, H.; Jurado, C.A. Bonding Protocols for Lithium Disilicate Veneers: A Narrative Review and Case Study. Biomimetics 2025, 10, 188. [Google Scholar] [CrossRef]
- Ho, G.W.; Matinlinna, J.P. Insights on Ceramics as Dental Materials. Part II: Chemical Surface Treatments. Silicon 2011, 3, 117–123. [Google Scholar] [CrossRef]
- Ramakrishnaiah, R.; Alkheraif, A.A.; Divakar, D.D.; Matinlinna, J.P.; Vallittu, P.K. The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics. Int. J. Mol. Sci. 2016, 17, 822. [Google Scholar] [CrossRef]
- Flamant, Q.; García Marro, F.; Roa Rovira, J.J.; Anglada, M. Hydrofluoric acid etching of dental zirconia. Part 1: Etching mechanism and surface characterization. J. Eur. Ceram. Soc. 2016, 36, 121–134. [Google Scholar] [CrossRef]
- Ansari, S.; Jahedmanesh, N.; Cascione, D.; Zafarnia, P.; Shah, K.C.; Wu, B.M.; Moshaverinia, A. Effects of an etching solution on the adhesive properties and surface microhardness of zirconia dental ceramics. J. Prosthet. Dent. 2018, 120, 447–453. [Google Scholar] [CrossRef]
- Sokolowski, G.; Szczesio-Wlodarczyk, A.; Szynkowska-Jóźwik, M.I.; Stopa, W.; Sokolowski, J.; Kopacz, K.; Bociong, K. The Shear Bond Strength of Resin-Based Luting Cement to Zirconia Ceramics after Different Surface Treatments. Materials 2023, 16, 5433. [Google Scholar] [CrossRef]
- Alqutaibi, A.Y.; Alghauli, M.A.; Dewedar, K.; AbdElaziz, M.H.; Saker, S. The influence of Zircos-E etchant, silica coating, and alumina air-particle abrasion on the debonding resistance of endocrowns with three different preparation designs. Clin. Exp. Dent. Res. 2024, 10, e901. [Google Scholar] [CrossRef]
- Almousli, M. The Impact of Surface Roughness and Different Pre-treatments on the Shear Bond Strength of Super-translucent Multi-layered Zirconia to Adhesive Resin Cement: An In Vitro Study. Cureus 2025, 17, e78504. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.D.; Moura, D.; Lima, C.M.; de Carvalho, R.; Leite, F.; Souza, R. Surface Treatment and Cementation of Lithium Silicate Ceramics Containing ZrO2. Oper. Dent. 2022, 47, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Ayad, M.F.; Fahmy, N.Z.; Rosenstiel, S.F. Effect of surface treatment on roughness and bond strength of a heat-pressed ceramic. J. Prosthet. Dent. 2008, 99, 123–130. [Google Scholar] [CrossRef]
- Zogheib, L.V.; Bona, A.D.; Kimpara, E.T.; McCabe, J.F. Effect of hydrofluoric acid etching duration on the roughness and flexural strength of a lithium disilicate-based glass ceramic. Braz. Dent. J. 2011, 22, 45–50. [Google Scholar] [CrossRef]
- Blatz, M.B.; Alvarez, M.; Sawyer, K.; Brindis, M. How to Bond Zirconia: The APC Concept. Compend. Contin. Educ. Dent. 2016, 37, 611–618. [Google Scholar] [PubMed]
- Lopes, G.C.; Perdigão, J.; Baptista, D.; Ballarin, A. Does a self-etching ceramic primer improve bonding to lithium disilicate ceramics? Bond Strengths and FESEM Analyses. Oper. Dent. 2019, 44, 210–218. [Google Scholar] [CrossRef]
- Nasr, D.M.; Matinlinna, J.P.; Silikas, N.; Elraggal, A. Effect of acid-etching solution on surface properties, crystallography, and shear bond strength of ultra-translucent zirconia to enamel. Odontology 2025, 113, 693–705. [Google Scholar] [CrossRef]
- You, G.E.; Lim, M.J.; Min, K.S.; Yu, M.K.; Lee, K.W. Surface property changes observed in zirconia during etching with high-concentration hydrofluoric acid over various immersion times. Dent. Mater. J. 2024, 43, 52–57. [Google Scholar] [CrossRef]
- Sriamporn, T.; Thamrongananskul, N.; Busabok, C.; Poolthong, S.; Uo, M.; Tagami, J. Dental zirconia can be etched by hydrofluoric acid. Dent. Mater. J. 2014, 33, 79–85. [Google Scholar] [CrossRef]
- Smielak, B.; Klimek, L. Effect of hydrofluoric acid concentration and etching duration on select surface roughness parameters for zirconia. J. Prosthet. Dent. 2015, 113, 596–602. [Google Scholar] [CrossRef]
- Cho, J.H.; Kim, S.J.; Shim, J.S.; Lee, K.W. Effect of zirconia surface treatment using nitric acid-hydrofluoric acid on the shear bond strengths of resin cements. J. Adv. Prosthodont. 2017, 9, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Matsui, K.; Yoshida, H.; Ikuhara, Y. Nanocrystalline, ultra-degradation-resistant zirconia: Its grain boundary nanostructure and nanochemistry. Sci. Rep. 2014, 4, 4758. [Google Scholar] [CrossRef]
- Sales, A.; Rodrigues, S.J.; Mahesh, M.; Ginjupalli, K.; Shetty, T.; Pai, U.Y.; Saldanha, S.; Hegde, P.; Mukherjee, S.; Kamath, V.; et al. Effect of Different Surface Treatments on the Micro-Shear Bond Strength and Surface Characteristics of Zirconia: An In Vitro Study. Int. J. Dent. 2022, 2022, 1546802. [Google Scholar] [CrossRef] [PubMed]
- Addison, O.; Marquis, P.M.; Fleming, G.J. The impact of hydrofluoric acid surface treatments on the performance of a porcelain laminate restorative material. Dent. Mater 2007, 23, 461–468. [Google Scholar] [CrossRef]
- Botelho, M.G.; Dangay, S.; Shih, K.; Lam, W.Y.H. The effect of surface treatments on dental zirconia: An analysis of biaxial flexural strength, surface roughness, and phase transformation. J. Dent. 2018, 75, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Murillo-Gómez, F.; Hernández-Víquez, J.R.; Sauma-Montes de Oca, J.R.; Vargas-Vargas, C.; González-Vargas, N.; Vega-Baudrit, J.R.; Chavarría-Bolaños, D. Mechanical, Adhesive and Surface Properties of a Zirconia-Reinforced Lithium Silicate CAD/CAM Ceramic Exposed to Different Etching Protocols. Materials 2024, 17, 5039. [Google Scholar] [CrossRef]
- Bebsh, M.; Haimeur, A.; França, R. The Effect of Different Surface Treatments on the Micromorphology and the Roughness of Four Dental CAD/CAM Lithium Silicate-Based Glass-Ceramics. Ceramics 2021, 4, 467–475. [Google Scholar] [CrossRef]
- Lee, H.; Woo, C.; Paek, J.; Geis-Gerstorfer, J. Effects of ultrasonic acid treatment on resin-zirconia bond strength. In Proceedings of the 40th European Prosthodontic Association (EPA) & 65th German Society for Prosthetic Dentistry and Biomaterials (DGPro) Joint Scientific Meeting, Halle, Germany, 29 September–1 October 2016. [Google Scholar]
- Pereira, G.K.; Amaral, M.; Simoneti, R.; Rocha, G.C.; Cesar, P.F.; Valandro, L.F. Effect of grinding with diamond-disc and-bur on the mechanical behavior of a Y-TZP ceramic. J. Mech. Behav. Biomed. Mater 2014, 37, 133–140. [Google Scholar] [CrossRef]
- Avram, L.T.; Galatanu, S.-V.; Opris, C.; Pop, C.; Jivanescu, A. Effect of Different Etching Times with Hydrofluoric Acid on the Bond Strength of CAD/CAM Ceramic Material. Materials 2022, 15, 7071. [Google Scholar] [CrossRef]
Material | Commercial Brand | Crystalline Microstructure | Mechanical Properties *** CTE | Clinical Indication *** |
---|---|---|---|---|
Glass–ceramic Lithium disilicate | IPS e.max CAD® (Ivoclar) | Needle–like crystals (approx. 70 vol%) Composition: Li2Si2O5 Size: 3–6 µm (length) | σ: 350–450 MPa Ra: 0.21 µm ** KIc: 0.8–1.5 MPa·m1/2 E: ~70 GPa CTE: 10.2 ± 0.4 × 10−6 K−1 (100–400 °C), 10.6 ± 0.35 10−6 K−1 (100–500 °C) | Crowns, veneers, occlusal veneers (tabletops) ≥ 1.0 mm, inlays, onlays, partial crowns, 3-unit bridges in the anterior and posterior regions (2nd premolar as the terminal abutment) Hybrid abutments in the anterior and posterior region as a single-tooth restoration, hybrid abutment crowns in the anterior and posterior regions |
Zirconia | e.max ZirCAD® (Ivoclar) | Homogeneous fine Y2O3: 4.0–6.0% ZrO2: 87.0–95.0% HfO2: 1.0–5.0% Al2O3: 0.0–1.0% Other oxides: <0.2% | σ: ≥ 900 MPa Ra: 0.22 µm * KIc: 5.14 ± 0.07 MPa·m1/2 E: 70 ± 2 GPa CTE: 10.6 ± 0.1 10−6 K−1 (100–400 °C) | Full-contour crowns, 3-unit bridges, and 4- and multi-unit bridges with max. 2 pontics, crown copings, 3-unit and multi-unit bridge frameworks with max. 2 pontics |
Zirconia (ZirCAD, Ivoclar) | Lithium Disilicate (E.max CAD, Ivoclar) | |||
---|---|---|---|---|
n | Name/symbol | n | Name/symbol | Etching time |
10 | ZIR 20 s | 10 | LDS 20 s | 20 s |
10 | ZIR 60 s | 10 | LDS 60 s | 60 s |
10 | ZIR 5 min | 10 | LDS 5 min | 5 min |
10 | ZIR 30 min | 10 | LDS 30 min | 30 min |
10 | ZIR 1 h | 10 | LDS 1 h | 1 h |
10 | ZIR Co * | 10 | LDS Co* | 0 (control) |
Cases | Sum of Squares | df | Mean Square | F | p |
---|---|---|---|---|---|
Ceramic | 0.758 | 1 | 0.758 | 72.931 | <0.001 |
Time | 7.106 | 5 | 1.421 | 136.692 | <0.001 |
Ceramic time | 1.768 | 5 | 0.354 | 34.016 | <0.001 |
Residuals | 1.123 | 108 | 0.010 |
Ceramic | Time | N | Mean | SD | SE | Coefficient of Variation |
---|---|---|---|---|---|---|
LDS | (0) Control | 10 | 0.180 | 0.035 | 0.011 | 0.192 |
20 s | 10 | 0.305 | 0.052 | 0.017 | 0.172 | |
60 s | 10 | 0.439 | 0.043 | 0.013 | 0.097 | |
5 min | 10 | 0.612 | 0.096 | 0.030 | 0.157 | |
30 min | 10 | 0.794 | 0.263 | 0.083 | 0.332 | |
1 h | 10 | 1.262 | 0.156 | 0.049 | 0.124 | |
ZIR | (0) Control | 10 | 0.211 | 0.047 | 0.015 | 0.224 |
20 s | 10 | 0.353 | 0.044 | 0.014 | 0.124 | |
60 s | 10 | 0.353 | 0.044 | 0.014 | 0.124 | |
5 min | 10 | 0.557 | 0.066 | 0.021 | 0.119 | |
30 min | 10 | 0.564 | 0.048 | 0.015 | 0.085 | |
1 h | 10 | 0.600 | 0.055 | 0.017 | 0.092 |
Mean Difference | t | Tukey’s p | Bonf. ** p | ||
---|---|---|---|---|---|
LDS 1 h | LDS 30 min | 0.468 | 10.267 | <0.001 | <0.001 |
LDS 5 min | 0.651 | 14.267 | <0.001 | <0.001 | |
LDS 60 s | 0.824 | 18.061 | <0.001 | <0.001 | |
LDS 20 s | 0.957 | 20.991 | <0.001 | <0.001 | |
LDS Co | 1.082 | 23.721 | <0.001 | <0.001 | |
ZIR 1 h | ZIR Co | 1.051 | 23.057 | <0.001 | <0.001 |
ZIR 30 min | 0.036 | 0.783 | 1.000 | 1.000 | |
ZIR 5 min | 0.043 | 0.939 | 0.999 | 1.000 | |
ZIR 60 s | 0.246 | 5.403 | <0.001 | <0.001 | |
ZIR 20 s | 0.246 | 5.403 | <0.001 | <0.001 | |
LDS 20 s | LDS 30 min | −0.489 | −10.724 | <0.001 | <0.001 |
LDS 5 min | −0.307 | −6.724 | <0.001 | <0.001 | |
LDS 60 s | −0.134 | −2.930 | 0.145 | 0.273 | |
LDS Co | 0.125 | 2.730 | 0.226 | 0.488 | |
ZIR 20 s | ZIR 30 min | −0.211 | −4.621 | <0.001 | <0.001 |
ZIR 5 min | −0.204 | −4.465 | 0.001 | 0.001 | |
ZIR 60 s | −3.678 × 10−16 | −8.065 × 10−15 | 1.000 | 1.000 | |
ZIR Co | 0.142 | 3.125 | 0.090 | 0.151 | |
LDS 30 min | LDS 5 min | 0.182 | 4.000 | 0.006 | 0.008 |
LDS 60 s | 0.355 | 7.794 | <0.001 | <0.001 | |
LDS Co | 0.613 | 13.454 | <0.001 | <0.001 | |
ZIR 30 min | ZIR 5 min | 0.007 | 0.156 | 1.000 | 1.000 |
ZIR 60 s | 0.211 | 4.621 | <0.001 | <0.001 | |
ZIR Co | 0.353 | 7.745 | <0.001 | <0.001 | |
LDS 5 min | LDS 60 s | 0.173 | 3.794 | 0.012 | 0.016 |
LDS Co | 0.431 | 9.454 | <0.001 | <0.001 | |
ZIR 5 min | ZIR 60 s | 0.204 | 4.465 | 0.001 | 0.001 |
LDS 60 s | LDS Co | 0.258 | 5.660 | <0.001 | <0.001 |
ZIR 60 s | ZIR Co | 0.142 | 3.125 | 0.090 | 0.151 |
LDS Co | ZIR Co | −0.030 | −0.664 | 1.000 | 1.000 |
Acid | Function in Zircos-E | References |
---|---|---|
Hydrochloric acid (HCl) | Maintains low pH; facilitates chloride complexation; assists in superficial oxide removal | D’Alessandro et al., 2024 [18]; Ansari et al., 2018 [29] |
Nitric acid (HNO3) | Oxidizes the zirconia surface; enhances the HF action; contributes to optimized etching duration | Kim et al., 2024 [19]; Cho et al., 2017 [42] |
Sulfuric acid (H2SO4) | Increases solution acidity; removes surface-bound moisture; accelerates etching reactions | D’Alessandro et al., 2024 [18]; Sadid-Zadeh et al., 2021 [10] |
Phosphoric acid (H3PO4) | May modify surface chemistry; introduces phosphate groups favorable for bonding interactions | Poulon-Quintin et al., 2021 [24]; Ansari et al., 2018 [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conner, C.; Andretti, F.; Hernandez, A.I.; Rojas-Rueda, S.; Azpiazu-Flores, F.X.; Morrow, B.R.; Garcia-Godoy, F.; Jurado, C.A.; Alshabib, A. Surface Evaluation of a Novel Acid-Etching Solution for Zirconia and Lithium Disilicate. Materials 2025, 18, 2912. https://doi.org/10.3390/ma18122912
Conner C, Andretti F, Hernandez AI, Rojas-Rueda S, Azpiazu-Flores FX, Morrow BR, Garcia-Godoy F, Jurado CA, Alshabib A. Surface Evaluation of a Novel Acid-Etching Solution for Zirconia and Lithium Disilicate. Materials. 2025; 18(12):2912. https://doi.org/10.3390/ma18122912
Chicago/Turabian StyleConner, Clint, Fabio Andretti, Alfredo I. Hernandez, Silvia Rojas-Rueda, Francisco X. Azpiazu-Flores, Brian R. Morrow, Franklin Garcia-Godoy, Carlos A. Jurado, and Abdulrahman Alshabib. 2025. "Surface Evaluation of a Novel Acid-Etching Solution for Zirconia and Lithium Disilicate" Materials 18, no. 12: 2912. https://doi.org/10.3390/ma18122912
APA StyleConner, C., Andretti, F., Hernandez, A. I., Rojas-Rueda, S., Azpiazu-Flores, F. X., Morrow, B. R., Garcia-Godoy, F., Jurado, C. A., & Alshabib, A. (2025). Surface Evaluation of a Novel Acid-Etching Solution for Zirconia and Lithium Disilicate. Materials, 18(12), 2912. https://doi.org/10.3390/ma18122912