Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (648)

Search Parameters:
Keywords = output signal-to-noise ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3139 KiB  
Article
Intelligent Recognition and Parameter Estimation of Radar Active Jamming Based on Oriented Object Detection
by Jiawei Lu, Yiduo Guo, Weike Feng, Xiaowei Hu, Jian Gong and Yu Zhang
Remote Sens. 2025, 17(15), 2646; https://doi.org/10.3390/rs17152646 - 30 Jul 2025
Viewed by 83
Abstract
To enhance the perception capability of radar in complex electromagnetic environments, this paper proposes an intelligent jamming recognition and parameter estimation method based on deep learning. The core idea of the method is to reformulate the jamming perception problem as an object detection [...] Read more.
To enhance the perception capability of radar in complex electromagnetic environments, this paper proposes an intelligent jamming recognition and parameter estimation method based on deep learning. The core idea of the method is to reformulate the jamming perception problem as an object detection task in computer vision, and we pioneer the application of oriented object detection to this problem, enabling simultaneous jamming classification and key parameter estimation. This method takes the time–frequency spectrogram of jamming signals as input. First, it employs the oriented object detection network YOLOv8-OBB (You Only Look Once Version 8–oriented bounding box) to identify three types of classic suppression jamming and five types of Interrupted Sampling Repeater Jamming (ISRJ) and outputs the positional information of the jamming in the time–frequency spectrogram. Second, for the five ISRJ types, a post-processing algorithm based on boxes fusion is designed to further extract features for secondary recognition. Finally, by integrating the detection box information and secondary recognition results, parameters of different ISRJ are estimated. In this paper, ablation experiments from the perspective of Non-Maximum Suppression (NMS) are conducted to simulate and compare the OBB method with the traditional horizontal bounding box-based detection approaches, highlighting OBB’s detection superiority in dense jamming scenarios. Experimental results show that, compared with existing jamming detection methods, the proposed method achieves higher detection probabilities under the jamming-to-noise ratio (JNR) ranging from 0 to 20 dB, with correct identification rates exceeding 98.5% for both primary and secondary recognition stages. Moreover, benefiting from the advanced YOLOv8 network, the method exhibits an absolute error of less than 1.85% in estimating six types of jamming parameters, outperforming existing methods in estimation accuracy across different JNR conditions. Full article
(This article belongs to the Special Issue Array and Signal Processing for Radar (Second Edition))
Show Figures

Figure 1

21 pages, 4388 KiB  
Article
An Omni-Dimensional Dynamic Convolutional Network for Single-Image Super-Resolution Tasks
by Xi Chen, Ziang Wu, Weiping Zhang, Tingting Bi and Chunwei Tian
Mathematics 2025, 13(15), 2388; https://doi.org/10.3390/math13152388 - 25 Jul 2025
Viewed by 244
Abstract
The goal of single-image super-resolution (SISR) tasks is to generate high-definition images from low-quality inputs, with practical uses spanning healthcare diagnostics, aerial imaging, and surveillance systems. Although cnns have considerably improved image reconstruction quality, existing methods still face limitations, including inadequate restoration of [...] Read more.
The goal of single-image super-resolution (SISR) tasks is to generate high-definition images from low-quality inputs, with practical uses spanning healthcare diagnostics, aerial imaging, and surveillance systems. Although cnns have considerably improved image reconstruction quality, existing methods still face limitations, including inadequate restoration of high-frequency details, high computational complexity, and insufficient adaptability to complex scenes. To address these challenges, we propose an Omni-dimensional Dynamic Convolutional Network (ODConvNet) tailored for SISR tasks. Specifically, ODConvNet comprises four key components: a Feature Extraction Block (FEB) that captures low-level spatial features; an Omni-dimensional Dynamic Convolution Block (DCB), which utilizes a multidimensional attention mechanism to dynamically reweight convolution kernels across spatial, channel, and kernel dimensions, thereby enhancing feature expressiveness and context modeling; a Deep Feature Extraction Block (DFEB) that stacks multiple convolutional layers with residual connections to progressively extract and fuse high-level features; and a Reconstruction Block (RB) that employs subpixel convolution to upscale features and refine the final HR output. This mechanism significantly enhances feature extraction and effectively captures rich contextual information. Additionally, we employ an improved residual network structure combined with a refined Charbonnier loss function to alleviate gradient vanishing and exploding to enhance the robustness of model training. Extensive experiments conducted on widely used benchmark datasets, including DIV2K, Set5, Set14, B100, and Urban100, demonstrate that, compared with existing deep learning-based SR methods, our ODConvNet method improves Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the visual quality of SR images is also improved. Ablation studies further validate the effectiveness and contribution of each component in our network. The proposed ODConvNet offers an effective, flexible, and efficient solution for the SISR task and provides promising directions for future research. Full article
Show Figures

Figure 1

25 pages, 4610 KiB  
Article
A Directional Wave Spectrum Inversion Algorithm with HF Surface Wave Radar Network
by Fuqi Mo, Xiongbin Wu, Xiaoyan Li, Liang Yu and Heng Zhou
Remote Sens. 2025, 17(15), 2573; https://doi.org/10.3390/rs17152573 - 24 Jul 2025
Viewed by 144
Abstract
In high-frequency surface wave radar (HFSWR) systems, the retrieval of the directional wave spectrum has remained challenging, especially in the case of echoes from long ranges with a low signal-to-noise ratio (SNR). Therefore, a quadratic programming algorithm based on the regularization technique is [...] Read more.
In high-frequency surface wave radar (HFSWR) systems, the retrieval of the directional wave spectrum has remained challenging, especially in the case of echoes from long ranges with a low signal-to-noise ratio (SNR). Therefore, a quadratic programming algorithm based on the regularization technique is proposed with an empirical criterion for estimating the optimal regularization parameter, which minimizes the effect of noise to obtain more accurate inversion results. The reliability of the inversion method is preliminarily verified using simulated Doppler spectra under different wind speeds, wind directions, and SNRs. The directional wave spectra inverted from a radar network with two multiple-input multiple-output (MIMO) systems are basically consistent with those from the ERA5 data, while there is a limitation for the very concentrated directional distribution due to the truncated second order in the Fourier series. Further, in the field experiment during a storm that lasted three days, the wave parameters are calculated from the inverted directional spectra and compared with the ERA5 data. The results are shown to be in reasonable agreement at four typical locations in the core detection area. In addition, reasonable performance is also obtained under the condition of low SNRs, which further verifies the effectiveness of the proposed inversion algorithm. Full article
(This article belongs to the Special Issue Innovative Applications of HF Radar (Second Edition))
Show Figures

Figure 1

19 pages, 1993 KiB  
Article
A Robust Capon Beamforming Algorithm with Desired Signal Steering Vector Correction
by Zhiqi Gao, Bowen Wu, Pingping Huang, Wei Xu, Weixian Tan and Zhixia Wu
Sensors 2025, 25(15), 4570; https://doi.org/10.3390/s25154570 - 24 Jul 2025
Viewed by 199
Abstract
The conventional Capon beamforming algorithm can achieve a high gain in the direction of desired signals and zero-trapping in the direction of interfering signals, providing a high output signal-to-interference-plus-noise ratio (SINR). However, when the steering vector of the desired signal is mismatched, the [...] Read more.
The conventional Capon beamforming algorithm can achieve a high gain in the direction of desired signals and zero-trapping in the direction of interfering signals, providing a high output signal-to-interference-plus-noise ratio (SINR). However, when the steering vector of the desired signal is mismatched, the performance of the Capon beamforming algorithm degrades. In addressing this challenge, the present research introduces a refined algorithm. The core of the proposed robust Capon beamforming technique lies in leveraging the orthogonality between the steering vector and the noise space, the estimated expected signal steering vector is corrected. Based on this feature, the proposed algorithm meticulously optimizes the predicted steering vector of the desired signal, which can mitigate the problem of performance degradation caused by the mismatch in the steering vector. Moreover, the covariance matrix is corrected using the desired signal elimination method, which can overcome the problem of signal self-cancelation. Furthermore, through the optimization process, the proposed algorithm can maintain high robustness in complex environments and under the condition of different input signals, its beam pattern performance is more excellent. The results of simulation experiments show that the proposed algorithm demonstrates greater robustness compared to the currently available algorithms, can achieve a higher output SINR, and is insensitive to steering vector mismatch. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

23 pages, 1187 KiB  
Article
Transmit and Receive Diversity in MIMO Quantum Communication for High-Fidelity Video Transmission
by Udara Jayasinghe, Prabhath Samarathunga, Thanuj Fernando and Anil Fernando
Algorithms 2025, 18(7), 436; https://doi.org/10.3390/a18070436 - 16 Jul 2025
Viewed by 210
Abstract
Reliable transmission of high-quality video over wireless channels is challenged by fading and noise, which degrade visual quality and disrupt temporal continuity. To address these issues, this paper proposes a quantum communication framework that integrates quantum superposition with multi-input multi-output (MIMO) spatial diversity [...] Read more.
Reliable transmission of high-quality video over wireless channels is challenged by fading and noise, which degrade visual quality and disrupt temporal continuity. To address these issues, this paper proposes a quantum communication framework that integrates quantum superposition with multi-input multi-output (MIMO) spatial diversity techniques to enhance robustness and efficiency in dynamic video transmission. The proposed method converts compressed videos into classical bitstreams, which are then channel-encoded and quantum-encoded into qubit superposition states. These states are transmitted over a 2×2 MIMO system employing varied diversity schemes to mitigate the effects of multipath fading and noise. At the receiver, a quantum decoder reconstructs the classical information, followed by channel decoding to retrieve the video data, and the source decoder reconstructs the final video. Simulation results demonstrate that the quantum MIMO system significantly outperforms equivalent-bandwidth classical MIMO frameworks across diverse signal-to-noise ratio (SNR) conditions, achieving a peak signal-to-noise ratio (PSNR) up to 39.12 dB, structural similarity index (SSIM) up to 0.9471, and video multi-method assessment fusion (VMAF) up to 92.47, with improved error resilience across various group of picture (GOP) formats, highlighting the potential of quantum MIMO communication for enhancing the reliability and quality of video delivery in next-generation wireless networks. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

15 pages, 2098 KiB  
Article
Experimental Testing of Amplified Inertia Response from Synchronous Machines Compared with Frequency Derivative-Based Synthetic Inertia
by Martin Fregelius, Vinicius M. de Albuquerque, Per Norrlund and Urban Lundin
Energies 2025, 18(14), 3776; https://doi.org/10.3390/en18143776 - 16 Jul 2025
Viewed by 188
Abstract
A rather novel approach for delivery of inertia-like grid services through energy storage devices is described and validated by physical experiments and on-site measurements. In this approach, denoted “amplified inertia response”, an actual inertial response from a grid-connected synchronous machine is amplified. This [...] Read more.
A rather novel approach for delivery of inertia-like grid services through energy storage devices is described and validated by physical experiments and on-site measurements. In this approach, denoted “amplified inertia response”, an actual inertial response from a grid-connected synchronous machine is amplified. This inertia emulation approach is contrasted by what is called synthetic inertia, which uses a frequency-locked loop in order to extract the grid frequency. The synthetic inertia faces the usual input signal filtering challenges if the signal-to-noise ratio is low. The amplified inertia controller avoids the input filtering since it only amplifies the natural inertial response from a synchronous machine. However, rotor angle oscillations lead to filtering requirements of the amplified version as well, but on the output signal of the controller. Experimental comparisons are conducted both on the measurement output from the physical experiments in a microgrid and on analysis based on input from on-site measurements from a 55 MVA hydropower generator connected to the Nordic grid. In the specific cases compared, we observe that the amplified inertia version is the better method for smaller power systems, with large frequency fluctuations. On the other hand, the synthetic inertia method is the better in larger power systems as compared to the amplification of the inertial response from a real production unit. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

21 pages, 887 KiB  
Article
Enhanced Mainlobe Jamming Suppression in Distributed Array Radar via Joint Optimization of Radar Positions and Subpulse Frequencies
by Weiming Pu, Kewei Feng, Xiaoping Wang, Zhennan Liang, Xinliang Chen and Quanhua Liu
Remote Sens. 2025, 17(14), 2423; https://doi.org/10.3390/rs17142423 - 12 Jul 2025
Viewed by 241
Abstract
This study presents a joint optimization framework for radar positions and subpulse carrier frequencies to address mainlobe jamming suppression in a distributed array radar system with one main and multiple auxiliary radars. Accounting for gain and aperture differences between the main and auxiliary [...] Read more.
This study presents a joint optimization framework for radar positions and subpulse carrier frequencies to address mainlobe jamming suppression in a distributed array radar system with one main and multiple auxiliary radars. Accounting for gain and aperture differences between the main and auxiliary radars, the grating lobe effect on jamming suppression performance is analyzed. Unlike conventional sparse array design approaches, this work introduces an architecture leveraging subpulses at distinct carrier frequencies to enhance grating lobe suppression and jamming suppression. A specific joint optimization method for radar positions and subpulse frequencies is then established. With jamming suppression performance as the objective function, the method first maps the variations induced by a range of candidate frequencies onto a single representative frequency point. This mapping enables efficient optimization of radar positions across the designated frequency band. Subsequently, a sequential scheme selects specific carrier frequencies for the subpulses. In practical anti-jamming operations, the optimal frequency for the current scenario is determined by analyzing the suppression results from these subpulses. The main radar then transmits pulses at this optimal frequency, thereby reducing both system complexity and pulse accumulation difficulty. Simulation results demonstrate that the proposed method achieves a reduction of over 3 dB in grating lobe suppression compared to conventional sparse array design methods, while enhancing the output signal-to-jamming and noise ratio by nearly 3 dB after jamming suppression. Full article
Show Figures

Figure 1

17 pages, 2032 KiB  
Article
Measurement Techniques for Highly Dynamic and Weak Space Targets Using Event Cameras
by Haonan Liu, Ting Sun, Ye Tian, Siyao Wu, Fei Xing, Haijun Wang, Xi Wang, Zongyu Zhang, Kang Yang and Guoteng Ren
Sensors 2025, 25(14), 4366; https://doi.org/10.3390/s25144366 - 12 Jul 2025
Viewed by 336
Abstract
Star sensors, as the most precise attitude measurement devices currently available, play a crucial role in spacecraft attitude estimation. However, traditional frame-based cameras tend to suffer from target blur and loss under high-dynamic maneuvers, which severely limit the applicability of conventional star sensors [...] Read more.
Star sensors, as the most precise attitude measurement devices currently available, play a crucial role in spacecraft attitude estimation. However, traditional frame-based cameras tend to suffer from target blur and loss under high-dynamic maneuvers, which severely limit the applicability of conventional star sensors in complex space environments. In contrast, event cameras—drawing inspiration from biological vision—can capture brightness changes at ultrahigh speeds and output a series of asynchronous events, thereby demonstrating enormous potential for space detection applications. Based on this, this paper proposes an event data extraction method for weak, high-dynamic space targets to enhance the performance of event cameras in detecting space targets under high-dynamic maneuvers. In the target denoising phase, we fully consider the characteristics of space targets’ motion trajectories and optimize a classical spatiotemporal correlation filter, thereby significantly improving the signal-to-noise ratio for weak targets. During the target extraction stage, we introduce the DBSCAN clustering algorithm to achieve the subpixel-level extraction of target centroids. Moreover, to address issues of target trajectory distortion and data discontinuity in certain ultrahigh-dynamic scenarios, we construct a camera motion model based on real-time motion data from an inertial measurement unit (IMU) and utilize it to effectively compensate for and correct the target’s trajectory. Finally, a ground-based simulation system is established to validate the applicability and superior performance of the proposed method in real-world scenarios. Full article
Show Figures

Figure 1

29 pages, 3101 KiB  
Article
Off-Grid Sparse Bayesian Learning for Channel Estimation and Localization in RIS-Assisted MIMO-OFDM Under NLoS
by Ural Mutlu and Yasin Kabalci
Sensors 2025, 25(13), 4140; https://doi.org/10.3390/s25134140 - 2 Jul 2025
Viewed by 397
Abstract
Reconfigurable Intelligent Surfaces (RISs) are among the key technologies envisaged for sixth-generation (6G) multiple-input multiple-output (MIMO)–orthogonal frequency division multiplexing (OFDM) wireless systems. However, their passive nature and the frequent absence of a line-of-sight (LoS) path in dense urban environments make uplink channel estimation [...] Read more.
Reconfigurable Intelligent Surfaces (RISs) are among the key technologies envisaged for sixth-generation (6G) multiple-input multiple-output (MIMO)–orthogonal frequency division multiplexing (OFDM) wireless systems. However, their passive nature and the frequent absence of a line-of-sight (LoS) path in dense urban environments make uplink channel estimation and localization challenging tasks. Therefore, to achieve channel estimation and localization, this study models the RIS-mobile station (MS) channel as a double-sparse angular structure and proposes a hybrid channel parameter estimation framework for RIS-assisted MIMO-OFDM systems. In the hybrid framework, Simultaneous Orthogonal Matching Pursuit (SOMP) first estimates coarse angular supports. The coarse estimates are refined by a novel refinement stage employing a Variational Bayesian Expectation Maximization (VBEM)-based Off-Grid Sparse Bayesian Learning (OG-SBL) algorithm, which jointly updates azimuth and elevation offsets via Newton-style iterations. An Angle of Arrival (AoA)–Angle of Departure (AoD) matching algorithm is introduced to associate angular components, followed by a 3D localization procedure based on non-LoS (NLoS) multipath geometry. Simulation results show that the proposed framework achieves high angular resolution; high localization accuracy, with 97% of the results within 0.01 m; and a channel estimation error of 0.0046% at 40 dB signal-to-noise ratio (SNR). Full article
(This article belongs to the Special Issue Communication, Sensing and Localization in 6G Systems)
Show Figures

Figure 1

40 pages, 7147 KiB  
Article
A Hybrid Ensemble Learning Framework for Predicting Lumbar Disc Herniation Recurrence: Integrating Supervised Models, Anomaly Detection, and Threshold Optimization
by Mădălina Duceac (Covrig), Călin Gheorghe Buzea, Alina Pleșea-Condratovici, Lucian Eva, Letiția Doina Duceac, Marius Gabriel Dabija, Bogdan Costăchescu, Eva Maria Elkan, Cristian Guțu and Doina Carina Voinescu
Diagnostics 2025, 15(13), 1628; https://doi.org/10.3390/diagnostics15131628 - 26 Jun 2025
Viewed by 366
Abstract
Background: Lumbar disc herniation (LDH) recurrence remains a pressing clinical challenge, with limited predictive tools available to support early identification and personalized intervention. Predicting recurrence after lumbar disc herniation (LDH) remains clinically important but algorithmically difficult due to extreme class imbalance and low [...] Read more.
Background: Lumbar disc herniation (LDH) recurrence remains a pressing clinical challenge, with limited predictive tools available to support early identification and personalized intervention. Predicting recurrence after lumbar disc herniation (LDH) remains clinically important but algorithmically difficult due to extreme class imbalance and low signal-to-noise ratio. Objective: This study proposes a hybrid machine learning framework that integrates supervised classifiers, unsupervised anomaly detection, and decision threshold tuning to predict LDH recurrence using routine clinical data. Methods: A dataset of 977 patients from a Romanian neurosurgical center was used. We trained a deep neural network, random forest, and an autoencoder (trained only on non-recurrence cases) to model baseline and anomalous patterns. Their outputs were stacked into a meta-classifier and optimized via sensitivity-focused threshold tuning. Evaluation was performed via stratified cross-validation and external holdout testing. Results: Baseline models achieved high accuracy but failed to recall recurrence cases (0% sensitivity). The proposed ensemble reached 100% recall internally with a threshold of 0.05. Key predictors included hospital stay duration, L4–L5 herniation, obesity, and hypertension. However, external holdout performance dropped to 0% recall, revealing poor generalization. Conclusions: The ensemble approach enhances detection of rare recurrence cases under internal validation but exhibits poor external performance, emphasizing the challenge of rare-event modeling in clinical datasets. Future work should prioritize external validation, longitudinal modeling, and interpretability to ensure clinical adoption. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Graphical abstract

24 pages, 4270 KiB  
Article
Differentiated GNSS Baseband Jamming Suppression Method Based on Classification Decision Information
by Zhongliang Deng, Zhichao Zhang, Xiangchuan Gao and Peijia Liu
Appl. Sci. 2025, 15(13), 7131; https://doi.org/10.3390/app15137131 - 25 Jun 2025
Viewed by 245
Abstract
In complex urban electromagnetic environments, wireless positioning signals are subject to various types of interference, including narrowband, chirp, and pulse jamming. Traditional generic suppression methods struggle to achieve global optimization tailored to specific interference mechanisms. This paper proposes a classification-driven differentiated jamming suppression [...] Read more.
In complex urban electromagnetic environments, wireless positioning signals are subject to various types of interference, including narrowband, chirp, and pulse jamming. Traditional generic suppression methods struggle to achieve global optimization tailored to specific interference mechanisms. This paper proposes a classification-driven differentiated jamming suppression (CDDJ) method, which adaptively selects the optimal mitigation strategy by pre-identifying interference types and integrating classification confidence levels. First, the theoretical bounds of the output carrier-to-noise ratio (C/N0out) under typical interference scenarios are derived, characterizing the performance distribution of anti-jamming efficiency (Γ). Then, a mapping relationship between interference categories and their corresponding suppression strategies is established, along with decision criteria for strategy switching based on signal quality evaluation metrics. Finally, an OpenMax-Lite rejection layer is designed to handle low-confidence inputs, identify unknown jamming using the Weibull distribution, and implement a broadband conservative suppression policy. Simulation results demonstrate that the proposed method exhibits significant advantages across different interference types. Under high JSR conditions, the signal recovery rate improves by over 10% and 8% compared to that of the WPT and KLT methods, respectively. In terms of SINR performance, the proposed approach outperforms the AFF, TDPB, and FDPB methods by 1.5 dB, 1.1 dB, and 5.3 dB, respectively, thereby enhancing the reliability of wireless positioning in complex environments. Full article
(This article belongs to the Special Issue Advanced GNSS Technologies: Measurement, Analysis, and Applications)
Show Figures

Figure 1

31 pages, 853 KiB  
Article
Adversarial Sample Generation Method Based on Frequency Domain Transformation and Channel Awareness
by Yalin Gao, Dongwei Xu, Huiyan Zhu and Qi Xuan
Sensors 2025, 25(12), 3779; https://doi.org/10.3390/s25123779 - 17 Jun 2025
Viewed by 382
Abstract
In OFDM wireless communication systems, low-resolution channel characteristics and noise interference pose significant challenges to accurate channel estimation. To solve these problems, we propose a super-resolution denoising residual network (SDRNet), which combines the advantages of the super-resolution convolutional neural network (SRCNN) and the [...] Read more.
In OFDM wireless communication systems, low-resolution channel characteristics and noise interference pose significant challenges to accurate channel estimation. To solve these problems, we propose a super-resolution denoising residual network (SDRNet), which combines the advantages of the super-resolution convolutional neural network (SRCNN) and the denoising convolutional neural network (DnCNN) to construct a pilot-based OFDM signal model, train SDRNet using OFDM pilot data containing Gaussian noise, and optimize its feature enhancement ability in frequency-selective fading channels. To further explore the role of channel estimation in communication security, we propose a frequency-domain adversarial attack method based on SDRNet output. This method first converts the time-domain signal to the frequency domain by using the Fourier transform and then applies Gaussian noise and selective masking. By integrating the channel gradient information, the adversarial perturbation we generated significantly improves the attack success rate compared with the non-channel awareness method. The experimental results show that SDRNet is superior to traditional algorithms (such as the least square method, minimum mean square error estimation, etc.) in both mean square error and bit error rate. Furthermore, the adversarial samples optimized through channel awareness frequency-domain masking exhibit stronger attack performance, confirming that accurate channel estimation can not only enhance communication reliability but also provide key guidance for adversarial perturbation. The experimental results show that under the same noise conditions, the MSE of SDRNet is significantly lower than that of LS and MMSE. The bit error rate is lower than 0.01 when the signal-to-noise ratio is 10 dB, which is significantly better than the traditional algorithm. The attack success rate of the proposed adversarial attack method reached 79.9%, which was 16.3% higher than that of the non-channel aware method, verifying the key role of accurate channel estimation in enhancing the effectiveness of the attack. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

19 pages, 16134 KiB  
Article
Non-Subsampled Contourlet Transform-Based Domain Feedback Information Distillation Network for Suppressing Noise in Seismic Data
by Kang Chen, Guangzhi Zhang, Cong Tang, Qi Ran, Long Wen, Song Han, Han Liang and Haiyong Yi
Appl. Sci. 2025, 15(12), 6734; https://doi.org/10.3390/app15126734 - 16 Jun 2025
Viewed by 328
Abstract
Seismic signal processing often relies on general convolutional neural network (CNN)-based models, which typically focus on features in the time domain while neglecting frequency characteristics. Moreover, down-sampling operations in these models tend to cause the loss of critical high-frequency details. To this end, [...] Read more.
Seismic signal processing often relies on general convolutional neural network (CNN)-based models, which typically focus on features in the time domain while neglecting frequency characteristics. Moreover, down-sampling operations in these models tend to cause the loss of critical high-frequency details. To this end, we propose a feedback information distillation network (FID-N) in the non-subsampled contourlet transform (NSCT) domain to remarkably suppress seismic noise. The method aims to enhance denoising performance by preserving the fine-grained details and frequency characteristics of seismic data. The FID-N mainly consists of a two-path information distillation block used in a recurrent manner to form a feedback mechanism, carrying an output to correct previous states, which fully exploits competitive features from seismic signals and effectively realizes the signal restoration step by step across time. Additionally, the NSCT has an excellent high-frequency response and powerful curve and surface description capabilities. We suggest converting the noise suppression problem into NSCT coefficient prediction, which maintains more detailed high-frequency information and promotes the FID-N to further suppress noise. Extensive experiments on both synthetic and real seismic datasets demonstrated that our method significantly outperformed the SOTA methods, particularly in scenarios with low signal-to-noise ratios and in recovering high-frequency components. Full article
Show Figures

Figure 1

18 pages, 2575 KiB  
Article
Optimization of a Coupled Neuron Model Based on Deep Reinforcement Learning and Application of the Model in Bearing Fault Diagnosis
by Shan Wang, Jiaxiang Li, Xinsheng Xu, Ruiqi Wu, Yuhang Qiu, Xuwen Chen and Zijian Qiao
Sensors 2025, 25(12), 3654; https://doi.org/10.3390/s25123654 - 11 Jun 2025
Viewed by 514
Abstract
Bearings are critical yet vulnerable components in mechanical equipment, with potential failures that can significantly impact system performance. As stochastic resonance methods effectively convert noise energy into fault characteristic energy within bearing vibration signals, they remain a research focus in bearing fault diagnosis. [...] Read more.
Bearings are critical yet vulnerable components in mechanical equipment, with potential failures that can significantly impact system performance. As stochastic resonance methods effectively convert noise energy into fault characteristic energy within bearing vibration signals, they remain a research focus in bearing fault diagnosis. This study proposes a coupled neuron model based on biological stochastic resonance effects for processing bearing vibration signals. To enhance parameter optimization, we develop an improved deep reinforcement learning algorithm that incorporates a prioritized experience replay buffer into the network architecture. Using the SNR as the evaluation metric, the algorithm performs data screening on the replay buffer parameters before training the deep network for predicting coupled neuron model performance. In terms of experimental content, the study performed data processing on simulated signals and vibration signals of gearbox bearing faults collected in the laboratory environment. By comparing the coupled neuron model optimized with a reinforcement learning algorithm, particle swarm algorithm, and quantum particle swarm algorithm, the experimental results show that the coupled neuron model optimized with a deep reinforcement learning algorithm has the optimal signal-to-noise ratio of the output signal and recognition rate of the bearing faults, which are −13.0407 dB and 100%, respectively. The method shows significant performance advantages in realizing the energy enhancement of the bearing fault eigenfrequency and provides a more efficient and accurate solution for bearing fault diagnosis, which has important engineering application value. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Graphical abstract

11 pages, 1431 KiB  
Article
Optimization of Output Characteristics in Figure-9 Mode-Locked Fiber Laser Based on Black Phosphorus Assistance
by Peiyuan Xiao, Lu Sui, Wanzhuo Ma, Renshun Pan and Huilin Jiang
Photonics 2025, 12(6), 589; https://doi.org/10.3390/photonics12060589 - 9 Jun 2025
Viewed by 397
Abstract
Utilizing the nonlinear effects of black phosphorus (BP), the self-starting threshold and noise performance were optimized in a figure-9 mode-locked fiber laser configuration. Experimental results demonstrate that a mode-locked pulse output with a spectral bandwidth of 8.2 nm, center wavelength of 1033.5 nm, [...] Read more.
Utilizing the nonlinear effects of black phosphorus (BP), the self-starting threshold and noise performance were optimized in a figure-9 mode-locked fiber laser configuration. Experimental results demonstrate that a mode-locked pulse output with a spectral bandwidth of 8.2 nm, center wavelength of 1033.5 nm, and repetition rate of 42 MHz is obtained. Compared with single-mechanism mode-locked lasers, the self-starting mode-locked threshold is reduced by 100 mW. Regarding noise characteristics, the signal-to-noise ratio (SNR) is enhanced to 68.4 dB and the phase noise is reduced to −115.6 dBc/Hz at 1 MHz to 10 MHz frequency offsets. The root mean square (RMS) of the output power is optimized to 0.9% and phase noise jitter is reduced to 1.9%. This work proves a novel approach to tackle the challenges of high self-starting thresholds and instability in mode-locked lasers. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

Back to TopTop