Off-Grid Sparse Bayesian Learning for Channel Estimation and Localization in RIS-Assisted MIMO-OFDM Under NLoS
Abstract
1. Introduction
1.1. Contributions of the Work
- The study models the RIS-MS channel as a block-sparse structure, where the RIS-side AoA induces row sparsity and the MS-side AoD induces column sparsity, with the RIS acting as a compressive sensing matrix. Assuming a known BS-RIS channel, this model enables uplink estimation of geometric parameters for NLoS paths.
- Hybrid Estimation Framework: A hybrid algorithm combining Simultaneous Orthogonal Matching Pursuit (SOMP) and Variational Bayesian Expectation Maximization (VBEM)-based Off-Grid Sparse Bayesian Learning (VB-OG-SBL) is proposed. SOMP provides coarse support estimation using a discrete dictionary, while VB-OG-SBL refines angular estimates. The hybrid protocol individually addresses the RIS-side AoA and MS-side AoD estimations.
- Off-Grid Angular Refinement via VB-OG-SBL: To address the off-grid angular problem, a VBEM-based OG-SBL framework is developed. It jointly refines azimuth and elevation offsets through second-order Newton-style updates within VBEM iterations, enabling stable and high-resolution continuous domain estimation.
- AoA–AoD Matching Strategy: A low-complexity matching algorithm is employed to associate RIS-side AoA and MS-side AoD estimates, resolving the decoupling ambiguity and enabling consistent path identification.
- 3D Localization from NLoS Paths: A geometric 3D localization algorithm is implemented to estimate the MS position by computing the orthogonal intersections of estimated NLoS paths. Based on MS localization, the scatterer positions are also inferred, enabling passive environmental sensing without requiring LoS paths.
- Performance Evaluation: Extensive simulations confirm that the proposed method achieves high angular accuracy, low channel reconstruction normalized mean square error (NMSE), and centimetre-level localization across a range of SNRs and multipath conditions.
1.2. Notations and Paper Outline
2. Related Work
2.1. RIS-Assisted Localization
2.2. Sparse Signal Recovery (SSR)
2.3. Summary and Research Gap
3. System Model
3.1. System Reference Model
3.2. Channel Model
3.3. Sparse Model of the Received Signal
4. Coarse Channel Estimation
4.1. Phase 1: AoD Estimation at MS
Algorithm 1: SOMP algorithm for AoD estimation at MS |
1: Input: 2: Parameter setting: initialize residual and index set 3: for do 4: ; calculate max values, estimate index of max values 5: ; update indices set 6: ; update residual 7: end for 8: Output: Ω, from index set Ω get AoDs, max values |
4.2. Phase 2: AoA Estimation at RIS
5. Off-Grid SBL Refinement
5.1. Off-Grid Formulation
5.2. Sparse Bayesian Prior Structure
5.3. Variational Inference Framework
Algorithm 2: VB-OG-SBL for AoA estimation at RIS |
Input: , signal powers 1. Initialize: , initialize hyperparameters , and noise precision 2. Repeat: of Update hyperparameters and noise precision or max iteration reached 3. Return: Refined angles and signals posteriors Output: signal estimates |
5.4. Computational Complexity
6. Channel and Location Estimation
6.1. Permutation-Based AoA–AoD Mismatch Mitigation and Channel Coefficient Estimation
6.2. ToA Estimation
6.3. Localization and Sensing
7. Results
8. Discussion
8.1. Deployment Considerations
8.2. Practical Limitations and Future Research Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RIS | Reconfigurable Intelligent Surface |
OFDM | Orthogonal frequency division multiplexing |
MIMO | Multiple-input multiple-output |
MS | Mobile station |
UPA | Uniform planar array |
AoA | Angle of Arrival |
AoD | Angle of Departure |
SOMP | Simultaneous Orthogonal Matching Pursuit |
VBEM | Variational Bayesian Expectation Maximization |
SBL | Sparse Bayesian Learning |
OG-SBL | Off-Grid Sparse Bayesian Learning |
NMSE | Normalized mean square error |
RMSE | Root-mean-square error |
SNR | Signal-to-noise ratio |
LoS | Line-of-sight |
NLoS | Non-line-of-sight |
MMV | Multiple measurement vector |
ToA | Time of Arrival |
MUSIC | Multiple signal classification |
ESPRIT | Estimation of Signal Parameters via Rotational Invariance Techniques |
VLoS | Virtual line-of-sight |
SP | Scatter point |
LS | Least squares |
CoSaMP | Compressive Sampling Matching Pursuit |
MP | Matching Pursuit |
OMP | Orthogonal Matching Pursuit |
SSR | Sparse signal recovery |
ELBO | Evidence lower bound |
SISO | Single-input single-output |
mmWave | Millimetre-wave |
CDF | Cumulative distribution function |
EM | Expectation Maximization |
References
- Mutlu, U.; Kabalci, Y. Channel Estimation in Intelligent Reflecting Surfaces for 5G and Beyond. In Proceedings of the 2022 4th Global Power, Energy and Communication Conference (GPECOM), Nevsehir, Turkey, 14–17 June 2022; pp. 586–590. [Google Scholar]
- Puspitasari, A.A.; An, T.T.; Alsharif, M.H.; Lee, B.M. Emerging Technologies for 6G Communication Networks: Machine Learning Approaches. Sensors 2023, 23, 7709. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Xiao, Y.; Lei, X.; Zhang, L.; Niu, Y.; Karagiannidis, G.K. Reconfigurable Intelligent Surface-Assisted Localization: Technologies, Challenges, and the Road Ahead. IEEE Open J. Commun. Soc. 2023, 4, 1430–1451. [Google Scholar] [CrossRef]
- Sarker, M.A.L.; Son, W.; Han, D.S. RIS-Assisted Hybrid Beamforming and Connected User Vehicle Localization for Millimeter Wave MIMO Systems. Sensors 2023, 23, 3713. [Google Scholar] [CrossRef] [PubMed]
- Swindlehurst, A.L.; Zhou, G.; Liu, R.; Pan, C.; Li, M. Channel Estimation with Reconfigurable Intelligent Surfaces—A General Framework. Proc. IEEE 2022, 110, 1312–1338. [Google Scholar] [CrossRef]
- Jia, W.; Cao, J.; Li, M.; Yu, Z. User Sensing and Localization with Reconfigurable Intelligent Surface for Terahertz Massive MIMO Systems. IEEE Access 2024, 12, 91089–91100. [Google Scholar] [CrossRef]
- Chen, J.; Liang, Y.-C.; Cheng, H.V.; Yu, W. Channel Estimation for Reconfigurable Intelligent Surface Aided Multi-User mmWave MIMO Systems. IEEE Trans. Wirel. Commun. 2023, 22, 6853–6869. [Google Scholar] [CrossRef]
- Mutlu, U.; Bilim, M.; Kabalci, Y. Joint Channel Estimation and Localization in RIS Assisted OFDM-MIMO System. In Proceedings of the 2024 6th Global Power, Energy and Communication Conference (GPECOM), Budapest, Hungary, 4–7 June 2024; pp. 687–692. [Google Scholar]
- Nazar, A.M.; Selim, M.Y.; Qiao, D. Revolutionizing RIS Networks: LiDAR-Based Data-Driven Approach to Enhance RIS Beamforming. Sensors 2024, 25, 75. [Google Scholar] [CrossRef]
- Ghermezcheshmeh, M.; Zlatanov, N. User Localization via Multiple Intelligent Reflecting Surfaces for LOS-Dominated Channels. IEEE Access 2023, 11, 122446–122457. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Liu, Y.; Wu, L.; Zhang, Z.; Dang, J. Multi-RIS-Assisted Millimeter Wave Single Base Station Localization. In Proceedings of the 2023 4th Information Communication Technologies Conference (ICTC), Nanjing, China, 17–19 May 2023; pp. 115–120. [Google Scholar]
- Bilim, M.; Kabalci, Y. A Framework for Gaussian Q Approximation with BSA and Its Application to RIS-Assisted Systems. AEU–Int. J. Electron. Commun. 2024, 185, 155459. [Google Scholar] [CrossRef]
- Sanguinetti, L.; Bjornson, E.; Hoydis, J. Toward Massive MIMO 2.0: Understanding Spatial Correlation, Interference Suppression, and Pilot Contamination. IEEE Trans. Commun. 2020, 68, 232–257. [Google Scholar] [CrossRef]
- Bilim, M. Performance Analysis of RIS-Assisted Wireless Networks in the Presence of Imperfect Phase Errors. AEU—Int. J. Electron. Commun. 2023, 171, 154923. [Google Scholar] [CrossRef]
- Chen, J.; Wu, K.; Niu, J.; Li, Y. Joint Active and Passive Beamforming in RIS-Assisted Secure ISAC Systems. Sensors 2024, 24, 289. [Google Scholar] [CrossRef] [PubMed]
- Oyerinde, O.O.; Flizikowski, A.; Marciniak, T.; Zelenchuk, D.; Ngatched, T.M.N. Compressive Sensing-Based Channel Estimation for Uplink and Downlink Reconfigurable Intelligent Surface-Aided Millimeter Wave Massive MIMO Systems. Electronics 2024, 13, 2909. [Google Scholar] [CrossRef]
- Nasri, A.; Bafghi, A.H.A.; Nasiri-Kenari, M. Wireless Localization in the Presence of Intelligent Reflecting Surface. IEEE Wirel. Commun. Lett. 2022, 11, 1315–1319. [Google Scholar] [CrossRef]
- Hong, S.; Li, M.; Pan, C.; Di Renzo, M.; Zhang, W.; Hanzo, L. RIS-Position and Orientation Estimation in MIMO-OFDM Systems with Practical Scatterers. arXiv 2023, arXiv:2302.04499. [Google Scholar] [CrossRef]
- He, J.; Wymeersch, H.; Kong, L.; Silven, O.; Juntti, M. Large Intelligent Surface for Positioning in Millimeter Wave MIMO Systems. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020. [Google Scholar]
- Keykhosravi, K.; Keskin, M.F.; Seco-Granados, G.; Wymeersch, H. SISO RIS-Enabled Joint 3D Downlink Localization and Synchronization. In Proceedings of the ICC 2021-IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021. [Google Scholar]
- He, J.; Wymeersch, H.; Sanguanpuak, T.; Silven, O.; Juntti, M. Adaptive Beamforming Design for mmWave RIS-Aided Joint Localization and Communication. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Seoul, Republic of Korea, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Liu, Y.; Liu, E.; Wang, R.; Geng, Y. Reconfigurable Intelligent Surface Aided Wireless Localization. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
- Xu, X.; Zhang, S.; Gao, F.; Wang, J. Sparse Bayesian Learning Based Channel Extrapolation for RIS Assisted MIMO-OFDM. IEEE Trans. Commun. 2022, 70, 5498–5513. [Google Scholar] [CrossRef]
- Daryanavardan, N.; Nosratinia, A. Achievable Rate for RIS-Assisted Sparse Channel with State Training. In Proceedings of the 2024 IEEE International Symposium on Information Theory (ISIT), Athens, Greece, 7–12 July 2024; pp. 2163–2168. [Google Scholar]
- Ghamry, W.K.; Shukry, S. Channel Estimation for RIS-Aided MIMO Systems in MmWave Wireless Communications with a Few Active Elements. Clust. Comput. 2024, 27, 14247–14267. [Google Scholar] [CrossRef]
- Shi, X.; Wang, J.; Song, J. Triple-Structured Compressive Sensing-Based Channel Estimation for RIS-Aided MU-MIMO Systems. IEEE Trans. Wirel. Commun. 2022, 21, 11095–11109. [Google Scholar] [CrossRef]
- Masood, K.F.; Tong, J.; Xi, J.; Yuan, J.; Yu, Y. Inductive Matrix Completion and Root-MUSIC-Based Channel Estimation for Intelligent Reflecting Surface (IRS)-Aided Hybrid MIMO Systems. IEEE Trans. Wirel. Commun. 2023, 22, 7917–7931. [Google Scholar] [CrossRef]
- Su, T.; Zhang, Z.; Chu, J.; Zhao, R.; Huang, Y. Joint DOA and TOA Estimation for Moving MIMO Radar Based on OFDM-ISAC Signals. IEEE Trans. Veh. Technol. 2025, 74, 9430–9444. [Google Scholar] [CrossRef]
- He, J.; Fakhreddine, A.; Wymeersch, H.; Alexandropoulos, G.C. Compressed-Sensing-Based 3D Localization with Distributed Passive Reconfigurable Intelligent Surfaces. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar]
- Nouri, N.; Azizipour, M.J. Compressed Channel Estimation for RIS-Assisted Wireless Systems: An Efficient Sparse Recovery Algorithm. Phys. Commun. 2023, 60, 102153. [Google Scholar] [CrossRef]
- Taha, A.; Alrabeiah, M.; Alkhateeb, A. Enabling Large Intelligent Surfaces with Compressive Sensing and Deep Learning. IEEE Access 2021, 9, 44304–44321. [Google Scholar] [CrossRef]
- Molaei, A.M.; Zakeri, B.; Andargoli, S.M.H.; Abbasi, M.A.B.; Fusco, V.; Yurduseven, O. A Comprehensive Review of Direction-of-Arrival Estimation and Localization Approaches in Mixed-Field Sources Scenario. IEEE Access 2024, 12, 65883–65918. [Google Scholar] [CrossRef]
- Tseng, F.-S.; Chung, H.; Wu, P.-H. Efficient Channel Estimation for Millimeter-Wave RIS-Assisted SIMO-OFDM Systems with Reduced Complexity and Pilot Overhead. IEEE Trans. Veh. Technol. 2024, 73, 14809–14821. [Google Scholar] [CrossRef]
- Wang, H.; Bai, Y.; Ren, J.; Wang, P.; Xu, T.; Zhang, W.; Zhang, G. DOA Estimation Method for Vector Hydrophones Based on Sparse Bayesian Learning. Sensors 2024, 24, 6439. [Google Scholar] [CrossRef]
- Jian, M.; Zhao, Y. A Modified Off-Grid SBL Channel Estimation and Transmission Strategy for RIS-Assisted Wireless Communication Systems. In Proceedings of the 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 15–19 June 2020; pp. 1848–1853. [Google Scholar]
- Zhou, Q.; Jiang, Y.; Zhao, L.; Liu, C. Off-Grid Channel Estimation for Uniform Planar Arrays Using Sparse Bayesian Learning. In Proceedings of the 2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring), Singapore, 24–27 June 2024; pp. 1–5. [Google Scholar]
- Wang, S.; Chen, W.; Ai, B. Off-Grid DOA Estimation on Uniform Plane Array Based on Structured Sparse Bayesian Learning. In Proceedings of the 2023 IEEE/CIC International Conference on Communications in China (ICCC), Dalian, China, 10–12 August 2023; pp. 1–6. [Google Scholar]
- Ma, J.; Zhang, J.; Yang, Z.; Qiu, T. Off-Grid DOA Estimation Using Sparse Bayesian Learning for MIMO Radar under Impulsive Noise. Sensors 2022, 22, 6268. [Google Scholar] [CrossRef]
- Li, W.; Lin, Z.; Guo, Q.; Vucetic, B. Exploiting Structured Sparsity with Low Complexity Sparse Bayesian Learning for RIS-Assisted MIMO mmWave Channel Estimation. IEEE Trans. Veh. Technol. 2024, 73, 6752–6764. [Google Scholar] [CrossRef]
- Wu, X.; Yang, X.; Ma, S.; Zhou, B.; Yang, G. Hybrid Channel Estimation for UPA-Assisted Millimeter-Wave Massive MIMO IoT Systems. IEEE Internet Things J. 2022, 9, 2829–2842. [Google Scholar] [CrossRef]
- Ji, J.; Chang, H.; Wang, C.-X.; Huang, J.; Huang, C. A Beam Domain Channel Estimation Algorithm Based on Sparse Bayesian Learning. In Proceedings of the 2023 IEEE 23rd International Conference on Communication Technology (ICCT), Wuxi, China, 20–22 October 2023; pp. 384–389. [Google Scholar]
- Yang, H.; Zhang, A.; Tian, D.; Gao, H.; Ning, B. Dual-Structure Regularized Sparse Bayesian Learning Channel Estimation for RIS Assisted Wireless Communication. In Proceedings of the 2023 9th International Conference on Computer and Communications (ICCC), Chengdu, China, 8–11 December 2023; pp. 924–929. [Google Scholar]
- Li, K.; He, J.; El-Hajjar, M.; Yang, L.-L. Localization in Reconfigurable Intelligent Surface Aided mmWave Systems: A Multiple Measurement Vector Based Channel Estimation Method. IEEE Trans. Veh. Technol. 2024, 73, 13326–13339. [Google Scholar] [CrossRef]
- Wang, B.; Ge, Y.; He, C.; Wu, Y.; Zhu, Z. Study on Communication Channel Estimation by Improved SOMP Based on Distributed Compressed Sensing. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 121. [Google Scholar] [CrossRef]
- Mylonopoulos, G.; D’Andrea, C.; Buzzi, S. Active Reconfigurable Intelligent Surfaces for User Localization in mmWave MIMO Systems. In Proceedings of the 2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC), Oulu, Finland, 4–6 July 2022; pp. 1–5. [Google Scholar]
- Wei, X.; Shen, D.; Dai, L. Channel Estimation for RIS Assisted Wireless Communications—Part II: An Improved Solution Based on Double-Structured Sparsity. IEEE Commun. Lett. 2021, 25, 1403–1407. [Google Scholar] [CrossRef]
- Eldar, Y.C.; Mishali, M. Robust Recovery of Signals from a Structured Union of Subspaces. IEEE Trans. Inf. Theory 2009, 55, 5302–5316. [Google Scholar] [CrossRef]
- Tropp, J.A.; Gilbert, A.C. Signal Recovery from Random Measurements Via Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef]
- Baraniuk, R.; Davenport, M.; DeVore, R.; Wakin, M. A Simple Proof of the Restricted Isometry Property for Random Matrices. Constr. Approx. 2008, 28, 253–263. [Google Scholar] [CrossRef]
- Nakul, M.; Rajoriya, A.; Budhiraja, R. Variational Learning Algorithms for Channel Estimation in RIS-Assisted mmWave Systems. IEEE Trans. Commun. 2024, 72, 222–238. [Google Scholar] [CrossRef]
- Fu, H.; Dai, F.; Hong, L. Off-Grid Error Calibration for DOA Estimation Based on Sparse Bayesian Learning. IEEE Trans. Veh. Technol. 2023, 72, 16293–16307. [Google Scholar] [CrossRef]
- Tipping, M.E. Sparse Bayesian Learning and the Relevance Vector Machine. J. Mach. Learn. Res. 2001, 1, 211–244. [Google Scholar]
- Tzikas, D.G.; Likas, A.C.; Galatsanos, N.P. The Variational Approximation for Bayesian Inference. IEEE Signal Process. Mag. 2008, 25, 131–146. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, L.; Zhang, C. Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference. IEEE Trans. Signal Process. 2013, 61, 38–43. [Google Scholar] [CrossRef]
- Du, J.; Cao, J.; Jin, L.; Li, S.; Liu, J.; Gao, F. Indoor Vehicle Positioning for MIMO-OFDM WIFI Systems via Rearranged Sparse Bayesian Learning. IEEE Trans. Wirel. Commun. 2024, 23, 7849–7864. [Google Scholar] [CrossRef]
- Sandhu, R.; Khalil, M.; Pettit, C.; Poirel, D.; Sarkar, A. Nonlinear Sparse Bayesian Learning for Physics-Based Models. J. Comput. Phys. 2021, 426, 109728. [Google Scholar] [CrossRef]
- Shahmansoori, A.; Garcia, G.E.; Destino, G.; Seco-Granados, G.; Wymeersch, H. Position and Orientation Estimation Through Millimeter-Wave MIMO in 5G Systems. IEEE Trans. Wirel. Commun. 2018, 17, 1822–1835. [Google Scholar] [CrossRef]
- Talvitie, J.; Koivisto, M.; Levanen, T.; Valkama, M.; Destino, G.; Wymeersch, H. High-Accuracy Joint Position and Orientation Estimation in Sparse 5G mmWave Channel. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–7. [Google Scholar]
- Alexandropoulos, G.C.; Vinieratou, I.; Wymeersch, H. Localization via Multiple Reconfigurable Intelligent Surfaces Equipped with Single Receive RF Chains. IEEE Wirel. Commun. Lett. 2022, 11, 1072–1076. [Google Scholar] [CrossRef]
- Kim, J.M.; Lee, O.K.; Ye, J.C. Compressive MUSIC: Revisiting the Link Between Compressive Sensing and Array Signal Processing. IEEE Trans. Inf. Theory 2012, 58, 278–301. [Google Scholar] [CrossRef]
- Wang, J.; Shan, B.; Duan, S.; Zhao, Y.; Zhong, Y. An Off-Grid Compressive Sensing Algorithm Based on Sparse Bayesian Learning for RFPA Radar. Remote Sens. 2024, 16, 403. [Google Scholar] [CrossRef]
- 3GPP TR 38.901 Version 17.0.0; 5G; Study on Channel Model for Frequencies from 0.5 to 100 GHz. ETSI: Sophia Antipolis, France, 2022. Available online: https://www.etsi.org/deliver/etsi_tr/138900_138999/138901/17.00.00_60/tr_138901v170000p.pdf (accessed on 28 June 2025).
- Chen, P.; Chen, Z.; Zhang, X.; Liu, L. SBL-Based Direction Finding Method with Imperfect Array. Electronics 2018, 7, 426. [Google Scholar] [CrossRef]
- Aguiar, R.A.; Paulino, N.; Pessoa, L.M. A Deep Learning Approach in RIS-Based Indoor Localization. In Proceedings of the 2024 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Antwerp, Belgium, 3–6 June 2024; pp. 523–528. [Google Scholar]
Step | Computational Complexity |
---|---|
Steering vector updates | |
E-step | |
M-step | |
Angle refinement |
Method | Avg. Time (ms) | Avg. Iterations | Time/Iter. (ms) |
---|---|---|---|
SOMP | 10.08 | - | - |
Compressive MUSIC | 303.72 | - | - |
VB-OG-SBL | 16.18 | 27.6 | 0.59 |
EM-OG-SBL with Newton | 26.97 | 26.1 | 1.03 |
EM-OG-SBL with grid search | 99.98 | 10.8 | 9.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutlu, U.; Kabalci, Y. Off-Grid Sparse Bayesian Learning for Channel Estimation and Localization in RIS-Assisted MIMO-OFDM Under NLoS. Sensors 2025, 25, 4140. https://doi.org/10.3390/s25134140
Mutlu U, Kabalci Y. Off-Grid Sparse Bayesian Learning for Channel Estimation and Localization in RIS-Assisted MIMO-OFDM Under NLoS. Sensors. 2025; 25(13):4140. https://doi.org/10.3390/s25134140
Chicago/Turabian StyleMutlu, Ural, and Yasin Kabalci. 2025. "Off-Grid Sparse Bayesian Learning for Channel Estimation and Localization in RIS-Assisted MIMO-OFDM Under NLoS" Sensors 25, no. 13: 4140. https://doi.org/10.3390/s25134140
APA StyleMutlu, U., & Kabalci, Y. (2025). Off-Grid Sparse Bayesian Learning for Channel Estimation and Localization in RIS-Assisted MIMO-OFDM Under NLoS. Sensors, 25(13), 4140. https://doi.org/10.3390/s25134140