Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (144)

Search Parameters:
Keywords = organoid target therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3527 KiB  
Review
Applications of Organoids and Spheroids in Anaplastic and Papillary Thyroid Cancer Research: A Comprehensive Review
by Deepak Gulwani, Neha Singh, Manisha Gupta, Ridhima Goel and Thoudam Debraj Singh
Organoids 2025, 4(3), 18; https://doi.org/10.3390/organoids4030018 - 1 Aug 2025
Viewed by 129
Abstract
Organoid and spheroid technologies have rapidly become pivotal in thyroid cancer research, offering models that are more physiologically relevant than traditional two-dimensional culture. In the study of papillary and anaplastic thyroid carcinomas, two subtypes that differ both histologically and clinically, three-dimensional (3D) models [...] Read more.
Organoid and spheroid technologies have rapidly become pivotal in thyroid cancer research, offering models that are more physiologically relevant than traditional two-dimensional culture. In the study of papillary and anaplastic thyroid carcinomas, two subtypes that differ both histologically and clinically, three-dimensional (3D) models offer unparalleled insights into tumor biology, therapeutic vulnerabilities, and resistance mechanisms. These models maintain essential tumor characteristics such as cellular diversity, spatial structure, and interactions with the microenvironment, making them extremely valuable for disease modeling and drug testing. This review emphasizes recent progress in the development and use of thyroid cancer organoids and spheroids, focusing on their role in replicating disease features, evaluating targeted therapies, and investigating epithelial–mesenchymal transition (EMT), cancer stem cell behavior, and treatment resistance. Patient-derived organoids have shown potential in capturing individualized drug responses, supporting precision oncology strategies for both differentiated and aggressive subtypes. Additionally, new platforms, such as thyroid organoid-on-a-chip systems, provide dynamic, high-fidelity models for functional studies and assessments of endocrine disruption. Despite ongoing challenges, such as standardization, limited inclusion of immune and stromal components, and culture reproducibility, advancements in microfluidics, biomaterials, and machine learning have enhanced the clinical and translational potential of these systems. Organoids and spheroids are expected to become essential in the future of thyroid cancer research, particularly in bridging the gap between laboratory discoveries and patient-focused therapies. Full article
Show Figures

Figure 1

19 pages, 3664 KiB  
Article
Feasibility of Manufacturing and Antitumor Activity of TIL for Advanced Endometrial Cancers
by Yongliang Zhang, Kathleen N. Moore, Amir A. Jazaeri, Judy Fang, Ilabahen Patel, Andrew Yuhas, Patrick Innamarato, Nathan Gilbert, Joseph W. Dean, Behzad Damirchi, Joe Yglesias, Rongsu Qi, Michelle R. Simpson-Abelson, Erwin Cammaart, Sean R. R. Hall and Hequn Yin
Int. J. Mol. Sci. 2025, 26(15), 7151; https://doi.org/10.3390/ijms26157151 - 24 Jul 2025
Viewed by 582
Abstract
Lifileucel, a tumor-infiltrating lymphocyte (TIL) cell therapy approved for advanced melanoma, demonstrates promise for treating other solid tumors, including endometrial cancer (EC). The current study evaluates the feasibility of manufacturing TILs from EC tumors using Iovance’s proprietary 22-day Gen2 manufacturing process. Key parameters, [...] Read more.
Lifileucel, a tumor-infiltrating lymphocyte (TIL) cell therapy approved for advanced melanoma, demonstrates promise for treating other solid tumors, including endometrial cancer (EC). The current study evaluates the feasibility of manufacturing TILs from EC tumors using Iovance’s proprietary 22-day Gen2 manufacturing process. Key parameters, including TIL yield, viability, immune phenotype, T-cell receptor clonality, and cytotoxic activity, were assessed. Of the 11 EC tumor samples processed at research scale, 10 (91%) successfully generated >1 × 109 viable TIL cells, with a median yield of 1.1 × 1010 cells and a median viability of 82.8%. Of the four EC tumor samples processed at full scale, all achieved the pre-specified TVC and viability targets. Putative tumor-reactive T-cell clones were maintained throughout the manufacturing process. Functional reactivity was evidenced by the upregulation of 4-1BB in CD8+ T cells, OX40 in CD4+ T cells, and increased production of IFN-γ and TNF-α upon autologous tumor stimulation. Furthermore, antitumor activity was confirmed using an in vitro autologous tumor organoid killing assay. These findings demonstrate the feasibility of ex vivo TIL expansion from EC tumors. This study provides a rationale for the initiation of the phase II clinical trial IOV-END-201 (NCT06481592) to evaluate lifileucel in patients with advanced EC. Full article
(This article belongs to the Special Issue Endometrial Cancer: From Basic Science to Novel Therapeutics)
Show Figures

Figure 1

27 pages, 1804 KiB  
Review
The 3D Language of Cancer: Communication via Extracellular Vesicles from Tumor Spheroids and Organoids
by Simona Campora and Alessandra Lo Cicero
Int. J. Mol. Sci. 2025, 26(15), 7104; https://doi.org/10.3390/ijms26157104 - 23 Jul 2025
Viewed by 389
Abstract
Extracellular vesicles (EVs) have emerged as key mediators of intercellular communication, gaining recognition as tumor biomarkers and promising therapeutic targets. As the study of EVs advances, it has become increasingly clear that the cellular context in which they are produced significantly influences their [...] Read more.
Extracellular vesicles (EVs) have emerged as key mediators of intercellular communication, gaining recognition as tumor biomarkers and promising therapeutic targets. As the study of EVs advances, it has become increasingly clear that the cellular context in which they are produced significantly influences their composition and function. Traditional two-dimensional in vitro models are being progressively replaced by more advanced three-dimensional systems, such as tumor spheroids and organoids. These 3D models are particularly valuable in cancer research, providing a more accurate representation of the complex cellular and molecular heterogeneity that characterizes tumors, better mimicking the in vivo microenvironment compared to standard monolayer cultures. This review explores the role of EVs derived from tumor spheroids and organoids in key oncogenic processes, including tumor growth, metastasis, and interactions within the tumor microenvironment. We highlight how EVs contribute to the spread of cancer cells, affecting surrounding tissues, and promote immune evasion, which poses significant challenges in cancer therapy. Full article
(This article belongs to the Special Issue Recent Advances in 3D Tumor Models for Cancer Research)
Show Figures

Figure 1

15 pages, 3945 KiB  
Article
Modeling Aberrant Angiogenesis in Arteriovenous Malformations Using Endothelial Cells and Organoids for Pharmacological Treatment
by Eun Jung Oh, Hyun Mi Kim, Suin Kwak and Ho Yun Chung
Cells 2025, 14(14), 1081; https://doi.org/10.3390/cells14141081 - 15 Jul 2025
Viewed by 385
Abstract
Arteriovenous malformations (AVMs) are congenital vascular anomalies defined by abnormal direct connections between arteries and veins due to their complex structure or endovascular approaches. Pharmacological strategies targeting the underlying molecular mechanisms are thus gaining increasing attention in an effort to determine the mechanism [...] Read more.
Arteriovenous malformations (AVMs) are congenital vascular anomalies defined by abnormal direct connections between arteries and veins due to their complex structure or endovascular approaches. Pharmacological strategies targeting the underlying molecular mechanisms are thus gaining increasing attention in an effort to determine the mechanism involved in AVM regulation. In this study, we examined 30 human tissue samples, comprising 10 vascular samples, 10 human fibroblasts derived from AVM tissue, and 10 vascular samples derived from healthy individuals. The pharmacological agents thalidomide, U0126, and rapamycin were applied to the isolated endothelial cells (ECs). The pharmacological treatments reduced the proliferation of AVM ECs and downregulated miR-135b-5p, a biomarker associated with AVMs. The expression levels of angiogenesis-related genes, including VEGF, ANG2, FSTL1, and MARCKS, decreased; in comparison, CSPG4, a gene related to capillary networks, was upregulated. Following analysis of these findings, skin samples from 10 AVM patients were reprogrammed into induced pluripotent stem cells (iPSCs) to generate AVM blood vessel organoids. Treatment of these AVM blood vessel organoids with thalidomide, U0126, and rapamycin resulted in a reduction in the expression of the EC markers CD31 and α-SMA. The establishment of AVM blood vessel organoids offers a physiologically relevant in vitro model for disease characterization and drug screening. The authors of future studies should aim to refine this model using advanced techniques, such as microfluidic systems, to more efficiently replicate AVMs’ pathology and support the development of personalized therapies. Full article
Show Figures

Figure 1

15 pages, 4034 KiB  
Article
Establishment of Human Lung Cancer Organoids Using Small Biopsy and Surgical Tissues
by Mina Hwang, Junsu Choe, Yong Jae Shin, Bo-Gyeong Seo, Kyung-Mi Park, Sun Hye Shin, Byung Woo Jhun, Hongseok Yoo, Byeong-Ho Jeong, Kyeongman Jeon, Kyungjong Lee, Junghee Lee, Yeong Jeong Jeon, Jong Ho Cho, Seong Yong Park, Hong Kwan Kim and Sang-Won Um
Cancers 2025, 17(14), 2291; https://doi.org/10.3390/cancers17142291 - 10 Jul 2025
Viewed by 632
Abstract
Background/Objectives: Lung cancer is a highly diverse disease, and reliable preclinical models that accurately reflect tumor characteristics are essential for studying lung cancer biology and testing new therapies. This study aimed to establish patient-derived tumor organoids (PDTOs) using small biopsy samples and surgical [...] Read more.
Background/Objectives: Lung cancer is a highly diverse disease, and reliable preclinical models that accurately reflect tumor characteristics are essential for studying lung cancer biology and testing new therapies. This study aimed to establish patient-derived tumor organoids (PDTOs) using small biopsy samples and surgical specimens to create a model system that preserves the genetic and histological features of the original tumors. Methods: PDTOs were generated from 163 lung cancer specimens, including 109 samples obtained using endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) or bronchoscopy, 52 surgical specimens, and 2 pleural fluid samples. The organoid establishment rate beyond passage three was assessed, and histological subtypes and genetic profiles were analyzed using immunohistochemical staining and targeted exome sequencing. Results: The overall PDTO establishment rate was 34.4% (56/163), and 44.6% (25/56) of these organoids retained the histological and genetic features of the parental tumors. Genetic analysis identified key mutations, including KRAS G12C, EGFR L858R, MET exon 14 skipping mutation, and ROS1 fusion. PDTOs successfully formed tumors in mice while maintaining the genetic characteristics of the original tumors. Co-culture of PDTOs with cancer-associated fibroblasts (CAFs) resulted in increased resistance to paclitaxel. In the co-culture model of PDTOs with immune cells, dose-dependent growth inhibition of PDTOs was observed in response to immune checkpoint inhibitors. Conclusions: PDTOs established from small biopsy and surgical specimens serve as a valuable model for studying lung cancer biology, tumor microenvironment interactions, and drug response. This model has the potential to improve personalized treatment strategies. Full article
(This article belongs to the Special Issue New Perspectives in the Treatment of Thoracic Cancers)
Show Figures

Figure 1

17 pages, 1128 KiB  
Systematic Review
Biopolymers for Liver Tissue Engineering: A Systematic Review
by John Ong, Jacky Junzhe Zhao, Carla Swift and Athina E. Markaki
Gels 2025, 11(7), 525; https://doi.org/10.3390/gels11070525 - 7 Jul 2025
Viewed by 458
Abstract
Stem cell-derived liver cells, organoids, and lab-grown liver tissue are promising regenerative therapies for liver disease. However, current culture conditions are sub-optimal, producing end-target cells and tissue phenotypes that are immature or unstable when compared to primary liver cells and tissue. Biopolymers used [...] Read more.
Stem cell-derived liver cells, organoids, and lab-grown liver tissue are promising regenerative therapies for liver disease. However, current culture conditions are sub-optimal, producing end-target cells and tissue phenotypes that are immature or unstable when compared to primary liver cells and tissue. Biopolymers used in culture substrates and scaffolds for tissue engineering significantly impact the quality of the end-target cells and tissue, influencing the efficacy of regenerative treatments. In addition, the biochemical properties of some biopolymers may preclude the translation of downstream bioengineered products into clinical practice. Therefore, this systematic review aims to evaluate the recent advances in biopolymers within liver tissue engineering, providing an overview of the current usage in the field and highlighting novel substrates that have strong potential to be translated into clinical therapy. Full article
Show Figures

Graphical abstract

19 pages, 937 KiB  
Review
Tissue Repair Mechanisms of Dental Pulp Stem Cells: A Comprehensive Review from Cutaneous Regeneration to Mucosal Healing
by Jihui He, Jiao Fu, Ruoxuan Wang, Xiaojing Liu, Juming Yao, Wenbo Xing, Xinxin Wang and Yan He
Curr. Issues Mol. Biol. 2025, 47(7), 509; https://doi.org/10.3390/cimb47070509 - 2 Jul 2025
Viewed by 674
Abstract
Repairing and regenerating tissue barriers is a key challenge in regenerative medicine. Stem cells play a crucial role in restoring the structural and functional integrity of key epithelial barrier surfaces, including the skin and mucosa. This review analyzes the role of dental pulp [...] Read more.
Repairing and regenerating tissue barriers is a key challenge in regenerative medicine. Stem cells play a crucial role in restoring the structural and functional integrity of key epithelial barrier surfaces, including the skin and mucosa. This review analyzes the role of dental pulp stem cells (DPSCs) and their derivatives, including extracellular vesicles, conditioned medium, and intracellular factors, in accelerating skin wound healing. The key mechanisms include: (1) DPSCs regulating inflammatory microenvironments by promoting anti-inflammatory M2 macrophage polarization; (2) DPSCs activating vascular endothelial growth factor (VEGF) to drive angiogenesis; (3) DPSCs optimizing extracellular matrix (ECM) spatial structure through matrix metalloproteinase/tissue inhibitor of metalloproteinase (MMP/TIMP) balance; and (4) DPSCs enhancing transforming growth factor-β (TGF-β) secretion to accelerate granulation tissue formation. Collectively, these processes promote wound healing. In addition, we explored potential factors that accelerate wound healing in DPSCs, such as oxidative stress, mechanical stimulation, hypertension, electrical stimulation, and organoid modeling. In addition to demonstrating the great potential of DPSCs for skin repair, this review explores their translational prospects in mucosal regenerative medicine. It covers the oral cavity, esophagus, colon, and fallopian tube. Some studies have found that combining DPSCs and their derivatives with drugs can significantly enhance their biological effects. By integrating insights from skin and mucosal models, this review offers novel ideas and strategies for treating chronic wounds, inflammatory bowel disease, and mucosal injuries. It also lays the foundation for connecting basic research results with clinical practice. This represents a significant step forward in tackling these complex medical challenges and lays a solid scientific foundation for developing more targeted and efficient regenerative therapies. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

21 pages, 3190 KiB  
Article
Pyrvinium Pamoate and BCL-XL Inhibitors Act Synergistically to Kill Patient-Derived Colorectal Adenoma Organoids
by Maree C. Faux, Chenkai Ma, Serena R. Kane, Andre Samson, Yumiko Hirokawa, Ilka Priebe, Leah Cosgrove, Rajvinder Singh, Michael Christie, Gregor Brown, Kim Y. C. Fung and Antony W. Burgess
Organoids 2025, 4(3), 15; https://doi.org/10.3390/organoids4030015 - 2 Jul 2025
Viewed by 349
Abstract
Current systemic therapies for advanced colorectal cancer (CRC) have limited efficacy, so more effective strategies for the treatment and prevention of CRC are needed. The majority of colorectal cancers are initiated by mutations in Wnt signalling pathway genes, including mutations in the APC [...] Read more.
Current systemic therapies for advanced colorectal cancer (CRC) have limited efficacy, so more effective strategies for the treatment and prevention of CRC are needed. The majority of colorectal cancers are initiated by mutations in Wnt signalling pathway genes, including mutations in the APC gene, which result in a truncated APC protein and lead to excess signalling from β-catenin and the formation of pre-cancerous adenomas. The aim of this study was to determine if targeting the Wnt pathway in combination with pro-apoptotic mimetics altered the proliferative capacity or viability of human colorectal adenoma cells. Patient-derived colorectal adenoma organoid cultures were established from colon adenoma tissue collected by colonoscopy and recapitulated the histopathology of primary colorectal adenoma tissue. The growth of colorectal adenoma organoids is inhibited by the Wnt-signalling antagonist pyrvinium pamoate (PP) and a pro-apoptotic inhibitor of BCL-XL but not BCL-2 (venetoclax) or MCL-1 inhibitors. At low concentrations, the PP and the BCL-XL inhibitor combination demonstrated potent synergy and induced apoptosis in APC-defective patient-derived adenoma organoids, even in the presence of oncogenic KRAS or BRAF mutations, providing a new strategy for colon cancer prevention. Full article
Show Figures

Figure 1

37 pages, 1459 KiB  
Review
Current Landscape of Preclinical Models for Pediatric Gliomas: Clinical Implications and Future Directions
by Syed M. Faisal, Monika Yadav, Garrett R. Gibson, Adora T. Klinestiver, Ryan M. Sorenson, Evan Cantor, Maria Ghishan, John R. Prensner, Andrea T. Franson, Kevin F. Ginn, Carl Koschmann and Viveka Nand Yadav
Cancers 2025, 17(13), 2221; https://doi.org/10.3390/cancers17132221 - 2 Jul 2025
Viewed by 1463
Abstract
Pediatric high-grade gliomas (pHGGs), particularly diffuse midline gliomas (DMGs), are among the most lethal brain tumors due to poor survival and resistance to therapies. DMGs possess a distinct genetic profile, primarily driven by hallmark mutations such as H3K27M, ACVR1, and PDGFRA mutations/amplifications and [...] Read more.
Pediatric high-grade gliomas (pHGGs), particularly diffuse midline gliomas (DMGs), are among the most lethal brain tumors due to poor survival and resistance to therapies. DMGs possess a distinct genetic profile, primarily driven by hallmark mutations such as H3K27M, ACVR1, and PDGFRA mutations/amplifications and TP53 inactivation, all of which contribute to tumor biology and therapeutic resistance. Developing physiologically relevant preclinical models that replicate both tumor biology and the tumor microenvironment (TME) is critical for advancing effective treatments. This review highlights recent progress in in vitro, ex vivo, and in vivo models, including patient-derived brain organoids, genetically engineered mouse models (GEMMs), and region-specific midline organoids incorporating SHH, BMP, and FGF2/8/19 signaling to model pontine gliomas. Key genetic alterations can now be introduced using lipofectamine-mediated transfection, PiggyBac plasmid systems, and CRISPR-Cas9, allowing the precise study of tumor initiation, progression, and therapy resistance. These models enable the investigation of TME interactions, including immune responses, neuronal infiltration, and therapeutic vulnerabilities. Future advancements involve developing immune-competent organoids, integrating vascularized networks, and applying multi-omics platforms like single-cell RNA sequencing and spatial transcriptomics to dissect tumor heterogeneity and lineage-specific vulnerabilities. These innovative approaches aim to enhance drug screening, identify new therapeutic targets, and accelerate personalized treatments for pediatric gliomas. Full article
Show Figures

Figure 1

47 pages, 1732 KiB  
Review
CRISPR/Cas9 and iPSC-Based Therapeutic Approaches in Alzheimer’s Disease
by Ivana Raffaele, Giovanni Luca Cipriano, Ivan Anchesi, Salvatore Oddo and Serena Silvestro
Antioxidants 2025, 14(7), 781; https://doi.org/10.3390/antiox14070781 - 25 Jun 2025
Viewed by 1797
Abstract
Alzheimer’s disease (AD), the leading cause of dementia, remains poorly understood despite decades of intensive research, which continues to hinder the development of effective treatments. As a complex multifactorial disorder, AD lacks a cure to halt the progressive neurodegeneration, and the precise mechanisms [...] Read more.
Alzheimer’s disease (AD), the leading cause of dementia, remains poorly understood despite decades of intensive research, which continues to hinder the development of effective treatments. As a complex multifactorial disorder, AD lacks a cure to halt the progressive neurodegeneration, and the precise mechanisms underlying its onset and progression remain elusive, limiting therapeutic options. Due to the challenges of studying neuronal cells in vivo, technologies such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) and human-induced pluripotent stem cells (hiPSCs) are key for identifying therapeutic targets, although they face technical and ethical hurdles in their early stages. CRISPR/Cas9 and hiPSCs are promising for disease modeling and therapy, but off-target effects and the complexity of gene editing in the brain limit their use. CRISPR technology enables specific genetic modifications in key AD-related genes, such as APP, PSEN1, PSEN2, and APOE, providing valuable insights into disease mechanisms. iPSC-derived neurons, astrocytes, microglia, and 3D organoids can recapitulate key aspects of human AD pathology, but they do not fully replicate the complexity of the human brain, limiting clinical applicability. These technologies advance studies of amyloid processing, tau aggregation, neuroinflammation, and oxidative stress, yet translating them into clinical therapies remains challenging. Despite the promise of CRISPR/Cas9 and iPSCs for precision medicine, gaps in knowledge about their long-term safety and efficacy must be addressed before clinical implementation. Full article
Show Figures

Figure 1

47 pages, 706 KiB  
Review
Overcoming Barriers in Cancer Biology Research: Current Limitations and Solutions
by Giovanni Colonna
Cancers 2025, 17(13), 2102; https://doi.org/10.3390/cancers17132102 - 23 Jun 2025
Viewed by 676
Abstract
Cancer research faces significant biological, technological, and systemic limitations that hinder the development of effective therapies and improved patient outcomes. Traditional preclinical models, such as 2D and 3D cell cultures, murine xenografts, and organoids, often fail to reflect the complexity of human tumor [...] Read more.
Cancer research faces significant biological, technological, and systemic limitations that hinder the development of effective therapies and improved patient outcomes. Traditional preclinical models, such as 2D and 3D cell cultures, murine xenografts, and organoids, often fail to reflect the complexity of human tumor architecture, microenvironment, and immune interactions. This discrepancy results in promising laboratory findings not always translating effectively into clinical success. A core obstacle is tumor heterogeneity, characterized by diverse genetic, epigenetic, and phenotypic variations within tumors, which complicates treatment strategies and contributes to drug resistance. Hereditary malignancies and cancer stem cells contribute strongly to generating this complex panorama. Current early detection technologies lack sufficient sensitivity and specificity, impeding timely diagnosis. The tumor microenvironment, with its intricate interactions and resistance-promoting factors, further promotes treatment failure. Additionally, we only partially understand the biological processes driving metastasis, limiting therapeutic advances. Overcoming these barriers involves not only the use of new methodological approaches and advanced technologies, but also requires a cultural effort by researchers. Many cancer studies are still essentially observational. While acknowledging their significance, it is crucial to recognize the shift from deterministic to indeterministic paradigms in biomedicine over the past two to three decades, a transition facilitated by systems biology. It has opened the doors of deep metabolism where the functional processes that control and regulate cancer progression operate. Beyond biological barriers, systemic challenges include limited funding, regulatory complexities, and disparities in cancer care access across different populations. These socio-economic factors exacerbate research stagnation and hinder the translation of scientific innovations into clinical practice. Overcoming these obstacles requires multidisciplinary collaborations, advanced modeling techniques that better emulate human cancer, and innovative technologies for early detection and targeted therapy. Strategic policy initiatives must address systemic barriers, promoting health equity and sustainable research funding. While the complexity of cancer biology and systemic challenges are formidable, ongoing scientific progress and collaborative efforts inspire hope for breakthroughs that can transform cancer diagnosis, treatment, and survival outcomes worldwide. Full article
(This article belongs to the Section Methods and Technologies Development)
17 pages, 2956 KiB  
Article
Comparative Efficacy of Ribosome-Inactivating Protein-Containing Immunotoxins in 2D and 3D Models of Sarcoma
by Giulia Calafato, Massimo Bortolotti, Letizia Polito and Andrea Bolognesi
Toxins 2025, 17(6), 308; https://doi.org/10.3390/toxins17060308 - 18 Jun 2025
Viewed by 547
Abstract
Sarcomas are very complex and clinically challenging mesenchymal tumors. Although the standard therapeutic approach has improved the 5-year survival rate, many patients experience local relapses and/or distant metastases. To improve patient outcome, new strategies need to be investigated. Immunotoxins (ITs) based on rRNA [...] Read more.
Sarcomas are very complex and clinically challenging mesenchymal tumors. Although the standard therapeutic approach has improved the 5-year survival rate, many patients experience local relapses and/or distant metastases. To improve patient outcome, new strategies need to be investigated. Immunotoxins (ITs) based on rRNA N-glycosylases (also named ribosome-inactivating proteins, RIPs) are promising tools for cancer therapy because, by combining rRNA-glycosylase’s high cytotoxicity with carrier selectivity, they can specifically eliminate target neoplastic cells. In the last few years, 3D models have been extensively used in cancer research, particularly for target-specific drug screening. This study aimed to evaluate the possibility of utilizing ribosome-inactivating protein (RIP)-containing ITs to selectively target TfR1-, EGFR1- and Her2-expressing sarcoma adherent cells (ACs), spheroids (SSs) and organoids (ORs). To compare Its’ efficacy and ability to induce apoptosis, we performed dose–response viability and caspase 3/7 activation assays on rhabdomyosarcoma and osteosarcoma ACs, SSs and ORs treated with Tf-IT, αEGFR1-IT and αHer2-IT. Our results indicate that, compared to the corresponding unconjugated RIPs, all ITs showed increased cytotoxicity in sarcoma ACs. Despite the increased complexity characterizing 3D models, the higher IC50 differences between ITs and unconjugated RIPs were obtained in ORs, which appeared more resistant to the nonspecific killing of the RIPs than either the ACs or SSs, thus augmenting the therapeutic window between unconjugated and conjugated RIPs. IT induced a more delayed apoptosis in 3D compared to 2D models. Our results provide essential outcomes for the potential use of these RIP-based ITs as a therapeutic strategy to treat sarcoma. Full article
(This article belongs to the Special Issue Plant Toxin Emergency)
Show Figures

Figure 1

11 pages, 2928 KiB  
Communication
Resistance to MAPK Pathway Inhibition in BRAF-V600E Mutant Colorectal Cancer Can Be Overcome with Insulin Receptor/Insulin-like Growth Factor-1 Receptor Inhibitors
by Layla El Bouazzaoui, Daniëlle A. E. Raats, André Verheem, Inne H. M. Borel Rinkes, Hugo J. G. Snippert, Madelon M. Maurice and Onno Kranenburg
Organoids 2025, 4(2), 14; https://doi.org/10.3390/organoids4020014 - 12 Jun 2025
Viewed by 374
Abstract
The current treatment for refractory BRAF-V600E mutant metastatic colorectal cancer (mCRC) involves combined inhibition of BRAF and the epidermal growth factor receptor (EGFR). However, tumour responses are often short-lived due to a rebound in mitogen-activated protein kinase (MAPK) activity. In this study, [...] Read more.
The current treatment for refractory BRAF-V600E mutant metastatic colorectal cancer (mCRC) involves combined inhibition of BRAF and the epidermal growth factor receptor (EGFR). However, tumour responses are often short-lived due to a rebound in mitogen-activated protein kinase (MAPK) activity. In this study, we combined short-term cell viability assays with long-term regrowth assays following drug removal over a period of three weeks. This allowed assessment of regrowth after therapy discontinuation. We tested the effect of combined BRAF inhibition (encorafenib) and EGFR inhibition (afatinib) on BRAF-V600E mutant CRC patient-derived organoids (PDOs). Combined EGFR/BRAF inhibition initially caused a major reduction in PDO growth capacity in BRAF-V600E mutant PDOs. This was followed by rapid regrowth after drug removal, mirroring clinical outcomes. EGFR inhibition in BRAF-V600E mutant PDOs led to activation of the insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R). The IGF1R/IR inhibitor linsitinib prevented the rebound in MAPK activity following removal of afatinib and encorafenib, prevented regrowth of CRC PDOs, and improved the anti-tumour response in an in vivo model. PDO regrowth assays allow the identification of pathways driving tumour recurrence. IR/IGF1R-inhibition prevents regrowth following golden standard MAPK pathway-targeted therapy and provides a strategy to improve the treatment of BRAF-V600E mutant CRC Full article
Show Figures

Figure 1

18 pages, 1010 KiB  
Review
Molecular Mechanisms of Lymph Node Metastasis in Gallbladder Cancer: Insights into the Tumor Microenvironment
by Qingyu Tang, Yichen Guan, Yubo Ma, Qi Li and Zhimin Geng
Biomedicines 2025, 13(6), 1372; https://doi.org/10.3390/biomedicines13061372 - 4 Jun 2025
Viewed by 949
Abstract
Gallbladder cancer (GBC) is a highly aggressive malignancy with a propensity for lymph node metastasis (LNM), which significantly worsens prognosis. This review explores the molecular mechanisms underlying LNM in GBC, focusing on the roles of vascular endothelial growth factors (VEGFs), chemokines, cancer-associated fibroblasts [...] Read more.
Gallbladder cancer (GBC) is a highly aggressive malignancy with a propensity for lymph node metastasis (LNM), which significantly worsens prognosis. This review explores the molecular mechanisms underlying LNM in GBC, focusing on the roles of vascular endothelial growth factors (VEGFs), chemokines, cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), hypoxia-inducible factors (HIFs), and non-coding RNAs (ncRNAs) in shaping the tumor microenvironment (TME). Unique features of GBC, such as its bile-rich microenvironment and hypoxia-driven lymphangiogenesis, are highlighted. We discuss how these factors promote lymphangiogenesis, immune evasion, and extracellular matrix (ECM) remodeling, collectively facilitating LNM. Potential therapeutic targets, including VEGF-C/D pathways, matrix metalloproteinase (MMP) inhibitors, and immune-modulating therapies, are also reviewed. Future research integrating single-cell omics and patient-derived organoid models is essential for advancing precision medicine in GBC. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

20 pages, 4805 KiB  
Article
A Novel Primary Cell Line Model of Localized Prostate Cancer and Radioresistance—A Role for Nicotinamide N-Methyltransferase
by Jessica A. Wright, Stephanie D. White, Gavin Frame, Ana Bosiljkov, Shahbaz Khan, Roni Haas, Qian Yang, Minzhi Sheng, Xiaoyong Huang, Geoff S. Higgins, Ian Mills, Michelle R. Downes, Danny Vesprini, Hans T. Chung, Robert A. Screaton, Hon S. Leong, Paul C. Boutros, Thomas Kislinger and Stanley K. Liu
Cells 2025, 14(11), 819; https://doi.org/10.3390/cells14110819 - 31 May 2025
Cited by 1 | Viewed by 1125
Abstract
Prostate cancer cell lines are particularly clinically homogenous, mostly representing metastatic states rather than localized disease. While there has been significant work in the development of additional models, few have been created without oncogenic transformation. We derived a primary prostate cancer cell line [...] Read more.
Prostate cancer cell lines are particularly clinically homogenous, mostly representing metastatic states rather than localized disease. While there has been significant work in the development of additional models, few have been created without oncogenic transformation. We derived a primary prostate cancer cell line from a patient with localized Gleason 7 prostate cancer—designated CaB34—which spontaneously immortalized. We leveraged CaB34 to generate a paired radioresistant subline, CaB34-CF, using a clinically relevant fractionated radiotherapy schedule. These two paired cell lines were investigated extensively to determine their molecular characteristics and therapy responses. Both CaB34 and CaB34-CF express prostate-specific markers, including KRT18, NKX3.1, and AMACR. Multi-omic analyses using RNAseq and shotgun proteomics identified NNMT as the most significantly dysregulated component in CaB34-CF. A bioinformatic analysis determined that NNMT was more abundant within prostate tumors compared to benign prostate, suggesting a role in tumor progression. Knockdown studies of NNMT demonstrated significant radiosensitization of CaB34-CF cells, which was largely a result of increased radiation-induced cellular senescence. Growth as 3D organoids was significantly higher in the CaB34-CF line, and demonstrated a less structured pattern of expression of cytokeratin markers. Radiosensitization with NNMT siRNA was recapitulated in a 3D organoid clonogenic assay in CaB34-CF cells. Our research provides a paired primary model of treatment-naïve and radioresistant disease to address mechanisms of therapy resistance, while expanding the repertoire of localized prostate cancer cell lines for the research community. In addition, our findings present NNMT as a potential therapeutic target for sensitization of radioresistant disease. Full article
(This article belongs to the Special Issue Pathogenesis and Novel Therapies in Epithelial Cancers)
Show Figures

Figure 1

Back to TopTop