Overcoming Barriers in Cancer Biology Research: Current Limitations and Solutions
Simple Summary
Abstract
1. Introduction
2. Genetically Engineered Models
3. Tumor Heterogeneity
4. Effectiveness of Cancer Therapies
5. Early Cancer Detection
6. Emerging Technologies
7. Tumor Microenvironment
8. Treatments Selectively Targeting Cancer Cells
9. Drug Resistance
10. Metastasis and Molecular Mechanisms
11. The Transition from Determinism to Indeterminism in Biomedicine
12. The Importance of Deep Molecular Mechanisms in the Study of Cancer
13. Advanced Approaches to Study Cancer Progression
13.1. Cancer Genomics
13.2. Transcriptomics
13.3. Proteomics
- -
- Mass spectrometry (MS) [197]: Allows the identification and quantification of proteins present in a sample. Comparative proteomics of tumor and normal tissues identifies proteins with altered expression or post-translational modification in cancer. It is a fundamental approach to study the actual quantity and functional state of the molecules that perform most cellular processes. It also includes an analysis of post-translational modifications (such as phosphorylation), which are crucial for regulating protein activity.
- -
- Protein arrays [198]: Similar to DNA microarrays, allow analysis of the expression or activity of many proteins at once.
13.4. Epigenomics
- -
- Bisulphite DNA sequencing (BS-Seq) and derivatives [199]: Studies DNA methylation patterns, an epigenetic modification that can alter gene expression without changing the DNA sequence. Cancer profoundly alters methylation patterns.
- -
- CHiP sequencing (CHiP-Seq) [200]: Identifies protein binding sites on DNA, such as transcription factors or histone modifications. Alterations in chromatin structure and protein binding to DNA are common in cancer and affect gene expression.
- -
- ATAC-Seq [201]: Measures chromatin accessibility, showing regions of the genome that are actively transcribed or regulated.
13.5. Single-Cell Technologies
- -
- Single-Cell DNA/RNA Sequencing [202,203]: Allows analysis of the genomic or transcriptomic profile of single cells within a heterogeneous population. This is crucial in cancer in understanding tumor heterogeneity, identifying subpopulations of cells with unique characteristics, and studying their evolution and interaction.
13.6. Advanced Imaging
- -
- Super-resolution microscopy and live imaging [204]: Allows the visualization of molecules and their interactions within cells in unprecedented detail and the study of dynamic processes in real time.
- -
- Mass Spectrometry Imaging [205]: Allows the determination of the spatial distribution of molecules (proteins, lipids, and metabolites) within a tissue sample.
13.7. Bioinformatics and Computational Biology
13.8. Mathematical Modeling and Stochastic Control
13.9. Artificial Intelligence and Big Data
14. Hereditary Malignancies
14.1. Hereditary Cancers and Screening
14.2. Genetic or Molecular Mechanisms That Could Transform a Benign Neoplasm into a Malignant One
14.3. Tumor Heterogeneity
- -
- Point mutations: Changes in a single DNA base.
- -
- Copy number changes (CNVs): Increases or decreases in the copy number of DNA segments or entire chromosomes.
- -
- Chromosomal rearrangements: Translocations, inversions, or deletions of large portions of chromosomes.
- -
- Clonal evolution: A tumor is not a homogeneous mass but comprises several populations of cells, called subclones, which a common progenitor cell that is produced. The cells become more ruthless and resistant to therapies as they accumulate different genetic mutations during tumor growth. This process of “clonal evolution” can occur both in the primary tumor and in metastases.
- -
- Acquisition of resistance: Genetic heterogeneity is a key mechanism for developing drug resistance. If a therapy targets a specific genetic alteration present in only a part of the cancer cells, subclones that do not possess that mutation or that have developed alternative mutations can survive and proliferate, leading to disease recurrence.
- -
- Differences between primary tumor and metastases: Metastases can have a genetic profile that differs from the primary tumor from which they originated. This is because of the selective pressure of the metastatic environment and the additional mutations accumulated during dissemination.
14.4. Epigenetic Heterogeneity
- (a)
- Main epigenetic mechanisms.
- -
- DNA methylation: Adding methyl groups to specific regions of DNA (often in the promoter regions of genes) can repress their expression. In tumors, hypermethylation of tumor suppressor genes or hypomethylation of oncogenes may occur.
- -
- Histone modifications: Histones are proteins that DNA wraps around. Their modification (e.g., acetylation, phosphorylation, and methylation) can alter the structure of chromatin and the accessibility of DNA to transcription factors, affecting gene expression.
- -
- Non-coding RNAs: microRNAs (miRNAs) and other non-coding RNAs can regulate gene expression at the post-transcriptional level, and their alterations are often involved in tumor progression.
- -
- Tumor plasticity: Epigenetic alterations confer considerable phenotypic plasticity upon cancer cells, enabling adaptation to diverse microenvironments irrespective of genetic mutation. This plasticity can contribute to drug resistance and the ability to form metastases.
- (b)
- Reversibility.
- -
- Specific therapeutic adaptations for tumor heterogeneity: Tumor heterogeneity requires personalized and dynamic therapeutic approaches. Table 5 illustrates the spectrum of these adaptations.
14.5. Advanced Diagnostics and Molecular Profiling
- -
- Liquid biopsy: Allows the monitoring of the genetic and epigenetic alterations of the tumor in real time through the analysis of circulating tumor DNA (ctDNA) in the blood. This makes it possible to detect emerging new resistant clones or “targetable” mutations with no repeated invasive biopsies [254,255].
- -
- Next-Generation Sequencing (NGS): Allows the simultaneous sequencing of many genes or the entire genome/exome of the tumor, providing a detailed molecular profile of genetic alterations and tumor mutational burden (TMB). This can steer towards targeted therapies or immunotherapy [254].
- -
- Multi-regional biopsies: In some cases, especially for solid tumors, biopsies from different areas of the tumor may be necessary to capture the full range of intra-tumor heterogeneity [256].
14.6. Targeted Therapies
- -
- Molecularly targeted drugs: These drugs inhibit specific proteins or signaling pathways that are altered in the tumor. Identifying “actionable” mutations (i.e., for which a specific drug exists) is crucial.
- -
- Therapeutic combinations: To counteract emerging resistance because of clonal heterogeneity, combination therapies that target multiple targets or target several cells subclones are being used. This approach reduces the likelihood that a single resistant clone can emerge and dominate.
- -
- Cancer-agnostic therapies: Several authorities have approved some drugs for specific mutations regardless of tumor location. For example, pembrolizumab treats tumors with high microsatellite instability (MSI-H) or mismatch repair deficiency (dMMR) [257], and larotrectinib treats malignancies with NTRK fusions [258].
14.7. Immunotherapy
- -
- Immune checkpoint inhibitors: These drugs “unlock” the patient’s immune system, allowing it to recognize and attack cancer cells. The effectiveness of immunotherapy often depends on TMB (a higher TMB allows the immune system to recognize more neoantigens) and specific genetic alterations that affect the immune response.
14.8. Epipharmaceuticals
- -
- Histone deacetylase inhibitors (HDACi): These drugs act on histone modifications, altering gene expression and promoting cancer cell differentiation or death [268].
- -
- DNA methyltransferase inhibitors (DNMTi): These drugs can “reactivate” tumor suppressor genes silenced by DNA methylation [269]
- -
- Combinations with standard therapies: Clinicians combine epigenetic drugs with traditional chemotherapy or targeted therapies in studies to overcome resistance and improve response [270].
14.9. Dynamic Monitoring and Adaptation of Treatment
- -
- Molecular Tumor Board (MTB): Establishing multidisciplinary teams composed of oncologists, pathologists, geneticists, and bioinformaticians is essential for interpreting complex molecular profiling data and guiding therapeutic decisions, considering the heterogeneity and evolution of the tumor [273].
- -
- Track and trace approaches: The idea is to monitor the tumor’s evolution (e.g., via serial liquid biopsy) and adapt therapy based on emerging new clones or resistance mechanisms [274].
15. Cancer Stem Cells: The Centrality of the Malignancy
15.1. The Tumor Genesis and Clonal Expansion Guided by CSCs
15.2. The Role of CSCs in Driving Tumor Heterogeneity
15.3. Experimental Evidence Supporting the Tumorigenic Potential of CSCs
15.4. Loss-of-Y Is a Stem Cell Mutation That Generates Cancer
15.5. Main Signaling Pathways in CSC Maintenance and Carcinogenesis
15.6. Cancer Stem Cells and Drug Resistance
- (a)
- CSCs resist chemotherapy through several major mechanisms. Because of their quiescent proliferative state, these cells are unresponsive to therapies targeting rapidly dividing cells. They also activated drug efflux mechanisms. They exhibit overexpression of DNA repair mechanisms and anti-apoptotic genes. In addition, CSCs may secrete cytokines and chemokines, thus conferring therapy resistance upon other tumor cells.
- (b)
- CSCs are inherently more resistant to multiple clinical therapies, including radiation [311]. Radioresistance in these cells correlates with enhanced DNA repair mechanisms, robust reactive oxygen species (ROS) defenses, and inherent self-renewal capabilities. Compared with other methods, CRISPR-Cas systems show superior efficacy in mediating DNA repair and mitigating stress-induced DNA damage. Exposure to radiation may selectively eliminate radiosensitive tumor cells, while leaving radioresistant cancer stem cells (CSCs) viable; this selective repopulation from surviving CSCs contributes to adaptive radioresistance.
- (c)
- -
- Mechanisms related to cell surface proteins: CSCs differentially express surface markers to escape immune surveillance and immune cell killing. This includes the downregulation of MHC Class I molecules, upregulation of CD47 (“Don’t Eat Me” signal [313]), and elevation of immune checkpoint ligands (e.g., PD-L1).
- -
- Mechanisms related to cytokines released by CSCs: CSCs can recruit immune cells and control immune responses by releasing pro-inflammatory cytokines (e.g., IL-1, IL-6, IL-8, and TGF-β) that impair anti-tumor immune responses and recruit immunosuppressive cells such as MDSCs and M2 macrophages.
- -
- Mechanisms related to metabolic alterations: CSCs show a significant production of glycolysis/lactate production. Lactate can activate CSCs, promote self-renewal, and induce an immunosuppressive phenotype in MDSCs and TAMs.
15.7. Current and Emerging Strategies for Targeting CSCs
- -
- Antibodies: Anti-OAcGD2 antibodies combined with TMZ (temozolomide) demonstrate efficacy in reducing tumor volume and the expression of CSC markers in GBM (glioblastoma multiforme), overcoming chemotherapy resistance.
- -
- Immunotherapy: Immunotherapy, including CAR-T therapy, aims to boost T cells to attack cancer cells, particularly CSCs, by exploiting the action of the immune system. CAR-T is a form of personalized medicine in which a patient’s genetically modified T cells express receptors that recognize specific tumor antigens.
- -
- Radiotherapy: Radiation therapy, including whole-body radiation therapy, can destroy cancerous cells, even CSCs, in particular blood cancers.
- -
- Modulation of Quiescence: CSCs can enter a state of quiescence or latency, which protects them from treatment and allows them to survive. Emerging strategies aim to modulate the mechanisms of quiescence to eliminate or inhibit CSCs in this state.
- -
- Use of non-cancer stem cells: Non-cancer stem cells, which are present in all organs and play a critical role in tissue repair, can treat several diseases, including some cancers, such as hematopoietic stem cell transplantation to treat leukemias and other blood cancers.
15.8. Importance of CSC Targeting
- -
- Resistance to therapies: Researchers consider CSCs the major cause of resistance to traditional therapies, such as chemotherapy and radiotherapy;
- -
- Tumor recurrence: CSCs handle tumor recurrence after treatment and therefore are a key factor in tumor recurrence;
- -
- Metastasis: CSCs can migrate from the primary tumor and form metastases to other organs, contributing to the spread of the tumor.
16. Barriers Hindering Progress in Cancer Research
17. Conclusions and Socio-Economic Aspects
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
- “The ability (know-how)”: This emphasizes that it is not just about having the tools, but possessing the knowledge, skill, and practical understanding to do something. It implies expertise.
- “to control”: This is the core action. It means to direct, regulate, and influence the behavior or properties of something.
- “the acquisition, disposition, and use of matter/energy,”: This is the “what” that is being controlled.
- ○
- Acquisition: The ability to obtain or gather matter (physical substance) and energy (the capacity to do work). This could involve sourcing raw materials, absorbing nutrients, capturing sunlight, etc.
- ○
- Disposition: The ability to exclude, arrange, or distribute matter and energy. This could involve waste removal, storage, or the structured organization of components.
- ○
- Use: The ability to apply or use matter and energy for specific purposes. This is about converting them into work, structure, or information.
- “in a targeted (teleonomic) process”: This is the “how” and “why.”
- ○
- Targeted: Implies a specific goal, aim, or desired outcome. The control is not random but directed towards achieving something.
- ○
- Teleonomic: This is a more formal term. It refers to processes that appear goal-directed because of the operation of a program or a pre-existing design. Biologists often use it to describe how living organisms appear to strive towards certain ends (like survival or reproduction), despite the lack of conscious intent in every cellular process. It differentiates from “teleological,” which implies conscious, purposeful design, by focusing on the appearance of purposefulness because of underlying mechanisms.
- Targeted (Teleonomic) Process: The “target” for cancer cells is their own unchecked survival and proliferation, often at the expense of the host organism. Although they do not have a conscious “purpose”, genetic and epigenetic alterations influence their actions, giving them a competitive advantage and making them constantly grow and spread. This appears teleonomic because the cell’s entire machinery rewrites itself to achieve this singular, self-serving goal.
- Control over Acquisition of Matter/Energy:
- ○
- Nutrients: Cancer cells often reprogram their metabolism to gain and use nutrients efficiently. For instance, many cancer cells exhibit the “Warburg effect,” preferentially using glycolysis (fermentation) even in the presence of oxygen, allowing them to generate ATP and building blocks for proliferation, even if it is less efficient than oxidative phosphorylation. They “acquire” glucose at a much higher rate than normal cells.
- ○
- Growth Factors: They can overexpress receptors for growth factors, or even produce their own, thus effectively gaining the signals needed for continuous division.
- ○
- Blood Supply (Angiogenesis): A critical aspect of cancer progression is its ability to induce the formation of new blood vessels (angiogenesis). Tumor cells release signaling molecules (like VEGFs) that instruct nearby normal cells to build a fresh blood supply, ensuring a constant “acquisition” of oxygen and nutrients.
- Control over Disposition of Matter/Energy:
- ○
- Waste Products: While cancer cells are metabolically inefficient, they dispose of their waste products (like lactate from glycolysis) into the surrounding microenvironment. This can even alter the local pH, creating a more favorable environment for their own growth and inhibiting immune cells.
- ○
- Metastatic Spread: We also see the disposition of matter in metastasis. Cancer cells must detach from the primary tumor, break through the basement membrane, enter blood or lymphatic vessels, survive in circulation, exit the vessels, and then establish a new colony in a distant organ. This involves a highly coordinated “disposition” of their own cellular structure and movement through the body.
- ○
- Immune Evasion: Cancer cells “dispose” of signals that would normally trigger an immune response. They can express proteins that turn off immune cells or shed antigens that would identify them as foreign.
- Control over Use of Matter/Energy:
- ○
- Proliferation: The vast majority of the gained matter and energy is directly “used” for rapid cell division, synthesizing new DNA, proteins, and organelles to create more cancer cells.
- ○
- Invasion: Cancer cells use energy to express enzymes that degrade the extracellular matrix, allowing them to “use” the surrounding tissue as a pathway for invasion.
- ○
- Survival in Hostile Environments: They can adapt their metabolism and gene expression to “use” limited resources or survive in hypoxic (low-oxygen) environments, which would be lethal to normal cells.
- ○
- Drug Resistance: Cancer cells can develop mechanisms to “use” drugs ineffectively or even pump them out, demonstrating a targeted ability to evade therapeutic interventions.
- 1.
- The Macroscopic Deterministic Observational Level:
- 2.
- The Microscopic and Deep Indeterministic Level:
- 3.
- How the Sentence Fits Both Levels (and bridges the gap):
References
- Oh, J.H.; Cho, J.Y. Comparative oncology: Overcoming human cancer through companion animal studies. Exp. Mol. Med. 2023, 55, 725–734. [Google Scholar] [CrossRef]
- Guo, H.; Xu, X.; Zhang, J.; Du, Y.; Yang, X.; He, Z.; Zhao, L.; Liang, T.; Guo, L. The Pivotal Role of Preclinical Animal Models in Anti-Cancer Drug Discovery and Personalized Cancer Therapy Strategies. Pharmaceuticals 2024, 17, 1048. [Google Scholar] [CrossRef]
- Paradiso, F.; Serpelloni, S.; Francis, L.W.; Taraballi, F. Mechanical studies of the third dimension in cancer: From 2D to 3D model. Int. J. Mol. Sci. 2021, 22, 10098. [Google Scholar] [CrossRef]
- Habanjar, O.; Diab-Assaf, M.; Caldefie-Chezet, F.; Delort, L. 3D cell culture systems: Tumor application, advantages, and disadvantages. Int. J. Mol. Sci. 2021, 22, 12200. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.E. Human cancer xenografts in immunocompromised mice provide an advanced genuine tumor model for research and drug development—A revisit of murine models for human cancers. Biochim. Biophys. Acta (BBA) Gen. Subj. 2021, 1865, 129929. [Google Scholar] [CrossRef] [PubMed]
- Junttila, M.R.; De Sauvage, F.J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013, 501, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, J.W.; Caldas, C.; Bruna, A. Maintaining tumor heterogeneity in patient-derived tumor xenografts. Cancer Res. 2015, 75, 2963–2968. [Google Scholar] [CrossRef]
- Shultz, L.D.; Brehm, M.A.; Garcia-Martinez, J.V.; Greiner, D.L. Humanized mice for immune system investigation: Progress, promise and challenges. Nat. Rev. Immunol. 2012, 12, 786–798. [Google Scholar] [CrossRef]
- Lai, Y.; Wei, X.; Lin, S.; Qin, L.; Cheng, L.; Li, P. Current status and perspectives of patient-derived xenograft models in cancer research. J. Hematol. Oncol. 2017, 10, 1–14. [Google Scholar] [CrossRef]
- Kaushik, G.; Ponnusamy, M.P.; Batra, S.K. Concise review: Current status of three-dimensional organoids as preclinical models. Stem Cells 2018, 36, 1329–1340. [Google Scholar] [CrossRef]
- Pan, E.; Bogumil, D.; Cortessis, V.; Yu, S.; Nieva, J. A systematic review of the efficacy of preclinical models of lung cancer drugs. Front. Oncol. 2020, 10, 591. [Google Scholar] [CrossRef]
- Kersten, K.; de Visser, K.E.; van Miltenburg, M.H.; Jonkers, J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol. Med. 2017, 9, 137–153. [Google Scholar] [CrossRef]
- Amorim, A.M.; Piochi, L.F.; Gaspar, A.T.; Preto, A.J.; Rosário-Ferreira, N.; Moreira, I.S. Advancing drug safety in drug development: Bridging computational predictions for enhanced toxicity prediction. Chem. Res. Toxicol. 2024, 37, 827–849. [Google Scholar] [CrossRef]
- Bai, C.; Wu, L.; Li, R.; Cao, Y.; He, S.; Bo, X. Machine Learning-Enabled Drug-Induced Toxicity Prediction. Adv. Sci. 2025, 12, 2413405. [Google Scholar] [CrossRef] [PubMed]
- Sahlgren, C.; Meinander, A.; Zhang, H.; Cheng, F.; Preis, M.; Xu, C.; Salminen, T.; Toivola, D.; Abankwa, D.; Sandler, N.; et al. Tailored approaches in drug development and diagnostics: From molecular design to biological model systems. Adv. Healthc. Mater. 2017, 6, 1700258. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, W.J.; Purcell, C.; Pinho-Schwermann, M.; Stubbs, N.M.; Srinivasan, P.R.; El-Deiry, W.S. Heterogeneity in Cancer. Cancers 2025, 17, 441. [Google Scholar] [CrossRef]
- Allison, K.H.; Sledge, G.W. Heterogeneity and cancer. Oncology 2014, 28, 772. [Google Scholar]
- Deshmukh, S.; Saini, S. Phenotypic heterogeneity in tumor progression, and its possible role in the onset of cancer. Front. Genet. 2020, 11, 604528. [Google Scholar] [CrossRef]
- Marusyk, A.; Polyak, K. Tumor heterogeneity: Causes and consequences. Biochim. Et Biophys. Acta (BBA)-Rev. Cancer 2010, 1805, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Aldea, M.; Andre, F.; Marabelle, A.; Dogan, S.; Barlesi, F.; Soria, J.C. Overcoming resistance to tumor-targeted and immune-targeted therapies. Cancer Discov. 2021, 11, 874–899. [Google Scholar] [CrossRef]
- El-Sayes, N.; Vito, A.; Mossman, K. Tumor Heterogeneity: A Great Barrier in the Age of Cancer Immunotherapy. Cancers 2021, 13, 806. [Google Scholar] [CrossRef]
- Ottaiano, A.; Ianniello, M.; Santorsola, M.; Ruggiero, R.; Sirica, R.; Sabbatino, F.; Perri, F.; Cascella, M.; Di Marzo, M.; Berretta, M.; et al. From Chaos to Opportunity: Decoding Cancer Heterogeneity for Enhanced Treatment Strategies. Biology 2023, 12, 1183. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fedele, C.; Tothill, R.W.; McArthur, G.A. Navigating the challenge of tumor heterogeneity in cancer therapy. Cancer Discov. 2014, 4, 146–148. [Google Scholar] [CrossRef] [PubMed]
- Proietto, M.; Crippa, M.; Damiani, C.; Pasquale, V.; Sacco, E.; Vanoni, M.; Gilardi, M. Tumor heterogeneity: Preclinical models, emerging technologies, and future applications. Front. Oncol. 2023, 13, 1164535. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, V.; Liu, Z.; Hirvonen, J.; Santos, H.A. Bridging the knowledge of different worlds to understand the big picture of cancer nanomedicines. Adv. Healthc. Mater. 2018, 7, 1700432. [Google Scholar] [CrossRef]
- Melillo, G.; Chand, V.; Yovine, A.; Gupta, A.; Massacesi, C. Curative-intent treatment with durvalumab in early-stage cancers. Adv. Ther. 2021, 38, 2759–2778. [Google Scholar] [CrossRef]
- Crosby, D.; Bhatia, S.; Brindle, K.M.; Coussens, L.M.; Dive, C.; Emberton, M.; Esener, S.; Fitzgerald, R.C.; Gambhir, S.S.; Kuhn, P.; et al. Early detection of cancer. Science 2022, 375, eaay9040. [Google Scholar] [CrossRef]
- Kumar, V.; Kukkar, D.; Hashemi, B.; Kim, K.H.; Deep, A. Advanced functional structure-based sensing and imaging strategies for cancer detection: Possibilities, opportunities, challenges, and prospects. Adv. Funct. Mater. 2019, 29, 1807859. [Google Scholar] [CrossRef]
- Patel, R.; Patel, S.; Momin, I.; Shah, S. The evolving landscape of colonoscopy: Recent developments and complication management. In Colonoscopy-Diagnostic and Therapeutic Advances; IntechOpen: London, UK, 2024. [Google Scholar]
- Qadrie, Z.; Maqbool, M.; Dar, M.A.; Qadir, A. Navigating challenges and maximizing potential: Handling complications and constraints in minimally invasive surgery. Open Health 2025, 6, 20250059. [Google Scholar] [CrossRef]
- Levy, I.; Gralnek, I.M. Complications of diagnostic colonoscopy, upper endoscopy, and enteroscopy. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 705–718. [Google Scholar] [CrossRef]
- Schiffman, J.D.; Fisher, P.G.; Gibbs, P. Early detection of cancer: Past, present, and future. In American Society of Clinical Oncology Educational Book; ASCO: Alexandria, VA, USA, 2015; Volume 35, pp. 57–65. [Google Scholar]
- Cancer Disparities, National Cancer Institute, NIH, Bethesda, USA. Available online: https://www.cancer.gov/about-cancer/understanding/disparities (accessed on 2 May 2025).
- Loomans-Kropp, H.A.; Umar, A.; Minasian, L.M.; Pinsky, P.F. Multi-cancer early detection tests: Current progress and future perspectives. Cancer Epidemiol. Biomark. Prev. 2022, 31, 512–514. [Google Scholar] [CrossRef]
- Milner, D.A., Jr.; Lennerz, J.K. Technology and Future of Multi-Cancer Early Detection. Life 2024, 14, 833. [Google Scholar] [CrossRef]
- Schroeder, A.; Heller, D.A.; Winslow, M.M.; Dahlman, J.E.; Pratt, G.W.; Langer, R.; Jacks, T.; Anderson, D.G. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 2012, 12, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, V.K.; Singh, A.; Singh, V.K.; Singh, M.P. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy. Curr. Drug Metab. 2019, 20, 416–429. [Google Scholar] [CrossRef]
- Dar, R.A.; Rasool, M.; Assad, A. Breast cancer detection using deep learning: Datasets, methods, and challenges ahead. Comput. Biol. Med. 2022, 149, 106073. [Google Scholar]
- Iqbal, M.J.; Javed, Z.; Sadia, H.; Qureshi, I.A.; Irshad, A.; Ahmed, R.; Malik, K.; Raza, S.; Abbas, A.; Pezzani, R.; et al. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: Looking into the future. Cancer Cell Int. 2021, 21, 270. [Google Scholar] [CrossRef] [PubMed]
- Albahri, A.S.; Duhaim, A.M.; Fadhel, M.A.; Alnoor, A.; Baqer, N.S.; Alzubaidi, L.; Albahri, O.; Alamoodi, A.; Bai, J.; Deveci, M.; et al. A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion. Inf. Fusion 2023, 96, 156–191. [Google Scholar] [CrossRef]
- Aminizadeh, S.; Heidari, A.; Dehghan, M.; Toumaj, S.; Rezaei, M.; Navimipour, N.J.; Stroppa, F.; Unal, M. Opportunities and challenges of artificial intelligence and distributed systems to improve the quality of healthcare service. Artif. Intell. Med. 2024, 149, 102779. [Google Scholar] [CrossRef]
- Esmaeilzadeh, P. Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: A perspective for healthcare organizations. Artif. Intell. Med. 2024, 151, 102861. [Google Scholar] [CrossRef]
- De Rubis, G.; Krishnan, S.R.; Bebawy, M. Liquid biopsies in cancer diagnosis, monitoring, and prognosis. Trends Pharmacol. Sci. 2019, 40, 172–186. [Google Scholar] [CrossRef]
- Amelio, I.; Bertolo, R.; Bove, P.; Buonomo, O.C.; Candi, E.; Chiocchi, M.; Cipriani, C.; Di Daniele, N.; Ganini, C.; Melino, G.; et al. Liquid biopsies and cancer omics. Cell Death Discov. 2020, 6, 131. [Google Scholar] [CrossRef] [PubMed]
- Desai, S.A.; Patel, V.P.; Bhosle, K.P.; Nagare, S.D.; Thombare, K.C. The tumor microenvironment: Shaping cancer progression and treatment response. J. Chemother. 2025, 37, 15–44. [Google Scholar] [CrossRef]
- Wang, Q.; Shao, X.; Zhang, Y.; Zhu, M.; Wang, F.X.; Mu, J.; Li, J.; Yao, H.; Chen, K. Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Med. 2023, 12, 11149–11165. [Google Scholar] [CrossRef] [PubMed]
- Goenka, A.; Khan, F.; Verma, B.; Sinha, P.; Dmello, C.C.; Jogalekar, M.P.; Gangadaran, P.; Ahn, B.C. Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun. 2023, 43, 525–561. [Google Scholar] [CrossRef]
- Arner, E.N.; Rathmell, J.C. Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell 2023, 41, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Zhang, S.; Gong, Z.; Li, X.; Cao, K.; Deng, H.; Xiong, W.; et al. The role of microenvironment in tumor angiogenesis. J. Exp. Clin. Cancer Res. 2020, 39, 204. [Google Scholar] [CrossRef]
- Xia, L.; Oyang, L.; Lin, J.; Tan, S.; Han, Y.; Wu, N.; Yi, P.; Tang, L.; Pan, Q.; Liao, Q.; et al. The cancer metabolic reprogramming and immune response. Mol. Cancer 2021, 20, 28. [Google Scholar] [CrossRef]
- Wu, P.; Gao, W.; Su, M.; Nice, E.C.; Zhang, W.; Lin, J.; Xie, N. Adaptive mechanisms of tumor therapy resistance driven by tumor microenvironment. Front. Cell Dev. Biol. 2021, 9, 641469. [Google Scholar] [CrossRef]
- Mierke, C.T. Phenotypic heterogeneity, bidirectionality, universal cues, plasticity, mechanics, and the tumor microenvironment drive cancer metastasis. Biomolecules 2024, 14, 184. [Google Scholar] [CrossRef]
- Sabit, H.; Arneth, B.; Abdel-Ghany, S.; Madyan, E.F.; Ghaleb, A.H.; Selvaraj, P.; Shin, D.; Bommireddi, R.; Elhashash, A. Beyond cancer cells: How the tumor microenvironment drives cancer progression. Cells 2024, 13, 1666. [Google Scholar] [CrossRef]
- Lv, B.; Wang, Y.; Ma, D.; Cheng, W.; Liu, J.; Yong, T.; Chen, H.; Wang, C. Immunotherapy: Reshape the tumor immune microenvironment. Front. Immunol. 2022, 13, 844142. [Google Scholar] [CrossRef] [PubMed]
- Belhabib, I.; Zaghdoudi, S.; Lac, C.; Bousquet, C.; Jean, C. Extracellular matrices and cancer-associated fibroblasts: Targets for cancer diagnosis and therapy? Cancers 2021, 13, 3466. [Google Scholar] [CrossRef]
- Jászai, J.; Schmidt, M.H. Trends and challenges in tumor anti-angiogenic therapies. Cells 2019, 8, 1102. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.R.; Aggarwal, P.; Costa, R.G.; Cole, A.M.; Trinchieri, G. Targeting the gut microbiota for cancer therapy. Nat. Rev. Cancer 2022, 22, 703–722. [Google Scholar] [CrossRef]
- Liu, X.; Peng, T.; Xu, M.; Lin, S.; Hu, B.; Chu, T.; Liu, B.; Xu, Y.; Ding, W.; Li, L.; et al. Spatial multi-omics: Deciphering technological landscape of integration of multi-omics and its applications. J. Hematol. Oncol. 2024, 17, 72. [Google Scholar] [CrossRef] [PubMed]
- Baysoy, A.; Bai, Z.; Satija, R.; Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 2023, 24, 695–713. [Google Scholar] [CrossRef]
- Raj, S.; Khurana, S.; Choudhari, R.; Kesari, K.K.; Kamal, M.A.; Garg, N.; Ruokolainen, J.; Das, B.C.; Kumar, D. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2021; Volume 69, pp. 166–177. [Google Scholar] [CrossRef]
- Yazbeck, V.; Alesi, E.; Myers, J.; Hackney, M.H.; Cuttino, L.; Gewirtz, D.A. An overview of chemotoxicity and radiation toxicity in cancer therapy. Adv. Cancer Res. 2022, 155, 1–27. [Google Scholar]
- Zhang, G.; Zhang, J.; Gao, Y.; Li, Y.; Li, Y. Strategies for targeting undruggable targets. Expert Opin. Drug Discov. 2022, 17, 55–69. [Google Scholar] [CrossRef]
- Dang, C.V.; Reddy, E.P.; Shokat, K.M.; Soucek, L. Drugging the ‘undruggable’ cancer targets. Nat. Rev. Cancer 2017, 17, 502–508. [Google Scholar] [CrossRef]
- Qian, L.; Lin, X.; Gao, X.; Khan, R.U.; Liao, J.Y.; Du, S.; Ge, J.; Zeng, S.; Yao, S.Q. The dawn of a new era: Targeting the “undruggables” with antibody-based therapeutics. Chem. Rev. 2023, 123, 7782–7853. [Google Scholar] [CrossRef]
- Jan, S.A.; Debnath, A.; Singh, R.K.; Tyagi, P.K.; Singh, S.; Singh, A.K. Targeting Undruggable Proteins: The siRNA Revolution Beyond Small Molecules—Advances, Challenges, and Future Prospects in Therapeutic Innovation. Curr. Gene Ther. 2025. [Google Scholar] [CrossRef]
- Lin, A.; Giuliano, C.J.; Palladino, A.; John, K.M.; Abramowicz, C.; Yuan, M.L.; Sausville, E.; Lukow, D.; Liu, L.; Sheltzer, J.M.; et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci. Transl. Med. 2019, 11, eaaw8412. [Google Scholar] [CrossRef] [PubMed]
- Van den Boogaard, W.M.; Komninos, D.S.; Vermeij, W.P. Chemotherapy side-effects: Not all DNA damage is equal. Cancers 2022, 14, 627. [Google Scholar] [CrossRef]
- Bagnyukova, T.V.; Serebriiskii, I.G.; Zhou, Y.; Hopper-Borge, E.A.; Golemis, E.A.; Astsaturov, I. Chemotherapy and signaling: How can targeted therapies supercharge cytotoxic agents? Cancer Biol. Ther. 2010, 10, 839–853. [Google Scholar] [CrossRef] [PubMed]
- Wahida, A.; Buschhorn, L.; Fröhling, S.; Jost, P.J.; Schneeweiss, A.; Lichter, P.; Kurzrock, R. The coming decade in precision oncology: Six riddles. Nat. Rev. Cancer 2023, 23, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Punekar, S.R.; Velcheti, V.; Neel, B.G.; Wong, K.K. The current state of the art and future trends in RAS-targeted cancer therapies. Nat. Rev. Clin. Oncol. 2022, 19, 637–655. [Google Scholar] [CrossRef]
- Raghani, N.R.; Chorawala, M.R.; Mahadik, M.; Patel, R.B.; Prajapati, B.G.; Parekh, P.S. Revolutionizing cancer treatment: Comprehensive insights into immunotherapeutic strategies. Med. Oncol. 2024, 41, 51. [Google Scholar] [CrossRef]
- Wang, H.; Kaur, G.; Sankin, A.I.; Chen, F.; Guan, F.; Zang, X. Immune checkpoint blockade and CAR-T cell therapy in hematologic malignancies. J. Hematol. Oncol. 2019, 12, 59. [Google Scholar] [CrossRef]
- Liu, D. CAR-T “the living drugs”, immune checkpoint inhibitors, and precision medicine: A new era of cancer therapy. J. Hematol. Oncol. 2019, 12, 113. [Google Scholar] [CrossRef]
- Abdollahpour-Alitappeh, M.; Lotfinia, M.; Gharibi, T.; Mardaneh, J.; Farhadihosseinabadi, B.; Larki, P.; Faghfourian, B.; Sepehr, K.; Abbaszadeh-Goudarzi, K.; Bagheri, N.; et al. Antibody–drug conjugates (ADCs) for cancer therapy: Strategies, challenges, and successes. J. Cell. Physiol. 2019, 234, 5628–5642. [Google Scholar] [CrossRef]
- Walsh, S.J.; Bargh, J.D.; Dannheim, F.M.; Hanby, A.R.; Seki, H.; Counsell, A.J.; Ou, X.; Fowler, E.; Ashman, N.; Spring, D.R.; et al. Site-selective modification strategies in antibody–drug conjugates. Chem. Soc. Rev. 2021, 50, 1305–1353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, Y.; Li, G.; Yang, Z.; Han, C.; Sun, X.; Sheng, C.; Ding, K.; Rao, Y. Targeting the Undruggables—The Power of Protein Degraders. Sci. Bull. 2024, 69, 1776–1797. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, J.; Zhong, K.; Tong, A.; Jia, D. Targeted protein degradation: Mechanisms, strategies and application. Signal Transduct. Target. Ther. 2022, 7, 113. [Google Scholar] [CrossRef]
- Siravegna, G.; Marsoni, S.; Siena, S.; Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 2017, 14, 531–548. [Google Scholar] [CrossRef] [PubMed]
- Lone, S.N.; Nisar, S.; Masoodi, T.; Singh, M.; Rizwan, A.; Hashem, S.; El-Rifai, W.; Bedognetti, D.; Batra, S.K.; Macha, M.A.; et al. Liquid biopsy: A step closer to transform diagnosis, prognosis and future of cancer treatments. Mol. Cancer 2022, 21, 79. [Google Scholar] [CrossRef] [PubMed]
- Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature 2019, 575, 299–309. [Google Scholar] [CrossRef]
- Baguley, B.C. Multiple drug resistance mechanisms in cancer. Mol. Biotechnol. 2010, 46, 308–316. [Google Scholar] [CrossRef]
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull. 2017, 7, 339. [Google Scholar] [CrossRef]
- Lei, Z.N.; Tian, Q.; Teng, Q.X.; Wurpel, J.N.; Zeng, L.; Pan, Y.; Chen, Z.S. Understanding and targeting resistance mechanisms in cancer. MedComm 2023, 4, e265. [Google Scholar] [CrossRef]
- Boumahdi, S.; de Sauvage, F.J. The great escape: Tumour cell plasticity in resistance to targeted therapy. Nat. Rev. Drug Discov. 2020, 19, 39–56. [Google Scholar] [CrossRef]
- Burrell, R.A.; Swanton, C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol. Oncol. 2014, 8, 1095–1111. [Google Scholar] [CrossRef] [PubMed]
- Aramini, B.; Masciale, V.; Grisendi, G.; Bertolini, F.; Maur, M.; Guaitoli, G.; Chrystel, I.; Morandi, U.; Stella, F.; Dominici, M.; et al. Dissecting tumor growth: The role of cancer stem cells in drug resistance and recurrence. Cancers 2022, 14, 976. [Google Scholar] [CrossRef]
- Leary, M.; Heerboth, S.; Lapinska, K.; Sarkar, S. Sensitization of drug resistant cancer cells: A matter of combination therapy. Cancers 2018, 10, 483. [Google Scholar] [CrossRef] [PubMed]
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef] [PubMed]
- Si, W.; Shen, J.; Zheng, H.; Fan, W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin. Epigenetics 2019, 11, 25. [Google Scholar] [CrossRef]
- Issa, M.E.; Takhsha, F.S.; Chirumamilla, C.S.; Perez-Novo, C.; Vanden Berghe, W.; Cuendet, M. Epigenetic strategies to reverse drug resistance in heterogeneous multiple myeloma. Clin. Epigenetics 2017, 9, 17. [Google Scholar] [CrossRef]
- Gedye, C.; Navani, V. Find the path of least resistance: Adaptive therapy to delay treatment failure and improve outcomes. Biochim. Biophys. Acta (BBA) Rev. Cancer 2022, 1877, 188681. [Google Scholar] [CrossRef]
- Ingham, J.; Ruan, J.L.; Coelho, M.A. Breaking barriers: We need a multidisciplinary approach to tackle cancer drug resistance. BJC Rep. 2025, 3, 11. [Google Scholar] [CrossRef]
- Riggi, N.; Aguet, M.; Stamenkovic, I. Cancer metastasis: A reappraisal of its underlying mechanisms and their relevance to treatment. Annu. Rev. Pathol. Mech. Dis. 2018, 13, 117–140. [Google Scholar] [CrossRef]
- Li, Y.; Liu, F.; Cai, Q.; Deng, L.; Ouyang, Q.; Zhang, X.H.F.; Zheng, J. Invasion and metastasis in cancer: Molecular insights and therapeutic targets. Signal Transduct. Target. Ther. 2025, 10, 57. [Google Scholar]
- Hebert, J.D.; Neal, J.W.; Winslow, M.M. Dissecting metastasis using preclinical models and methods. Nat. Rev. Cancer 2023, 23, 391–407. [Google Scholar] [CrossRef]
- Sajjad, H.; Imtiaz, S.; Noor, T.; Siddiqui, Y.H.; Sajjad, A.; Zia, M. Cancer models in preclinical research: A chronicle review of advancement in effective cancer research. Anim. Models Exp. Med. 2021, 4, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Najafi, M.; Farhood, B.; Mortezaee, K. Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J. Cell. Biochem. 2019, 120, 2782–2790. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhang, L.; Wan, D.; Zhou, L.; Zheng, S.; Lin, S.; Qiao, Y. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct. Target. Ther. 2021, 6, 153. [Google Scholar] [CrossRef]
- Bielenberg, D.R.; Zetter, B.R. The contribution of angiogenesis to the process of metastasis. Cancer J. 2015, 21, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jia, J.; Wang, F.; Fang, Y.; Yang, Y.; Zhou, Q.; Yuan, W.; Gu, X.; Hu, J.; Yang, S. Pre-metastatic niche: Formation, characteristics and therapeutic implication. Signal Transduct. Target. Ther. 2024, 9, 236. [Google Scholar] [CrossRef]
- Mitra, A.; Kumar, A.; Amdare, N.P.; Pathak, R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. Biology 2024, 13, 307. [Google Scholar] [CrossRef]
- Yoo, B.; Fuchs, B.C.; Medarova, Z. New directions in the study and treatment of metastatic cancer. Front. Oncol. 2018, 8, 258. [Google Scholar] [CrossRef]
- Pafitanis, S.; Zacharia, L.C.; Stylianou, A.; Gkretsi, V. In vitro models: Can they unravel the complexities of cancer cell metastasis? Biochim. Biophys. Acta (BBA) Rev. Cancer 2025, 1880, 189293. [Google Scholar] [CrossRef]
- Dong, S.T.; Butow, P.N.; Costa, D.S.; Lovell, M.R.; Agar, M. Symptom clusters in patients with advanced cancer: A systematic review of observational studies. J. Pain Symptom Manag. 2014, 48, 411–450. [Google Scholar] [CrossRef]
- Lagani, V.; Triantafillou, S.; Ball, G.; Tegnér, J.; Tsamardinos, I. Probabilistic computational causal discovery for systems biology. In Uncertainty in Biology: A Computational Modeling Approach; Springer: Berlin/Heidelberg, Germany, 2016; pp. 33–73. [Google Scholar]
- Rosenberg, A. Discussion note: Indeterminism, probability, and randomness in evolutionary theory. Philos. Sci. 2001, 68, 536–544. [Google Scholar] [CrossRef]
- Bruggeman, F.J.; Westerhoff, H.V. The nature of systems biology. Trends Microbiol. 2007, 15, 45–50. [Google Scholar] [CrossRef]
- Gasparatos, A.; El-Haram, M.; Horner, M. A critical review of reductionist approaches for assessing the progress towards sustainability. Environ. Impact Assess. Rev. 2008, 28, 286–311. [Google Scholar] [CrossRef]
- Gallagher, R.; Appenzeller, T. Beyond reductionism. Science 1999, 284, 79. [Google Scholar] [CrossRef]
- Kaiser, M.I. The limits of reductionism in the life sciences. Hist. Philos. Life Sci. 2011, 33, 453–476. [Google Scholar]
- Nielsen, J.; Keasling, J.D. Engineering cellular metabolism. Cell 2016, 164, 1185–1197. [Google Scholar] [CrossRef]
- Albert, R. Scale-free networks in cell biology. J. Cell Sci. 2005, 118, 4947–4957. [Google Scholar] [CrossRef]
- De la Fuente, I.M. Elements of the cellular metabolic structure. Front. Mol. Biosci. 2015, 2, 16. [Google Scholar] [CrossRef]
- Perbal, B. The concept of the CCN protein family revisited: A centralized coordination network. J. Cell Commun. Signal. 2018, 12, 3–12. [Google Scholar] [CrossRef]
- Yip, A.M.; Horvath, S. Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinform. 2007, 8, 22. [Google Scholar] [CrossRef]
- Van Segbroeck, S.; De Jong, S.; Nowé, A.; Santos, F.C.; Lenaerts, T. Learning to coordinate in complex networks. Adapt. Behav. 2010, 18, 416–427. [Google Scholar] [CrossRef]
- Wu, F.; Yang, J.; Liu, J.; Wang, Y.; Mu, J.; Zeng, Q.; Deng, S.; Zhou, H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct. Target. Ther. 2021, 6, 218. [Google Scholar] [CrossRef] [PubMed]
- Spano, D.; Heck, C.; De Antonellis, P.; Christofori, G.; Zollo, M. Molecular networks that regulate cancer metastasis. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2012; Volume 22, pp. 234–249. [Google Scholar]
- Cerella, C.; Teiten, M.H.; Radogna, F.; Dicato, M.; Diederich, M. From nature to bedside: Pro-survival and cell death mechanisms as therapeutic targets in cancer treatment. Biotechnol. Adv. 2014, 32, 1111–1122. [Google Scholar] [CrossRef] [PubMed]
- Neureiter, D.; Jäger, T.; Ocker, M.; Kiesslich, T. Epigenetics and pancreatic cancer: Pathophysiology and novel treatment aspects. World J. Gastroenterol. WJG 2014, 20, 7830. [Google Scholar] [CrossRef]
- Hayashi, A.; Hong, J.; Iacobuzio-Donahue, C.A. The pancreatic cancer genome revisited. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 469–481. [Google Scholar] [CrossRef]
- Connor, A.A.; Gallinger, S. Pancreatic cancer evolution and heterogeneity: Integrating omics and clinical data. Nat. Rev. Cancer 2022, 22, 131–142. [Google Scholar] [CrossRef]
- Chen, L.; Wang, R.; Li, C.; Aihara, K. Modeling Biomolecular Networks in Cells: Structures and Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; ISBN 978-1-84996-213-1. [Google Scholar] [CrossRef]
- Smith, J.M. The concept of information in biology. Philos. Sci. 2000, 67, 177–194. [Google Scholar] [CrossRef]
- Gaiseanu, F. Evolution and development of the information concept in biological systems: From empirical description to informational modeling of the living structures. Philos. Study 2021, 11, 501–516. [Google Scholar]
- Barabási, A.L. The New Science of Networks; Perseus: Cambridge, MA, USA, 2002. [Google Scholar]
- Barabasi, A.L.; Oltvai, Z.N. Network biology: Understanding the cell’s functional organization. Nat. Rev. Genet. 2004, 5, 101–113. [Google Scholar] [CrossRef]
- Ulitsky, I.; Shamir, R. Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinformatics 2009, 25, 1158–1164. [Google Scholar] [CrossRef]
- Zanin, M.; Aitya, N.A.; Basilio, J.; Baumbach, J.; Benis, A.; Behera, C.K.; Bucholc, M.; Castiglione, F.; Chouvarda, I.; Schmidt, H.H.; et al. An early stage researcher’s primer on systems medicine terminology. Netw. Syst. Med. 2021, 4, 2–50. [Google Scholar] [CrossRef] [PubMed]
- Erciyes, K. Graph-theoretical analysis of biological networks: A survey. Computation 2023, 11, 188. [Google Scholar] [CrossRef]
- Kim, W.; Li, M.; Wang, J.; Pan, Y. Biological network motif detection and evaluation. BMC Syst. Biol. 2011, 5, S5. [Google Scholar] [CrossRef] [PubMed]
- Klemm, K.; Bornholdt, S. Topology of biological networks and reliability of information processing. Proc. Natl. Acad. Sci. USA 2005, 102, 18414–18419. [Google Scholar] [CrossRef]
- Ricard, J. Emergent Collective Properties, Networks and Information in Biology; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Adler, M.; Medzhitov, R. Emergence of dynamic properties in network hypermotifs. Proc. Natl. Acad. Sci. USA 2022, 119, e2204967119. [Google Scholar] [CrossRef]
- Kampis, G. Self-Modifying Systems in Biology and Cognitive Science: A New Framework for Dynamics, Information and Complexity; Elsevier: Amsterdam, The Netherlands, 2013; Volume 6. [Google Scholar]
- Barrett, C.; Eubank, S.; Marathe, M. Modeling and simulation of large biological, information and socio-technical systems: An interaction based approach. In Interactive Computation: The New Paradigm; Springer: Berlin/Heidelberg, Germany, 2006; pp. 353–392. [Google Scholar]
- Angione, C. Human systems biology and metabolic modelling: A review—From disease metabolism to precision medicine. BioMed Res. Int. 2019, 2019, 8304260. [Google Scholar] [CrossRef]
- Christensen, W.D.; Bickhard, M.H. The process dynamics of normative function. Monist 2002, 85, 3–28. [Google Scholar] [CrossRef]
- Hwang, K.; Hallquist, M.N.; Luna, B. The development of hub architecture in the human functional brain network. Cereb. Cortex 2013, 23, 2380–2393. [Google Scholar] [CrossRef]
- Shen, G. Optimal Hub-Spoke Network Design. In Cities as Spatial and Social Networks; Springer: Berlin/Heidelberg, Germany, 2018; p. 39. [Google Scholar]
- Chen, C.Y.; Ho, A.; Huang, H.Y.; Juan, H.F.; Huang, H.C. Dissecting the human protein-protein interaction network via phylogenetic decomposition. Sci. Rep. 2014, 4, 7153. [Google Scholar] [CrossRef]
- Trané, C. Robustness Analysis of Intracellular Oscillators with Application to the Circadian Clock. Doctoral Dissertation, KTH Royal Institute of Technology, Stockholm, Sweden, 2008. [Google Scholar]
- Dierickx, P.; Van Laake, L.W.; Geijsen, N. Circadian clocks: From stem cells to tissue homeostasis and regeneration. EMBO Rep. 2018, 19, 18–28. [Google Scholar] [CrossRef]
- Scardoni, G.; Laudanna, C. Centralities based analysis of complex networks. In New Frontiers in Graph Theory; BoD: Norderstedt, Germany, 2012; p. 323. [Google Scholar]
- Mansueto, G.; Fusco, G.; Colonna, G. A Tiny Viral Protein, SARS-CoV-2-ORF7b: Functional Molecular Mechanisms. Biomolecules 2024, 14, 541. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Barabási, A.L. Distribution of node characteristics in complex networks. Proc. Natl. Acad. Sci. USA 2007, 104, 17916–17920. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Azeloglu, E.U.; Iyengar, R. Signaling networks: Information flow, computation, and decision making. Cold Spring Harb. Perspect. Biol. 2015, 7, a005934. [Google Scholar] [CrossRef]
- Kholodenko, B.; Yaffe, M.B.; Kolch, W. Computational approaches for analyzing information flow in biological networks. Sci. Signal. 2012, 5, re1. [Google Scholar] [CrossRef] [PubMed]
- Rao, T.R.; Mitra, P.; Bhatt, R.; Goswami, A. The big data system, components, tools, and technologies: A survey. Knowl. Inf. Syst. 2019, 60, 1165–1245. [Google Scholar] [CrossRef]
- Wang, S.; Wu, R.; Lu, J.; Jiang, Y.; Huang, T.; Cai, Y.D. Protein-protein interaction networks as miners of biological discovery. Proteomics 2022, 22, 2100190. [Google Scholar] [CrossRef]
- Gao, J.; Hu, J.; Tung, W.W. Entropy measures for biological signal analyses. Nonlinear Dyn. 2012, 68, 431–444. [Google Scholar] [CrossRef]
- Corning, P.A.; Kline, S.J. Thermodynamics, information and life revisited, Part I: ‘To be or entropy’. Syst. Res. Behav. Sci. Off. J. Int. Fed. Syst. Res. 1998, 15, 273–295. [Google Scholar] [CrossRef]
- Orlóci, L. Entropy and Information; SPB Academic Publishing: Hague, The Netherlands, 1991. [Google Scholar]
- Ellerman, D. An introduction to logical entropy and its relation to Shannon entropy. Int. J. Semant. Comput. 2013, 7, 121–145. [Google Scholar] [CrossRef]
- Bishop, R.C.; Atamanspacher, H.; Bishop, R. Deterministic and indeterministic descriptions. In Between Chance and Choice: Interdisciplinary Perspectives on Determinism; Imprint Academic: Exeter, UK, 2002; pp. 5–31. [Google Scholar]
- Werndl, C. Determinism and indeterminism. In The Oxford Handbook of Philosophy of Science; Oxford University Press: Oxford, UK, 2016; pp. 210–232. [Google Scholar]
- Lewis, E.R.; MacGregor, R.J. On indeterminism, chaos, and small number particle systems in the brain. J. Integr. Neurosci. 2006, 5, 223–247. [Google Scholar] [CrossRef]
- Weber, G.F. Molecular Mechanisms of Cancer; Springer: Dordrecht, The Netherlands, 2007; Volume 39, pp. 45–99. [Google Scholar]
- Pecorino, L. Molecular Biology of Cancer: Mechanisms, Targets, and Therapeutics; Oxford University Press: Oxford, UK, 2021. [Google Scholar]
- Ostrander, E.A.; Giniger, E. Semper fidelis: What man’s best friend can teach us about human biology and disease. Am. J. Hum. Genet. 1997, 61, 475–480. [Google Scholar] [CrossRef]
- Weston, G.C.; Ponnampalam, A.; Vollenhoven, B.J.; Healy, D.L.; Aw Rogers, P. Genomics in obstetrics and gynaecology. Aust. N. Z. J. Obstet. Gynaecol. 2003, 43, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Satori, C.P.; Henderson, M.M.; Krautkramer, E.A.; Kostal, V.; Distefano, M.M.; Arriaga, E.A. Bioanalysis of eukaryotic organelles. Chem. Rev. 2013, 113, 2733–2811. [Google Scholar] [CrossRef]
- Aebersold, R.; Agar, J.N.; Amster, I.J.; Baker, M.S.; Bertozzi, C.R.; Boja, E.S.; Costello, C.E.; Cravatt, B.F.; Fenselau, C.; Zhang, B.; et al. How many human proteoforms are there? Nat. Chem. Biol. 2018, 14, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Toby, T.K.; Fornelli, L.; Kelleher, N.L. Progress in top-down proteomics and the analysis of proteoforms. Annu. Rev. Anal. Chem. 2016, 9, 499–519. [Google Scholar] [CrossRef]
- Carbonara, K.; Andonovski, M.; Coorssen, J.R. Proteomes are of proteoforms: Embracing the complexity. Proteomes 2021, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Velloso, F.J.; Bianco, A.F.; Farias, J.O.; Torres, N.E.; Ferruzo, P.Y.; Anschau, V.; Jesus-Ferreira, H.; Hung-Tse Chang, T.; Sogayar, M.C.; Correa, R.G.; et al. The crossroads of breast cancer progression: Insights into the modulation of major signaling pathways. OncoTargets Ther. 2017, 10, 5491–5524. [Google Scholar] [CrossRef]
- Hellerstein, M.K. A critique of the molecular target-based drug discovery paradigm based on principles of metabolic control: Advantages of pathway-based discovery. Metab. Eng. 2008, 10, 1–9. [Google Scholar] [CrossRef]
- Amend, S.R.; Pienta, K.J. Ecology meets cancer biology: The cancer swamp promotes the lethal cancer phenotype. Oncotarget 2015, 6, 9669. [Google Scholar] [CrossRef]
- Yang, J.; Xu, J.; Wang, W.; Zhang, B.; Yu, X.; Shi, S. Epigenetic regulation in the tumor microenvironment: Molecular mechanisms and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 210. [Google Scholar] [CrossRef]
- Elia, I.; Haigis, M.C. Metabolites and the tumour microenvironment: From cellular mechanisms to systemic metabolism. Nat. Metab. 2021, 3, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Li, W.; Li, X.; Wang, Z.; Chen, Z.; Shi, H.; He, R.; Chen, C.; Zhou, W. Glucose metabolism and tumour microenvironment in pancreatic cancer: A key link in cancer progression. Front. Immunol. 2022, 13, 1038650. [Google Scholar] [CrossRef]
- Varghese, E.; Samuel, S.M.; Líšková, A.; Samec, M.; Kubatka, P.; Büsselberg, D. Targeting glucose metabolism to overcome resistance to anticancer chemotherapy in breast cancer. Cancers 2020, 12, 2252. [Google Scholar] [CrossRef] [PubMed]
- Aldarini, N.; Alhasawi, A.A.; Thomas, S.C.; Appanna, V.D. The role of glutamine synthetase in energy production and glutamine metabolism during oxidative stress. Antonie Van Leeuwenhoek 2017, 110, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Amores-Sánchez, M.I.; Medina, M.Á. Glutamine, as a precursor of glutathione, and oxidative stress. Mol. Genet. Metab. 1999, 67, 100–105. [Google Scholar] [CrossRef]
- Keating, S.T.; El-Osta, A. Epigenetics and metabolism. Circ. Res. 2015, 116, 715–736. [Google Scholar] [CrossRef]
- Abdul, Q.A.; Yu, B.P.; Chung, H.Y.; Jung, H.A.; Choi, J.S. Epigenetic modifications of gene expression by lifestyle and environment. Arch. Pharmacal Res. 2017, 40, 1219–1237. [Google Scholar] [CrossRef]
- Vaissière, T.; Sawan, C.; Herceg, Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat. Res. /Rev. Mutat. Res. 2008, 659, 40–48. [Google Scholar] [CrossRef]
- Mao, X.; Xu, J.; Wang, W.; Liang, C.; Hua, J.; Liu, J.; Zhang, B.; Meng, Q.; Yu, X.; Shi, S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol. Cancer 2021, 20, 131. [Google Scholar] [CrossRef]
- Arias, A.M.; Hayward, P. Filtering transcriptional noise during development: Concepts and mechanisms. Nat. Rev. Genet. 2006, 7, 34–44. [Google Scholar] [CrossRef]
- Funk, L.; Su, K.C.; Ly, J.; Feldman, D.; Singh, A.; Moodie, B.; Blainey, P.C.; Cheeseman, I.M. The phenotypic landscape of essential human genes. Cell 2022, 185, 4634–4653. [Google Scholar] [CrossRef] [PubMed]
- Harris, V.K.; Schiffman, J.D.; Boddy, A.M. Evolution of cancer defense mechanisms across species. In Ecology and Evolution of Cancer; Academic Press: Cambridge, MA, USA, 2017; pp. 99–110. [Google Scholar]
- Thomas, F.; Giraudeau, M.; Gouzerh, F.; Boutry, J.; Renaud, F.; Pujol, P.; Tasiemski, A.; Bernex, F.; Maraver, A.; Ujvari, B.; et al. The evolution of resistance and tolerance as cancer defences. Parasitology 2020, 147, 255–262. [Google Scholar] [CrossRef]
- Taddei, M.L.; Giannoni, E.; Comito, G.; Chiarugi, P. Microenvironment and tumor cell plasticity: An easy way out. Cancer Lett. 2013, 341, 80–96. [Google Scholar] [CrossRef] [PubMed]
- Giraudeau, M.; Sepp, T.; Ujvari, B.; Renaud, F.; Tasiemski, A.; Roche, B.; Capp, J.; Thomas, F. Differences in mutational processes and intra-tumour heterogeneity between organs: The local selective filter hypothesis. Evol. Med. Public Health 2019, 2019, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Whiting, F.J.; Househam, J.; Baker, A.M.; Sottoriva, A.; Graham, T.A. Phenotypic noise and plasticity in cancer evolution. Trends Cell Biol. 2024, 34, 451–464. [Google Scholar] [CrossRef]
- Seager, R.J.; Hajal, C.; Spill, F.; Kamm, R.D.; Zaman, M.H. Dynamic interplay between tumour, stroma and immune system can drive or prevent tumour progression. Converg. Sci. Phys. Oncol. 2017, 3, 034002. [Google Scholar] [CrossRef]
- Vincent, M. Cancer: A de-repression of a default survival program common to all cells? A life-history perspective on the nature of cancer. Bioessays 2012, 34, 72–82. [Google Scholar] [CrossRef]
- Knox, S.S. From ‘omics’ to complex disease: A systems biology approach to gene-environment interactions in cancer. Cancer Cell Int. 2010, 10, 11. [Google Scholar] [CrossRef]
- Huang, S.; Soto, A.M.; Sonnenschein, C. The end of the genetic paradigm of cancer. PLoS Biol. 2025, 23, e3003052. [Google Scholar] [CrossRef]
- Casás-Selves, M.; DeGregori, J. How cancer shapes evolution and how evolution shapes cancer. Evol. Educ. Outreach 2011, 4, 624–634. [Google Scholar] [CrossRef]
- Klein, C.A. Cancer progression and the invisible phase of metastatic colonization. Nat. Rev. Cancer 2020, 20, 681–694. [Google Scholar] [CrossRef] [PubMed]
- Mierke, C.T. The fundamental role of mechanical properties in the progression of cancer disease and inflammation. Rep. Prog. Phys. 2014, 77, 076602. [Google Scholar] [CrossRef] [PubMed]
- Park, S.T.; Kim, J. Trends in next-generation sequencing and a new era for whole genome sequencing. Int. Neurourol. J. 2016, 20 (Suppl. S2), S76. [Google Scholar] [CrossRef]
- LaFramboise, T. Single nucleotide polymorphism arrays: A decade of biological, computational and technological advances. Nucleic Acids Res. 2009, 37, 4181–4193. [Google Scholar] [CrossRef] [PubMed]
- Ozsolak, F.; Milos, P.M. RNA sequencing: Advances, challenges and opportunities. Nat. Rev. Genet. 2011, 12, 87–98. [Google Scholar] [CrossRef]
- Slonim, D.K.; Yanai, I. Getting started in gene expression microarray analysis. PLoS Comput. Biol. 2009, 5, e1000543. [Google Scholar] [CrossRef] [PubMed]
- Urban, P.L. Quantitative mass spectrometry: An overview. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150382. [Google Scholar] [CrossRef]
- Cutler, P. Protein arrays: The current state-of-the-art. Proteomics 2003, 3, 3–18. [Google Scholar] [CrossRef]
- Dai, Q.; Ye, C.; Irkliyenko, I.; Wang, Y.; Sun, H.L.; Gao, Y.; Liu, Y.; Beadell, A.; Perea, J.; Goel, A.; et al. Ultrafast bisulfite sequencing detection of 5-methylcytosine in DNA and RNA. Nat. Biotechnol. 2024, 42, 1559–1570. [Google Scholar] [CrossRef]
- Park, P.J. ChIP–seq: Advantages and challenges of a maturing technology. Nat. Rev. Genet. 2009, 10, 669–680. [Google Scholar] [CrossRef]
- Grandi, F.C.; Modi, H.; Kampman, L.; Corces, M.R. Chromatin accessibility profiling by ATAC-seq. Nat. Protoc. 2022, 17, 1518–1552. [Google Scholar] [CrossRef] [PubMed]
- Khozyainova, A.A.; Valyaeva, A.A.; Arbatsky, M.S.; Isaev, S.V.; Iamshchikov, P.S.; Volchkov, E.V.; Sabirov, M.S.; Zainullina, V.R.; Chechekhin, V.I.; Denisov, E.V.; et al. Complex analysis of single-cell RNA sequencing data. Biochemistry 2023, 88, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wang, Y.; Gu, H.; Wang, X. Technologies and applications of single-cell DNA methylation sequencing. Theranostics 2023, 13, 2439. [Google Scholar] [CrossRef]
- Traenkle, B.; Rothbauer, U. Under the microscope: Single-domain antibodies for live-cell imaging and super-resolution microscopy. Front. Immunol. 2017, 8, 1030. [Google Scholar] [CrossRef] [PubMed]
- Buchberger, A.R.; DeLaney, K.; Johnson, J.; Li, L. Mass spectrometry imaging: A review of emerging advancements and future insights. Anal. Chem. 2017, 90, 240. [Google Scholar] [CrossRef]
- Yue, R.; Dutta, A. Computational systems biology in disease modeling and control, review and perspectives. npj Syst. Biol. Appl. 2022, 8, 37. [Google Scholar] [CrossRef]
- Imielinski, M.; Belta, C. Deep epistasis in human metabolism. Chaos Interdiscip. J. Nonlinear Sci. 2010, 20, 026104. [Google Scholar] [CrossRef]
- Alemany, M. The metabolic syndrome, a human disease. Int. J. Mol. Sci. 2024, 25, 2251. [Google Scholar] [CrossRef]
- Olivares-Quiroz, L.; Resendis-Antonio, O. (Eds.) Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues; Hardcover; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-319-73974-8. [Google Scholar] [CrossRef]
- Colonna, G. Interactomic Analyses and a Reverse Engineering Study Identify Specific Functional Activities of One-to-One Interactions of the S1 Subunit of the SARS-CoV-2 Spike Protein with the Human Proteome. Biomolecules 2024, 14, 1549. [Google Scholar] [CrossRef]
- Colonna, G. Protein Biophysics: Current Limitations and Perspectives; AIMS Biophysics: Springfield, MO, USA, 2025. [Google Scholar]
- Beerenwinkel, N.; Schwarz, R.F.; Gerstung, M.; Markowetz, F. Cancer evolution: Mathematical models and computational inference. Syst. Biol. 2015, 64, e1–e25. [Google Scholar] [CrossRef]
- Kumar, A. AI-driven precision oncology: Predictive biomarker discovery and personalized treatment optimization using genomic data. Int. J. Adv. Res. Publ. Rev. 2024, 1, 21–38. [Google Scholar] [CrossRef]
- Dlamini, Z.; Francies, F.Z.; Hull, R.; Marima, R. Artificial intelligence (AI) and big data in cancer and precision oncology. Comput. Struct. Biotechnol. J. 2020, 18, 2300–2311. [Google Scholar] [CrossRef]
- Sahu, M.; Gupta, R.; Ambasta, R.K.; Kumar, P. Artificial intelligence and machine learning in precision medicine: A paradigm shift in big data analysis. Prog. Mol. Biol. Transl. Sci. 2022, 190, 57–100. [Google Scholar] [PubMed]
- Latysheva, N.S.; Oates, M.E.; Maddox, L.; Flock, T.; Gough, J.; Buljan, M.; Weatheritt, R.J.; Babu, M.M. Molecular principles of gene fusion mediated rewiring of protein interaction networks in cancer. Mol. Cell 2016, 63, 579–592. [Google Scholar] [CrossRef] [PubMed]
- Milenković, T.; Memišević, V.; Ganesan, A.K.; Pržulj, N. Systems-level cancer gene identification from protein interaction network topology applied to melanogenesis-related functional genomics data. J. R. Soc. Interface 2010, 7, 423–437. [Google Scholar] [CrossRef]
- Wang, L. Heterogeneous data and big data analytics. Autom. Control. Inf. Sci. 2017, 3, 8–15. [Google Scholar] [CrossRef]
- Hariri, R.H.; Fredericks, E.M.; Bowers, K.M. Uncertainty in big data analytics: Survey, opportunities, and challenges. J. Big Data 2019, 6, 44. [Google Scholar] [CrossRef]
- Beesley, L.J.; Salvatore, M.; Fritsche, L.G.; Pandit, A.; Rao, A.; Brummett, C.; Willer, C.J.; Lisabeth, L.D.; Mukherjee, B. The emerging landscape of health research based on biobanks linked to electronic health records: Existing resources, statistical challenges, and potential opportunities. Stat. Med. 2020, 39, 773–800. [Google Scholar] [CrossRef]
- Köhler, S.; Gargano, M.; Matentzoglu, N.; Carmody, L.C.; Lewis-Smith, D.; Vasilevsky, N.A.; Danis, D.; Balagura, G.; Baynam, G.; Robinson, P.N.; et al. The human phenotype ontology in 2021. Nucleic Acids Res. 2021, 49, D1207–D1217. [Google Scholar] [CrossRef]
- Ellis, B. Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Fryer, A.A.; Smellie, W.S.A. Managing demand for laboratory tests: A laboratory toolkit. J. Clin. Pathol. 2013, 66, 62–72. [Google Scholar] [CrossRef]
- Sarder, A.; Mondal, R.K. Real-Life Applications of Noisy Big Data Elimination in the Social Media Context. Fusion of Minds: Multidisciplinary Research in Emerging Technologies; AkiNik Publications: Delhi, India, 2024; p. 15. [Google Scholar]
- Mudadla, T.; Sharma, G.; Mishra, A.; Gola, S. Multifaceted Landscape of Omics Data. Bio-Algorithms Med-Syst. 2024, 20, 22–36. [Google Scholar] [CrossRef]
- Hassan, J.; Saeed, S.M.; Deka, L.; Uddin, M.J.; Das, D.B. Applications of machine learning (ML) and mathematical modeling (MM) in healthcare with special focus on cancer prognosis and anticancer therapy: Current status and challenges. Pharmaceutics 2024, 16, 260. [Google Scholar] [CrossRef] [PubMed]
- Easton, D.F. The inherited component of cancer. Br. Med. Bull. 1994, 50, 527–535. [Google Scholar] [CrossRef]
- Daca Alvarez, M.; Quintana, I.; Terradas, M.; Mur, P.; Balaguer, F.; Valle, L. The inherited and familial component of early-onset colorectal cancer. Cells 2021, 10, 710. [Google Scholar] [CrossRef]
- Garber, J.E.; Offit, K. Hereditary cancer predisposition syndromes. J. Clin. Oncol. 2005, 23, 276–292. [Google Scholar] [CrossRef]
- Tatineni, S.; Tarockoff, M.; Abdallah, N.; Purrington, K.S.; Assad, H.; Reagle, R.; Petruccelli, N.; Simon, M.S. Racial and ethnic variation in multigene panel testing in a cohort of BRCA1/2-negative individuals who had genetic testing in a large urban comprehensive cancer center. Cancer Med. 2022, 11, 1465–1473. [Google Scholar] [CrossRef]
- Rahman, N. Realizing the promise of cancer predisposition genes. Nature 2014, 505, 302–308. [Google Scholar] [CrossRef]
- Stanislaw, C.; Xue, Y.; Wilcox, W.R. Genetic evaluation and testing for hereditary forms of cancer in the era of next-generation sequencing. Cancer Biol. Med. 2016, 13, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.L.; Borger, D.R.; Szymonifka, J.; Ryan, D.P.; Wo, J.Y.; Blaszkowsky, L.S.; Kwak, E.L.; Allen, J.N.; Wadlow, R.C.; Zhu, A.X.; et al. Mutational analysis and clinical correlation of metastatic colorectal cancer. Cancer 2014, 120, 1482–1490. [Google Scholar] [CrossRef]
- Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Scott, L.; Carter, C.S.; Craig, H.; Mermel Steven, A.R.; et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013, 499, 214–218. [Google Scholar] [CrossRef]
- Evans, O.; Manchanda, R. Population-based genetic testing for precision prevention. Cancer Prev. Res. 2020, 13, 643–648. [Google Scholar] [CrossRef]
- Mateo, J.; Lord, C.J.; Serra, V.; Tutt, A.; Balmaña, J.; Castroviejo-Bermejo, M.; Cruz, C.; Oaknin, A.; Kaye, S.B.; De Bono, J.S. A decade of clinical development of PARP inhibitors in perspective. Ann. Oncol. 2019, 30, 1437–1447. [Google Scholar] [CrossRef]
- Lahtz, C.; Pfeifer, G.P. Epigenetic changes of DNA repair genes in cancer. J. Mol. Cell Biol. 2011, 3, 51–58. [Google Scholar] [CrossRef]
- Gomes, C.C. Recurrent driver mutations in benign tumors. Mutat. Res. /Rev. Mutat. Res. 2022, 789, 108412. [Google Scholar] [CrossRef]
- Frixa, T.; Donzelli, S.; Blandino, G. Oncogenic microRNAs: Key players in malignant transformation. Cancers 2015, 7, 2466–2485. [Google Scholar] [CrossRef] [PubMed]
- Schwab, M. Amplification of oncogenes in human cancer cells. Bioessays 1998, 20, 473–479. [Google Scholar] [CrossRef]
- Theisen, A.; Shaffer, L.G. Disorders caused by chromosome abnormalities. Appl. Clin. Genet. 2010, 3, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Schiller, J.T.; Lowy, D.R. An Introduction to Virus Infections and Human Cancer. In Viruses and Human Cancer. Recent Results in Cancer Research; Wu, T.C., Chang, M.H., Jeang, K.T., Eds.; Springer: Cham, Switzerland, 2021; Volume 217. [Google Scholar] [CrossRef]
- Basu, A.K. DNA damage, mutagenesis and cancer. Int. J. Mol. Sci. 2018, 19, 970. [Google Scholar] [CrossRef] [PubMed]
- Chuang, J.; Jones, P. Epigenetics and MicroRNAs. Pediatr. Res. 2007, 61, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Peter, M. Targeting of mRNAs by multiple miRNAs: The next step. Oncogene 2010, 29, 2161–2164. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.H.; Maher, E.R. DNA methylation: A form of epigenetic control of gene expression. Obstet. Gynaecol. 2010, 12, 37–42. [Google Scholar] [CrossRef]
- Ramassone, A.; Pagotto, S.; Veronese, A.; Visone, R. Epigenetics and MicroRNAs in Cancer. Int. J. Mol. Sci. 2018, 19, 459. [Google Scholar] [CrossRef]
- Alizadeh, A.A.; Aranda, V.; Bardelli, A.; Blanpain, C.; Bock, C.; Borowski, C.; Caldas, C.; Califano, A.; Doherty, M.; Zucman-Rossi, J.; et al. Toward understanding and exploiting tumor heterogeneity. Nat. Med. 2015, 21, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Turajlic, S.; Sottoriva, A.; Graham, T.; Swanton, C. Resolving genetic heterogeneity in cancer. Nat. Rev. Genet. 2019, 20, 404–416. [Google Scholar] [CrossRef]
- Burrell, R.; McGranahan, N.; Bartek, J.; Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 2013, 501, 338–345. [Google Scholar] [CrossRef]
- Guo, M.; Peng, Y.; Gao, A.; Du, C.; Herman, J.G. Epigenetic heterogeneity in cancer. Biomark. Res. 2019, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Fardi, M.; Solali, S.; Hagh, M.F. Epigenetic mechanisms as a new approach in cancer treatment: An updated review. Genes Dis. 2018, 5, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Ilango, S.; Paital, B.; Jayachandran, P.; Padma, P.R.; Nirmaladevi, R. Epigenetic alterations in cancer. Front. Biosci. Landmark 2020, 25, 1058–1109. [Google Scholar] [CrossRef]
- Malone, E.R.; Oliva, M.; Sabatini, P.J.; Stockley, T.L.; Siu, L.L. Molecular profiling for precision cancer therapies. Genome Med. 2020, 12, 8. [Google Scholar] [CrossRef]
- Crowley, E.; Di Nicolantonio, F.; Loupakis, F.; Bardelli, A. Liquid biopsy: Monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 2013, 10, 472–484. [Google Scholar] [CrossRef]
- Joung, J.G.; Bae, J.S.; Kim, S.C.; Jung, H.; Park, W.Y.; Song, S.Y. Genomic characterization and comparison of multi-regional and pooled tumor biopsy specimens. PLoS ONE 2016, 11, e0152574. [Google Scholar] [CrossRef]
- Marcus, L.; Lemery, S.J.; Keegan, P.; Pazdur, R. FDA approval summary: Pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin. Cancer Res. 2019, 25, 3753–3758. [Google Scholar] [CrossRef]
- Ricciuti, B.; Genova, C.; Crinò, L.; Libra, M.; Leonardi, G.C. Antitumor activity of larotrectinib in tumors harboring NTRK gene fusions: A short review on the current evidence. OncoTargets Ther. 2019, 12, 3171–3179. [Google Scholar] [CrossRef] [PubMed]
- Kalmanti, L.; Saußele, S.; Lauseker, M.; Müller, M.C.; Dietz, C.T.; Heinrich, L.; Hanfstein, B.; Proetel, U.; Fabarius, A.; Krause, S.W.; et al. Safety and efficacy of imatinib in CML over a period of 10 years: Data from the randomized CML-study IV. Leukemia 2015, 29, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, R.B.; André, T.; Atreya, C.E.; Schellens, J.H.; Yoshino, T.; Bendell, J.C.; Hollebecque, A.; McRee, A.J.; Siena, S.; Van Cutsem, E.; et al. Combined BRAF, EGFR, and MEK inhibition in patients with BRAF V600E-mutant colorectal cancer. Cancer Discov. 2018, 8, 428–443. [Google Scholar] [CrossRef] [PubMed]
- Lou, N.N.; Zhang, X.C.; Chen, H.J.; Zhou, Q.; Yan, L.X.; Xie, Z.; Su, J.; Che, Z.H.; Tu, H.Y.; Yang, J.J.; et al. Clinical outcomes of advanced non-small-cell lung cancer patients with EGFR mutation, ALK rearrangement and EGFR/ALK co-alterations. Oncotarget 2016, 7, 65185. [Google Scholar] [CrossRef]
- Vaclova, T.; Grazini, U.; Ward, L.; O’Neill, D.; Markovets, A.; Huang, X.; Chmielecki, J.; Hartmaier, R.; Thress, K.S.; Smith, P.D.; et al. Clinical impact of subclonal EGFR T790M mutations in advanced-stage EGFR-mutant non-small-cell lung cancers. Nat. Commun. 2021, 12, 1780. [Google Scholar] [CrossRef]
- Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018, 15, 81–94. [Google Scholar] [CrossRef]
- Ma, C.; Wei, S.; Song, Y. T790M and acquired resistance of EGFR TKI: A literature review of clinical reports. J. Thorac. Dis. 2011, 3, 10. [Google Scholar] [CrossRef]
- Boikos, S.A.; Pappo, A.S.; Killian, J.K.; LaQuaglia, M.P.; Weldon, C.B.; George, S.; Trent, J.; von Mehren, M.; Wright, J.A.; Schiffman, J.D.; et al. Molecular subtypes of KIT/PDGFRA wild-type gastrointestinal stromal tumors: A report from the National Institutes of Health Gastrointestinal Stromal Tumor Clinic. JAMA Oncol. 2016, 2, 922–928. [Google Scholar] [CrossRef]
- Mondaca, S.; Offin, M.; Borsu, L.; Myers, M.; Josyula, S.; Makhnin, A.; Shen, R.; Riely, G.J.; Rudin, C.M.; Arcila, M.E.; et al. Lessons learned from routine, targeted assessment of liquid biopsies for EGFR T790M resistance mutation in patients with EGFR mutant lung cancers. Acta Oncol. 2019, 58, 1634–1639. [Google Scholar] [CrossRef] [PubMed]
- Lim, Z.F.; Ma, P.C. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J. Hematol. Oncol. 2019, 12, 134. [Google Scholar] [CrossRef] [PubMed]
- Dokmanovic, M.; Clarke, C.; Marks, P.A. Histone deacetylase inhibitors: Overview and perspectives. Mol. Cancer Res. 2007, 5, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Hu, G.; Luo, C.; Liang, Z. DNA methyltransferase inhibitors: An updated patent review (2012–2015). Expert Opin. Ther. Pat. 2016, 26, 1017–1030. [Google Scholar] [CrossRef]
- Webster, R.M. Combination therapies in oncology. Nature reviews. Drug Discov. 2016, 15, 81. [Google Scholar] [CrossRef]
- Pérez, M.E.M.; Rodríguez-Fonseca, R.A.; Jiménez, E.M.; Rodríguez, M.H. Epigenetics opportunities as an approach to breast cancer treatment. Epi-pharmaceuticals for breast cancer. Rev. Mex. De Mastología 2021, 10, 93–97. [Google Scholar] [CrossRef]
- Maio, M.; Lahn, M.; Di Giacomo, A.M.; Covre, A.; Calabrò, L.; Ibrahim, R.; Fox, B. Siena Think Tank. A vision of immuno-oncology: The Siena think tank of the Italian network for tumor biotherapy (NIBIT) foundation. J. Exp. Clin. Cancer Res. 2021, 40, 240. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Larson, K.L.; Huang, B.; Weiss, H.L.; Hull, P.; Westgate, P.M.; Miller, R.W.; Arnold, S.; Kolesar, J.M. Clinical outcomes of molecular tumor boards: A systematic review. JCO Precis. Oncol. 2021, 5, 1122–1132. [Google Scholar] [CrossRef]
- Perrin, J.; Capitao, M.; Mougin-Degraef, M.; Guérard, F.; Faivre-Chauvet, A.; Rbah-Vidal, L.; Gaschet, J.; Guilloux, Y.; Kraeber-Bodèré, F.; Charel, M.; et al. Cell tracking in cancer immunotherapy. Front. Med. 2020, 7, 34. [Google Scholar] [CrossRef]
- Bao, B.; Ahmad, A.; Azmi, A.S.; Ali, S.; Sarkar, F.H. Overview of cancer stem cells (CSCs) and mechanisms of their regulation: Implications for cancer therapy. Curr. Protoc. Pharmacol. 2013, 61, 14–25. [Google Scholar] [CrossRef]
- Najafi, M.; Farhood, B.; Mortezaee, K. Cancer stem cells (CSCs) in cancer progression and therapy. J. Cell. Physiol. 2019, 234, 8381–8395. [Google Scholar] [CrossRef]
- Tan, B.T.; Park, C.Y.; Ailles, L.E.; Weissman, I.L. The cancer stem cell hypothesis: A work in progress. Lab. Investig. 2006, 86, 1203–1207. [Google Scholar] [CrossRef] [PubMed]
- Bhat, G.R.; Sethi, I.; Sadida, H.Q.; Rah, B.; Mir, R.; Algehainy, N.; Altedlavi, I.; Masoodi, T.; Subbaraj, G.M.; Bhat, A.A.; et al. Cancer cell plasticity: From cellular, molecular, and genetic mechanisms to tumor heterogeneity and drug resistance. Cancer Metastasis Rev. 2024, 43, 197–228. [Google Scholar] [CrossRef]
- Nagata, S.; Hirano, K.; Kanemori, M.; Sun, L.T.; Tada, T. Self-renewal and pluripotency acquired through somatic reprogramming to human cancer stem cells. PLoS ONE 2012, 7, e48699. [Google Scholar] [CrossRef]
- El-Tanani, M.; Rabbani, S.A.; Satyam, S.M.; Rangraze, I.R.; Wali, A.F.; El-Tanani, Y.; Aljabali, A.A. Deciphering the role of cancer stem cells: Drivers of tumor evolution, therapeutic resistance, and precision medicine strategies. Cancers 2025, 17, 382. [Google Scholar] [CrossRef]
- Ehrlich, P. Man with the magic bullet. Singap. Med. J. 2010, 51, 842. [Google Scholar]
- Sahoo, S.; Ashraf, B.; Duddu, A.S.; Biddle, A.; Jolly, M.K. Interconnected high-dimensional landscapes of epithelial–mesenchymal plasticity and stemness in cancer. Clin. Exp. Metastasis 2022, 39, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Leedham, S.J.; Wright, N.A. Expansion of a mutated clone: From stem cell to tumour. J. Clin. Pathol. 2008, 61, 164–171. [Google Scholar] [CrossRef]
- O’Brien, C.A.; Kreso, A.; Jamieson, C.H. Cancer stem cells and self-renewal. Clin. Cancer Res. 2010, 16, 3113–3120. [Google Scholar] [CrossRef]
- Huang, T.; Song, X.; Xu, D.; Tiek, D.; Goenka, A.; Wu, B.; Sastry, N.; Hu, B.; Cheng, S.Y. Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics 2020, 10, 8721–8743. [Google Scholar] [CrossRef]
- Melzer, C.; von der Ohe, J.; Lehnert, H.; Ungefroren, H.; Hass, R. Cancer stem cell niche models and contribution by mesenchymal stroma/stem cells. Mol. Cancer 2017, 16, 28. [Google Scholar] [CrossRef] [PubMed]
- Borovski, T.; De Sousa E Melo, F.; Vermeulen, L.; Medema, J.P. Cancer stem cell niche: The place to be. Cancer Res. 2011, 71, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Kapoor-Narula, U.; Lenka, N. Cancer stem cells and tumor heterogeneity: Deciphering the role in tumor progression and metastasis. Cytokine 2022, 157, 155968. [Google Scholar] [CrossRef] [PubMed]
- Prasetyanti, P.R.; Medema, J.P. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol. Cancer 2017, 16, 41. [Google Scholar] [CrossRef]
- Trosko, J.E. The concept of “cancer stem cells” in the context of classic carcinogenesis hypotheses and experimental findings. Life 2021, 11, 1308. [Google Scholar] [CrossRef]
- Forouzannia, F.; Sivaloganathan, S. Cancer Stem Cells, the Tipping Point: Minority Rules? Curr. Stem Cell Rep. 2017, 3, 240–247. [Google Scholar] [CrossRef]
- Dalerba, P.; Dylla, S.J.; Park, I.K.; Liu, R.; Wang, X.; Cho, R.W.; Hoey, T.; Gurney, A.; Huang, E.H.; Clarke, M.F.; et al. Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl. Acad. Sci. USA 2007, 104, 10158–10163. [Google Scholar] [CrossRef]
- Kido, T.; Lau, Y.F. Roles of the Y chromosome genes in human cancers. Asian J. Androl. 2015, 17, 373–380. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gordon, D.; Resio, B.; Pellman, D. Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet. 2012, 13, 189–203. [Google Scholar] [CrossRef]
- Bruno, S.; Bussolati, B.; Grange, C.; Collino, F.; di Cantogno, L.V.; Herrera, M.B.; Bianconi, l.; Tetta, C.; Segoloni, G.; Camussi, G. Isolation and characterization of resident mesenchymal stem cells in human glomeruli. Stem Cells Dev. 2009, 18, 867–880. [Google Scholar] [CrossRef]
- Nomdedeu, M.; Pereira, A.; Calvo, X.; Colomer, J.; Sole, F.; Arias, A.; Gomez, C.; Luna, E.; Cervera, J.; Arnan, M.; et al. Clinical and biological significance of isolated Y chromosome loss in myelodysplastic syndromes and chronic myelomonocytic leukemia. A report from the Spanish MDS Group. Leuk. Res. 2017, 63, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hafiz, H.A.; Schafer, J.M.; Chen, X.; Xiao, T.; Gauntner, T.D.; Li, Z.; Theodorescu, D. Y chromosome loss in cancer drives growth by evasion of adaptive immunity. Nature 2023, 619, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Drew, L. Cancer more deadly when tumours lack Y chromosomes—And the loss could be contagious. Nature 2025, 0205. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shen, Y.; Choi, S.; Abdel-Hafiz, H.; Basu, M.; Hoelzen, L.; Tufano, M.; Mani, S.K.K.; Ranipour, M.; Zhu, J.; et al. Concurrent loss of the Y chromosome in cancer and T cells impacts outcome. Nature 2025, 642, 1–10. [Google Scholar] [CrossRef]
- Abou-el-Enein, M. The fate (s) of CAR T-Cell therapy: Navigating the risks of CAR+ T-Cell malignancy. Blood Cancer Discov. 2024, 5, 249–257. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, L.; Yang, Y.; Li, S.; Liu, Y.; Chen, C. Mosaic loss of chromosome Y promotes leukemogenesis and clonal hematopoiesis. JCI Insight 2022, 7, e153768. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Forsberg, L.A.; Rasi, C.; Malmqvist, N.; Davies, H.; Pasupulati, S.; Pakalapati, G.; Sandgren, J.; Diaz de Ståhl, T.; Zaghlool, A.; Giedraitis, V.; et al. Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. Nat. Genet. 2014, 46, 624–628. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brown, D.W.; Machiela, M.J. Why Y? Downregulation of Chromosome Y Genes Potentially Contributes to Elevated Cancer Risk. J. Natl. Cancer Inst. 2020, 112, 871–872. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qian, Z.; Joslin, J.M.; Tennant, T.R.; Reshmi, S.C.; Young, D.J.; Stoddart, A.; Larson, R.; Le Beau, M.M. Cytogenetic and genetic pathways in therapy-related acute myeloid leukemia. Chem.-Biol. Interact. 2010, 184, 50–57. [Google Scholar] [CrossRef]
- Caceres, A.; Jene, A.; Esko, T.; Perez-Jurado, L.A.; Gonzalez, J.R. Extreme downregulation of chromosome Y and Alzheimer’s disease in men. Neurobiol. Aging 2020, 90, 150.e1–150.e4. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Hurtado, I.A.; Sanchez-Méndez, A.D.; Becerra-Loaiza, D.S.; Villalobos-Rangel, H.; Torres-Carillo, N.; Gallegos-Arreola, M.P.; Aguilar-Velazquez, J.A. Loss of the Y Chromosome: A Review of Molecular Mechanisms, Age Inference, and Implications for Men’s Health. Int. J. Mol. Sci. 2024, 25, 4230. [Google Scholar] [CrossRef] [PubMed]
- Chandel, N.S.; Jasper, H.; Ho, T.T.; Passegue, E. Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nat. Cell Biol. 2016, 18, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Matsui, W.H. Cancer stem cell signaling pathways. Medicine 2016, 95, S8–S19. [Google Scholar] [CrossRef]
- Zhou, H.M.; Zhang, J.G.; Zhang, X.; Li, Q. Targeting cancer stem cells for reversing therapy resistance: Mechanism, signaling, and prospective agents. Signal Transduct. Target. Ther. 2021, 6, 62. [Google Scholar] [CrossRef]
- Shibue, T.; Weinberg, R.A. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 2017, 14, 611–629. [Google Scholar] [CrossRef] [PubMed]
- Olivares-Urbano, M.A.; Griñán-Lisón, C.; Marchal, J.A.; Núñez, M.I. CSC radioresistance: A therapeutic challenge to improve radiotherapy effectiveness in cancer. Cells 2020, 9, 1651. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.; Merhej, G.; Saravanan, S.; Chen, H. Cancer resistance to immunotherapy: What is the role of cancer stem cells? Cancer Drug Resist. 2022, 5, 981. [Google Scholar] [CrossRef]
- Kelley, S.M.; Ravichandran, K.S. Putting the brakes on phagocytosis: “don’t-eat-me” signaling in physiology and disease. EMBO Rep. 2021, 22, e52564. [Google Scholar] [CrossRef]
- Wu, B.; Shi, X.; Jiang, M.; Liu, H. Cross-talk between cancer stem cells and immune cells: Potential therapeutic targets in the tumor immune microenvironment. Mol. Cancer 2023, 22, 38. [Google Scholar] [CrossRef]
- Eun, K.; Ham, S.W.; Kim, H. Cancer stem cell heterogeneity: Origin and new perspectives on CSC targeting. BMB Rep. 2017, 50, 117. [Google Scholar] [CrossRef]
- Deldar Abad Paskeh, M.; Asadi, S.; Zabolian, A.; Saleki, H.; Khoshbakht, M.A.; Sabet, S.; Naghdi, M.J.; Hashemi, M.; Hushmandi, K.; Sethi, G.; et al. Targeting cancer stem cells by dietary agents: An important therapeutic strategy against human malignancies. Int. J. Mol. Sci. 2021, 22, 11669. [Google Scholar] [CrossRef] [PubMed]
- Board on Health Sciences Policy; Committee on Strategies for Responsible Sharing of Clinical Trial Data. Sharing Clinical trial Data: Maximizing Benefits, Minimizing Risk; The National Academies Press: Washington, DC, USA, 2015. [Google Scholar]
- Taherdoost, H. Innovation Through Research and Development: Strategies for Success; Springer Nature: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Fortunato, S.; Bergstrom, C.T.; Börner, K.; Evans, J.A.; Helbing, D.; Milojević, S.; Petersen, A.M.; Radicchi, F.; Sinatra, R.; Barabási, A.L.; et al. Science of science. Science 2018, 359, eaao0185. [Google Scholar] [CrossRef]
- Brittain, S.; Ibbett, H.; de Lange, E.; Dorward, L.; Hoyte, S.; Marino, A.; Milner-Gulland, E.J.; Newth, J.; Rakotonarivo, S.; Verissimo, D.; et al. Ethical considerations when conservation research involves people. Conserv. Biol. 2020, 34, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Joensuu, H.; Simes, R.J.; Price, T.J.; Yip, S.; Hague, W.; Sjoquist, K.M.; Zalcberg, J. Challenges of international oncology trial collaboration—A call to action. Br. J. Cancer 2019, 121, 515–521. [Google Scholar] [CrossRef]
- Braveman, P.A.; Kumanyika, S.; Fielding, J.; LaVeist, T.; Borrell, L.N.; Manderscheid, R.; Troutman, A. Health disparities and health equity: The issue is justice. Am. J. Public Health 2011, 101 (Suppl. S1), S149–S155. [Google Scholar] [CrossRef] [PubMed]
- Brennan, E.; Suchman, M.C. Law and technology in healthcare organizations. In Research Handbook on Socio-Legal Studies of Medicine and Health; Edward Elgar Publishing: Northampton, MA, USA, 2020; pp. 169–190. [Google Scholar] [CrossRef]
- Degeling, C.; Johnson, J.; Kerridge, I.; Wilson, A.; Ward, M.; Stewart, C.; Gilbert, G. Implementing a One Health approach to emerging infectious disease: Reflections on the socio-political, ethical and legal dimensions. BMC Public Health 2015, 15, 1307. [Google Scholar] [CrossRef]
- Small, A.; Wainwright, D. Privacy and security of electronic patient records–Tailoring multimethodology to explore the socio-political problems associated with Role Based Access Control systems. Eur. J. Oper. Res. 2018, 265, 344–360. [Google Scholar] [CrossRef]
- Lehoux, P. The Problem of Health Technology; Routledge: New York, NY, USA, 2014; ISBN 9781315810782. [Google Scholar] [CrossRef]
Level of Heterogeneity | Mechanisms Contributing to Heterogeneity | Implications for Targeted Therapy | Implications for Immunotherapy |
---|---|---|---|
Genetic | Mutations, genomic instability, exposure to mutagens. | Resistance because of lack of targets in subclones; outgrowth of resistant subclones with different mutations. | Variable antigen expression leading to immune evasion in some subclones. |
Epigenetic | DNA methylation, histone modifications. | Resistance through altered expression of drug targets or resistance-conferring genes. | Variable expression of immune-related molecules. |
Phenotypic | Genetic and epigenetic variations, TME interactions. | Differential drug sensitivity across subclones selection of drug-tolerant or resistant phenotypes. | Varying levels of immunogenicity; different interactions with immune cells; creation of immunosuppressive microenvironment by some subclones. |
Screening/Detection Method | Key Limitations | Associated Challenges |
---|---|---|
Imaging (Mammography, CT, MRI) | Limited sensitivity for small tumors; not always cancer-specific; false positives; accessibility and cost. | Improving resolution and specificity; reducing false positives; increasing accessibility. |
Tumor Markers (PSA, CA-125) | Poor accuracy and efficacy for many cancers; low sensitivity and specificity; false positives and negatives; non-cancerous conditions may raise levels. | Identifying more specific and sensitive markers; improving positive predictive value. |
Multi-Omics | Ethical considerations on standardization of data interpretation and integration (data privacy). | Developing robust computational tools for data analysis and integration; establishing ethical guidelines. |
Nanotechnology | Translation from lab to clinic, ensuring safety and efficacy in vivo. | Overcoming biological barriers for targeted delivery; long-term safety assessment. |
AI and Machine Learning | Data quality and security; algorithm reliability and transparency; integration with existing systems; implementation costs; ethical and regulatory considerations. | Ensure explainability and fairness of algorithms; validate performance in diverse populations; establish regulatory frameworks. |
Liquid Biopsies (ctDNA, etc.) | Low analyte concentration in early stages; need for highly sensitive and specific detection methods. | Improving detection sensitivity and specificity; distinguishing cancer-derived signals from background noise. |
Model Type | Key Advantages | Key Limitations |
---|---|---|
2D Cell Culture | Simple, inexpensive, high-throughput screening | Lacks 3D architecture, cell–cell/matrix interactions, complex microenvironment, immune component; limited clinical relevance. |
3D Cell Culture | Improved structure over 2D; some cell–cell interactions | Often lacks vasculature, complex microenvironment, immune component; variability in protocols. |
Murine Xenografts | Allows in vivo drug testing | Immunocompromised mice lack human immune system; murine microenvironment differs from human; limited metastasis in some models; physiological differences. |
Humanized Mice | More relevant immune context for immunotherapy testing; can test unapproved drugs | Incomplete human immune system reconstitution; murine physiology still differs; expensive and technically complex. |
PDXs | Preserves original tumor histology and genomics | Lacks fully intact human microenvironment (murine fibroblasts); expensive and difficult to generate; limited scalability. |
Organoids | Better representation of human cancer heterogeneity; higher success rate than cell lines | Often lacks vasculature, complete microenvironment (stromal and immune components); need for standardized protocols. |
GEMMs | Useful for studying cancer development driven by specific genetic alterations | Species-specific pharmacological and safety responses; time-consuming and expensive to generate and maintain. |
Genetic Mutations | Epigenetic Modifications | Chromosomal Abnormalities | Integration of Viruses and Mutagens |
---|---|---|---|
Mutations in oncogenes | DNA methylations | Deletions | Oncogenic Virus |
Mutations in tumor genes | MicroRNA (miRNA) | Translocations | Chemical Agents and Radiation |
Mutations in genes involved in DNA repair | Duplication |
Advanced Diagnostics and Molecular Profiling | Targeted Therapies | Immunotherapy | Epipharmaceuticals | Dynamic Monitoring and Adaptation of the Treatment |
---|---|---|---|---|
Liquid biopsy | Molecularly targeted drugs | Immune checkpoint inhibitors | Histone deacetylase inhibitor (HDACi) | Molecular Tumor Board (MTB) |
Next-Generation Sequencing (NGS) | Therapeutic combinations | Methyltransferase inhibitor (DNMTi) | Approaches “Track and Trace” | |
Multi-regional biopsies | Cancer-type agnostic therapies | Combinations with standard therapies |
Property | Normal Stem Cells | Cancer Stem Cells |
---|---|---|
Self-renewal | Long-term ability to self-renew, maintaining tissue integrity. | Long-term self-renewal, but dysregulated, leading to overpopulation and tumor growth. |
Differentiation Capacity | Differentiate into multiple specialized cell lineages for tissue function. | Differentiate into various cell types that make up the heterogeneous tumor. |
Proliferative Potential | Some exhibit high proliferative potential, balanced for tissue regeneration. | High proliferative potential, essential for sustained tumor growth and mutation retention. |
Homeostatic Regulation | Tightly regulated balance between self-renewal and differentiation, maintaining constant cell numbers. | Dysregulated self-renewal and impaired differentiation, leading to uncontrolled growth. |
Genetic/Epigenetic Stability | Genetically and epigenetically stable. | Often carry genetic mutations and epigenetic changes that drive malignancy. |
Tumorigenicity | Do not have tumor-starting ability. | Tumor-start (tumor-forming) and responsible for tumor genesis. |
Pathway | Role in Normal Stem Cells | Dysregulation in CSCs/Carcinogenesis | Key Regulators/Components |
---|---|---|---|
Wnt | Essential for embryonic development, tissue homeostasis, and self-renewal of various adult stem cells (e.g., epidermis, intestine, and mammary gland). | Constitutive activation in many cancers; enhances CSC self-renewal, proliferation, invasion, and metastasis. Mutations in APC common in CRC. | β-catenin, Frizzled receptors, LRP5/6, APC. |
Notch | Critical for cell fate specification, differentiation, and maintenance of stem/progenitor cells during development and in adult tissues (e.g., hematopoietic and neural). | Aberrant expression linked to poor prognosis; hyper-activation increases proliferation, angiogenesis, drug resistance, EMT, and BCSC numbers. Activating NOTCH1 mutations in T-ALL. | Notch receptors (1–4), Jagged/DLL ligands, NICD. |
Hedgehog (HH) | Regulates cellular proliferation, differentiation, and migration during embryogenesis and in specific adult stem cell populations (e.g., neural and skin). | Commonly activated in cancer, promoting tumor progression and metastasis; associated with aggressive tumors and high CSC content. Mutations in PTCH1 predispose to medulloblastomas. | Sonic/Indian/Desert Hedgehog ligands, Patched (PTCH), Smoothened (SMO), Gli transcription factors (Gli1,2,3). |
NF-KB | Involved in immune response, inflammation, survival, and differentiation; influences hematopoietic stem cell self-renewal. | Constitutive activation observed in many cancers; contributes to chemoresistance, tumorigenesis, and CSC self-renewal. | RelA, RelB, c-Rel, NFκB1, NFκB2, IKK. |
HOW/STATE | Crucial for embryonic stem cell self-renewal, hematopoiesis, and neurogenesis. | Aberrant activation observed in CSCs from various tumors (e.g., breast, prostate, blood, and glial); promotes CSC proliferation and stemness. | JAK proteins, STAT proteins (e.g., STAT3). |
PI3K/PTEN | Involved in cell cycle progression, growth, and survival; important for self-renewal in embryonic and hematopoietic stem cells. | Inactivating mutations in PTEN are common in glioblastoma; activation of PI3K/PKB or inactivation of PTEN leads to neoplastic phenotypes. | PI3K, PTEN, PKB (Akt). |
Hippo | Regulates development, tissue homeostasis, and organ size. | Downstream effectors YAP/TAZ act as oncogenes, promoting proliferation, invasion, EMT, metastasis, and BCSC self-renewal. | MST1/2, LATS1/2, MOB1A/B, YAP, TAZ. |
TGF β | Complex signaling network involved in normal and pathological processes, including cell growth, differentiation, and apoptosis. | Important regulator of tumorigenesis, inducing EMT and regulating CSC maintenance; correlates with poor prognosis. | TGF-β ligands, Type I/II receptors, SMAD proteins. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colonna, G. Overcoming Barriers in Cancer Biology Research: Current Limitations and Solutions. Cancers 2025, 17, 2102. https://doi.org/10.3390/cancers17132102
Colonna G. Overcoming Barriers in Cancer Biology Research: Current Limitations and Solutions. Cancers. 2025; 17(13):2102. https://doi.org/10.3390/cancers17132102
Chicago/Turabian StyleColonna, Giovanni. 2025. "Overcoming Barriers in Cancer Biology Research: Current Limitations and Solutions" Cancers 17, no. 13: 2102. https://doi.org/10.3390/cancers17132102
APA StyleColonna, G. (2025). Overcoming Barriers in Cancer Biology Research: Current Limitations and Solutions. Cancers, 17(13), 2102. https://doi.org/10.3390/cancers17132102