Molecular Mechanisms of Lymph Node Metastasis in Gallbladder Cancer: Insights into the Tumor Microenvironment
Abstract
:1. Introduction
2. Molecular Mechanisms Driving Lymph Node Metastasis in GBC
2.1. Angiogenesis and Lymphangiogenesis
2.2. Chemokines and Their Receptors
2.3. Hypoxia and Related Pathways
2.4. Cell Adhesion and Migration Signaling
2.4.1. Matrix Metalloproteinases
2.4.2. Integrins
2.4.3. Fibronectins
2.4.4. Exosomes
2.5. Non-Coding RNAs
2.5.1. Long Non-Coding RNAs
2.5.2. MicroRNAs
2.5.3. Circular RNAs
2.6. Non-Canonical Regulators: Ubiquitin and Epigenetic Modulators
2.7. Metabolic Regulation
3. Tumor Microenvironment and Immune Regulation
3.1. Cancer-Associated Fibroblasts
3.2. Macrophages
3.3. Dendritic Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AKT | Protein kinase B |
aPKC-ι | Atypical protein kinase C iota |
BCa | Bladder cancer |
CAF | Cancer-associated fibroblast |
CCA | Cholangiocarcinoma |
CCL2 | C-C motif chemokine ligand 2 |
CCR2 | C-C chemokine receptor type 2 |
CD1a-DC | CD1a+ monocyte-derived DC |
circRNA | Circular RNA |
CXCL5 | C-X-C motif chemokine ligand 5 |
CXCR2 | C-X-C chemokine receptor 2 |
DC | Dendritic cell |
ECM | Extracellular matrix |
EMT | Epithelial–mesenchymal transition |
ERK | Extracellular signal-regulated kinase |
FABP1 | Fatty-acid-binding protein 1 |
FASN | Fatty acid synthase |
FN | Fibronectin |
GBC | Gallbladder cancer |
GLI-1 | Glioma-associated homologue-1 |
HIF | Hypoxia-inducible factor |
HSF1 | Heat shock factor 1 |
ICC | Intrahepatic cholangiocarcinoma |
ITGA11 | Integrin alpha 11 |
lncRNA | Long non-coding RNA |
LNM | Lymph node metastasis |
miRNA | MicroRNA |
MEK | Mitogen-activated protein kinase |
MMP | Matrix metalloproteinase |
mTOR | Mammalian target of rapamycin |
ncRNA | Non-coding RNA |
PD-L1 | Programmed cell death ligand 1 |
PLOD2 | Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 |
TAM | Tumor-associated macrophage |
TGF-β | Transforming growth factor-beta |
TME | Tumor microenvironment |
VEGF | Vascular endothelial growth factor |
VEGFR-2 | Vascular endothelial growth factor receptor-2 |
VEGFR-3 | Vascular endothelial growth factor receptor-3 |
YKL-40 | Chitinase-3-like protein 1 |
References
- Roa, J.C.; García, P.; Kapoor, V.K.; Maithel, S.K.; Javle, M.; Koshiol, J. Gallbladder cancer. Nat. Rev. Dis. Prim. 2022, 8, 69. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Ji, H.; Hu, C.; Yang, X.; Liu, Y.; Ji, G.; Ge, S.; Wang, X.; Wang, M. Lymph node metastasis in cancer progression: Molecular mechanisms, clinical significance and therapeutic interventions. Signal Transduct. Target. Ther. 2023, 8, 367. [Google Scholar] [CrossRef]
- Ito, K.; Kawaguchi, Y.; Nishioka, Y.; Miyata, A.; Ichida, A.; Akamatsu, N.; Kokudo, N.; Hasegawa, K. Original articles: Step-by-step decision-making for achieving oncologically acceptable but avoiding over-invasive surgery for gallbladder cancer. HPB 2025, 27, 186–194. [Google Scholar] [CrossRef]
- Catalano, G.; Alaimo, L.; Chatzipanagiotou, O.P.; Ruzzenente, A.; Aucejo, F.; Marques, H.P.; Lam, V.; Hugh, T.; Bhimani, N.; Maithel, S.K.; et al. Machine learning prediction of early recurrence after surgery for gallbladder cancer. Br. J. Surg. 2024, 111, znae297. [Google Scholar] [CrossRef]
- Uesaka, K.; Yasui, K.; Morimoto, T.; Torii, A.; Yamamura, Y.; Kodera, Y.; Hirai, T.; Kato, T.; Kito, T. Visualization of routes of lymphatic drainage of the gallbladder with a carbon particle suspension. J. Am. Coll. Surg. 1996, 183, 345–350. [Google Scholar]
- Tsukada, K.; Kurosaki, I.; Uchida, K.; Shirai, Y.; Oohashi, Y.; Yokoyama, N.; Watanabe, H.; Hatakeyama, K. Lymph node spread from carcinoma of the gallbladder. Cancer 1997, 80, 661–667. [Google Scholar] [CrossRef]
- Shirai, Y.; Yoshida, K.; Tsukada, K.; Ohtani, T.; Muto, T. Identification of the regional lymphatic system of the gallbladder by vital staining. Br. J. Surg. 1992, 79, 659–662. [Google Scholar] [CrossRef]
- Liu, G.-J.; Li, X.H.; Chen, Y.X.; Sun, H.D.; Zhao, G.M.; Hu, S.Y. Radical lymph node dissection and assessment: Impact on gallbladder cancer prognosis. World J. Gastroenterol. 2013, 19, 5150–5158. [Google Scholar] [CrossRef]
- Elhanani, O.; Ben-Uri, R.; Keren, L. Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell 2023, 41, 404–420. [Google Scholar] [CrossRef]
- Sharma, N.; Bhat, S.H.; Mathew, B.; Yadav, M.; Tripathi, G.; Bindal, V.; Yadav, S.; Sharma, N.; Pandey, S.; Hemati, H.; et al. Bile molecular landscape provides pathological insight and classifies signatures predictive of carcinoma of the gall bladder. Mol. Ther. Oncol. 2024, 32, 200904. [Google Scholar] [CrossRef]
- Ferrara, N. VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer 2002, 2, 795–803. [Google Scholar] [CrossRef]
- Tanaka, K.; Sugisaka, J.; Shiraishi, Y.; Watanabe, Y.; Daga, H.; Azuma, K.; Nishino, K.; Mori, M.; Ota, T.; Saito, H.; et al. Serum VEGF-A as a biomarker for the addition of bevacizumab to chemo-immunotherapy in metastatic NSCLC. Nat. Commun. 2025, 16, 2825. [Google Scholar] [CrossRef]
- Pirson, S.; Gautier-Isola, M.; Baudin, L.; Rouaud, L.; Vanwynsberghe, A.; Deroye, J.; Bekisz, S.; Gucciardo, F.; Lebeau, A.; Buntinx, F.; et al. AXL promotes lymphangiogenesis by amplifying VEGF-C-mediated AKT pathway. Cell. Mol. Life Sci. 2025, 82, 95. [Google Scholar] [CrossRef]
- Lee, S.; Shroff, R.T.; Makawita, S.; Xiao, L.; De Armas, A.D.; Bhosale, P.; Reddy, K.; Shalaby, A.; Raghav, K.; Pant, S.; et al. Phase II Study of Ramucirumab in Advanced Biliary Tract Cancer Previously Treated by Gemcitabine-Based Chemotherapy. Clin. Cancer Res. 2022, 28, 2229–2236. [Google Scholar] [CrossRef]
- Ji, H.; Cao, R.; Yang, Y.; Zhang, Y.; Iwamoto, H.; Lim, S.; Nakamura, M.; Andersson, P.; Wang, J.; Sun, Y.; et al. TNFR1 mediates TNF-α-induced tumour lymphangiogenesis and metastasis by modulating VEGF-C-VEGFR3 signalling. Nat. Commun. 2014, 5, 4944. [Google Scholar] [CrossRef]
- Jiang, X.; Li, C.; Lin, B.; Hong, H.; Jiang, L.; Zhu, S.; Wang, X.; Tang, N.; Li, X.; She, F.; et al. cIAP2 promotes gallbladder cancer invasion and lymphangiogenesis by activating the NF-κB pathway. Cancer Sci. 2017, 108, 1144–1156. [Google Scholar] [CrossRef]
- Lin, W.; Jiang, L.; Chen, Y.; She, F.; Han, S.; Zhu, J.; Zhou, L.; Tang, N.; Wang, X.; Li, X. Vascular endothelial growth factor-D promotes growth, lymphangiogenesis and lymphatic metastasis in gallbladder cancer. Cancer Lett. 2012, 314, 127–136. [Google Scholar] [CrossRef]
- Müller, A.; Homey, B.; Soto, H.; Ge, N.; Catron, D.; Buchanan, M.E.; McClanahan, T.; Murphy, E.; Yuan, W.; Wagner, S.N.; et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001, 410, 50–56. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, H.; Sun, M.; Deng, X.; Wu, X.; Ma, Y.; Li, M.; Shuoa, S.M.; You, Q.; Miao, L. CXCL5/CXCR2 axis in tumor microenvironment as potential diagnostic biomarker and therapeutic target. Cancer Commun. 2020, 40, 69–80. [Google Scholar] [CrossRef]
- Roy, S.; Kumaravel, S.; Banerjee, P.; White, T.K.; O’brien, A.; Seelig, C.; Chauhan, R.; Ekser, B.; Bayless, K.J.; Alpini, G.; et al. Tumor Lymphatic Interactions Induce CXCR2-CXCL5 Axis and Alter Cellular Metabolism and Lymphangiogenic Pathways to Promote Cholangiocarcinoma. Cells 2021, 10, 3093. [Google Scholar] [CrossRef]
- Chen, W.; Chen, M.; Hong, L.; Xiahenazi, A.; Huang, M.; Tang, N.; Yang, X.; She, F.; Chen, Y. M2-like tumor-associated macrophage-secreted CCL2 facilitates gallbladder cancer stemness and metastasis. Exp. Hematol. Oncol. 2024, 13, 83. [Google Scholar] [CrossRef]
- Semenza, G.L. Hypoxia-Inducible Factors in Physiology and Medicine. Cell 2012, 148, 399–408. [Google Scholar] [CrossRef]
- Bertout, J.A.; Patel, S.A.; Simon, M.C. The impact of O2 availability on human cancer. Nat. Rev. Cancer 2008, 8, 967–975. [Google Scholar] [CrossRef]
- Rankin, E.B.; Giaccia, A.J. Hypoxic control of metastasis. Science 2016, 352, 175–180. [Google Scholar] [CrossRef]
- Wu, Y.; Meng, D.; You, Y.; Sun, R.; Fu, M.; Yan, Q.; Zhang, S.; Fang, Z.; Bao, J.; Li, Y. Hypoxia Inducible Factor-1alpha (HIF-1A) plays different roles in Gallbladder Cancer and Normal Gallbladder Tissues. J. Cancer 2021, 12, 827–839. [Google Scholar] [CrossRef]
- Ye, J.; Chen, K.; Qi, L.; Li, R.; Tang, H.; Zhou, C.; Zhai, W. Metformin suppresses hypoxia-induced migration via the HIF-1α/VEGF pathway in gallbladder cancer in vitro and in vivo. Oncol. Rep. 2018, 40, 3501–3510. [Google Scholar] [CrossRef]
- Batmunkh, E.; Shimada, M.; Morine, Y.; Imura, S.; Kanemura, H.; Arakawa, Y.; Hanaoka, J.; Kanamoto, M.; Sugimoto, K.; Nishi, M. Expression of hypoxia-inducible factor-1 alpha (HIF-1α) in patients with the gallbladder carcinoma. Int. J. Clin. Oncol. 2010, 15, 59–64. [Google Scholar] [CrossRef]
- Okumura, Y.; Noda, T.; Eguchi, H.; Sakamoto, T.; Iwagami, Y.; Yamada, D.; Asaoka, T.; Wada, H.; Kawamoto, K.; Gotoh, K.; et al. Hypoxia-Induced PLOD2 is a Key Regulator in Epithelial-Mesenchymal Transition and Chemoresistance in Biliary Tract Cancer. Ann. Surg. Oncol. 2018, 25, 3728–3737. [Google Scholar] [CrossRef]
- Hynes, R.O. The extracellular matrix: Not just pretty fibrils. Science 2009, 326, 1216–1219. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, X.; Ai, L.; Yuan, R.; Ye, J. Clinicohistopathological implications of MMP/VEGF expression in retinoblastoma: A combined meta-analysis and bioinformatics analysis. J. Transl. Med. 2019, 17, 226. [Google Scholar] [CrossRef]
- Xiang, Z.-L.; Zeng, Z.-C.; Fan, J.; Tang, Z.-Y.; Zeng, H.-Y.; Gao, D.-M. Gene Expression Profiling of Fixed Tissues Identified Hypoxia-Inducible Factor-1α, VEGF, and Matrix Metalloproteinase-2 as Biomarkers of Lymph Node Metastasis in Hepatocellular Carcinoma. Clin. Cancer Res. 2011, 17, 5463–5472. [Google Scholar] [CrossRef]
- Xiao, J.-B.; Li, X.-L.; Liu, L.; Wang, G.; Hao, S.-N.; Dong, H.-J.; Wang, X.-M.; Zhang, Y.-F.; Liu, H.-D. The association of semaphorin 5A with lymph node metastasis and adverse prognosis in cervical cancer. Cancer Cell Int. 2018, 18, 87. [Google Scholar] [CrossRef]
- Hughes, S.; Agbaje, O.; Bowen, R.L.; Holliday, D.L.; Shaw, J.A.; Duffy, S.; Jones, J.L. Matrix Metalloproteinase Single-Nucleotide Polymorphisms and Haplotypes Predict Breast Cancer Progression. Clin. Cancer Res. 2007, 13, 6673–6680. [Google Scholar] [CrossRef]
- Tang, Y.; Zhu, J.; Chen, L.; Chen, L.; Zhang, S.; Lin, J. Associations of Matrix Metalloproteinase-9 Protein Polymorphisms with Lymph Node Metastasis but not Invasion of Gastric Cancer. Clin. Cancer Res. 2008, 14, 2870–2877. [Google Scholar] [CrossRef]
- Shirabe, K.; Shimada, M.; Kajiyama, K.; Hasegawa, H.; Gion, T.; Ikeda, Y.; Takenaka, K.; Sugimachi, K. Expression of matrix metalloproteinase-9 in surgically resected intrahepatic cholangiocarcinoma. Surgery 1999, 126, 842–846. [Google Scholar] [CrossRef]
- Shi, R.; Yang, X.; Shen, Q.; Yang, L.; Xu, Y.; Qiu, S.; Sun, Y.; Zhang, X.; Wang, Z.; Zhu, K.; et al. High expression of Dickkopf-related protein 1 is related to lymphatic metastasis and indicates poor prognosis in intrahepatic cholangiocarcinoma patients after surgery. Cancer 2013, 119, 993–1003. [Google Scholar] [CrossRef]
- Horiuchi, H.; Kawamata, H.; Furihata, T.; Omotehara, F.; Hori, H.; Shinagawa, Y.; Ohkura, Y.; Tachibana, M.; Yamazaki, T.; Ajiki, T.; et al. A MEK inhibitor (U0126) markedly inhibits direct liver invasion of orthotopically inoculated human gallbladder cancer cells in nude mice. J. Exp. Clin. Cancer Res. 2004, 23, 599–606. [Google Scholar]
- Fang, Y.; Liu, L.; Liu, S.; Hu, L.; Cai, W.; Wan, X.; Liu, D.; He, Y.; Zhu, Z. Calcium-sensing receptor promotes tumor proliferation and migration in human intrahepatic cholangiocarcinoma by targeting ERK signaling pathway. Eur. J. Pharmacol. 2020, 872, 172915. [Google Scholar] [CrossRef]
- Chattopadhyay, I.; Ambati, R.; Gundamaraju, R. Exploring the Crosstalk between Inflammation and Epithelial-Mesenchymal Transition in Cancer. Mediat. Inflamm. 2021, 2021, 9918379. [Google Scholar] [CrossRef]
- Pan, S.; Hu, Y.; Hu, M.; Jian, H.; Chen, M.; Gan, L.; Zheng, P.; He, Y.; Wang, J. Platelet-derived PDGF promotes the invasion and metastasis of cholangiocarcinoma by upregulating MMP2/MMP9 expression and inducing EMT via the p38/MAPK signalling pathway. Am. J. Transl. Res. 2020, 12, 3577–3595. [Google Scholar]
- Salvo, E.; Garasa, S.; Dotor, J.; Morales, X.; Peláez, R.; Altevogt, P.; Rouzaut, A. Combined targeting of TGF-β1 and integrin β3 impairs lymph node metastasis in a mouse model of non-small-cell lung cancer. Mol. Cancer 2014, 13, 112. [Google Scholar] [CrossRef]
- Garmy-Susini, B.; Avraamides, C.J.; Desgrosellier, J.S.; Schmid, M.C.; Foubert, P.; Ellies, L.G.; Lowy, A.M.; Blair, S.L.; Vandenberg, S.R.; Datnow, B.; et al. PI3Kα activates integrin α4β1 to establish a metastatic niche in lymph nodes. Proc. Natl. Acad. Sci. USA 2013, 110, 9042–9047. [Google Scholar] [CrossRef]
- Hynes, R.O. Integrins: Bidirectional, allosteric signaling machines. Cell 2002, 110, 673–687. [Google Scholar] [CrossRef]
- Niu, J.; Gu, X.; Ahmed, N.; Andrews, S.; Turton, J.; Bates, R.; Agrez, M. The αvβ6 integrin regulates its own expression with cell crowding: Implications for tumour progression. Int. J. Cancer 2001, 92, 40–48. [Google Scholar] [CrossRef]
- Li, Z.; Biswas, S.; Liang, B.; Zou, X.; Shan, L.; Li, Y.; Fang, R.; Niu, J. Integrin β6 serves as an immunohistochemical marker for lymph node metastasis and promotes cell invasiveness in cholangiocarcinoma. Sci. Rep. 2016, 6, 30081. [Google Scholar] [CrossRef]
- Sugiyanto, R.N.; Metzger, C.; Inal, A.; Truckenmueller, F.; Gür, K.; Eiteneuer, E.; Huth, T.; Fraas, A.; Heinze, I.; Kirkpatrick, J.; et al. Proteomic profiling reveals CEACAM6 function in driving gallbladder cancer aggressiveness through integrin receptor, PRKCD and AKT/ERK signaling. Cell Death Dis. 2024, 15, 780. [Google Scholar] [CrossRef]
- Williams, C.M.; Engler, A.J.; Slone, R.D.; Galante, L.L.; Schwarzbauer, J.E. Fibronectin expression Modulates mammary epithelial cell proliferation during acinar differentiation. Cancer Res. 2008, 68, 3185–3192. [Google Scholar] [CrossRef]
- Berg, H.F.; Ju, Z.; Myrvold, M.; Fasmer, K.E.; Halle, M.K.; Hoivik, E.A.; Westin, S.N.; Trovik, J.; Haldorsen, I.S.; Mills, G.B.; et al. Development of prediction models for lymph node metastasis in endometrioid endometrial carcinoma. Br. J. Cancer 2020, 122, 1014–1022. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, X.; Lu, W.; Chen, Y.; Wu, X.; Li, M.; Wang, X.-A.; Zhang, F.; Jiang, L.; Zhang, Y.; et al. Fibronectin promotes cell proliferation and invasion through mTOR signaling pathway activation in gallbladder cancer. Cancer Lett. 2015, 360, 141–150. [Google Scholar] [CrossRef]
- Peng, Z.; Hao, M.; Tong, H.; Yang, H.; Huang, B.; Zhang, Z.; Luo, K.Q. The interactions between integrin α5β1 of liver cancer cells and fibronectin of fibroblasts promote tumor growth and angiogenesis. Int. J. Biol. Sci. 2022, 18, 5019–5037. [Google Scholar] [CrossRef]
- Zhuo, P.; Li, Q.; Yang, B.; Li, N.; Luo, Z.; Zhang, F. Interaction of integrin αvβ3 and fibronectin under fluid shear forces: Implications for tumor cell adhesion and migration. Front. Cell Dev. Biol. 2025, 13, 1512672. [Google Scholar] [CrossRef]
- Guerrero-Barberà, G.; Burday, N.; Costell, M. Shaping Oncogenic Microenvironments: Contribution of Fibronectin. Front. Cell Dev. Biol. 2024, 12, 1363004. [Google Scholar] [CrossRef]
- Zhou, X.; Kong, X.; Lu, J.; Wang, H.; Liu, M.; Zhao, S.; Xia, Z.; Liu, Q.; Sun, H.; Gao, X.; et al. Circulating tumor cell-derived exosome–transmitted long non-coding RNA TTN-AS1 can promote the proliferation and migration of cholangiocarcinoma cells. J. Nanobiotechnol. 2024, 22, 191. [Google Scholar] [CrossRef]
- Hood, J.L.; San, R.S.; Wickline, S.A. Exosomes Released by Melanoma Cells Prepare Sentinel Lymph Nodes for Tumor Metastasis. Cancer Res. 2011, 71, 3792–3801. [Google Scholar] [CrossRef]
- Lin, Y.; Zheng, H.; Jia, L.; Luo, Y.; Zhang, D.; An, M.; Pang, M.; Diao, X.; Li, W.; Chen, J.; et al. Integrin α6-containing extracellular vesicles promote lymphatic remodelling for pre-metastatic niche formation in lymph nodes via interplay with CD151. J. Extracell Vesicles 2024, 13, e12518. [Google Scholar] [CrossRef]
- Chen, C.; Luo, Y.; He, W.; Zhao, Y.; Kong, Y.; Liu, H.; Zhong, G.; Li, Y.; Li, J.; Huang, J.; et al. Exosomal long noncoding RNA LNMAT2 promotes lymphatic metastasis in bladder cancer. J. Clin. Investig. 2020, 130, 404–421. [Google Scholar] [CrossRef]
- He, Z.; Zhong, Y.; Regmi, P.; Lv, T.; Ma, W.; Wang, J.; Liu, F.; Yang, S.; Zhong, Y.; Zhou, R.; et al. Exosomal long non-coding RNA TRPM2-AS promotes angiogenesis in gallbladder cancer through interacting with PABPC1 to activate NOTCH1 signaling pathway. Mol. Cancer 2024, 23, 65. [Google Scholar] [CrossRef]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef]
- Wang, S.-H.; Ma, F.; Tang, Z.-H.; Wu, X.-C.; Cai, Q.; Zhang, M.-D.; Weng, M.-Z.; Zhou, D.; Wang, J.-D.; Quan, Z.-W. Long non-coding RNA H19 regulates FOXM1 expression by competitively binding endogenous miR-342-3p in gallbladder cancer. J. Exp. Clin. Cancer Res. 2016, 35, 160. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, Y.; Yu, Y.; Zhong, C.; Lang, Q.; Liang, Z.; Lv, C.; Xu, F.; Tian, Y. Long Noncoding RNA H19: A Novel Therapeutic Target Emerging in Oncology Via Regulating Oncogenic Signaling Pathways. Front. Cell Dev. Biol. 2021, 9, 796740. [Google Scholar] [CrossRef]
- Pérez-Moreno, P.; Riquelme, I.; Bizama, C.; Vergara-Gómez, L.; Tapia, J.C.; Brebi, P.; García, P.; Roa, J.C. LINC00662 Promotes Aggressive Traits by Modulating OCT4 Expression through miR-335-5p in Gallbladder Cancer Cells. Int. J. Mol. Sci. 2024, 25, 6740. [Google Scholar] [CrossRef]
- Zhong, Y.; Wu, X.; Li, Q.; Ge, X.; Wang, F.; Wu, P.; Deng, X.; Miao, L. Long noncoding RNAs as potential biomarkers and therapeutic targets in gallbladder cancer: A systematic review and meta-analysis. Cancer Cell Int. 2019, 19, 169. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Chen, M.; Liu, D. miR-324-5p inhibits gallbladder carcinoma cell metastatic behaviours by downregulation of transforming growth factor beta 2 expression. Artif. Cells Nanomed. Biotechnol. 2020, 48, 315–324. [Google Scholar] [CrossRef]
- Yang, G.; Lu, Z.; Meng, F.; Wan, Y.; Zhang, L.; Xu, Q.; Wang, Z. Circulating miR-141 as a potential biomarker for diagnosis, prognosis and therapeutic targets in gallbladder cancer. Sci. Rep. 2022, 12, 10072. [Google Scholar] [CrossRef]
- Wang, S.; Su, T.T.; Tong, H.; Shi, W.; Ma, F.; Quan, Z. CircPVT1 promotes gallbladder cancer growth by sponging miR-339-3p and regulates MCL-1 expression. Cell Death Discov. 2021, 7, 191. [Google Scholar] [CrossRef]
- Wang, S.; Tong, H.; Su, T.; Zhou, D.; Shi, W.; Tang, Z.; Quan, Z. CircTP63 promotes cell proliferation and invasion by regulating EZH2 via sponging miR-217 in gallbladder cancer. Cancer Cell Int. 2021, 21, 608. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Bo, X.; Li, Y.; Wang, C.; Nan, L.; Zhang, D.; Liu, H.; Zhang, J. CircRNome-wide characterisation reveals the promoting role of circAATF in anti-PD-L1 immunotherapy of gallbladder carcinoma. Clin. Transl. Med. 2024, 14, e70060. [Google Scholar] [CrossRef]
- Tong, H.; Yu, X.; Zhou, D.; Shen, Z.; Chen, J.; Si, Y.; Zhang, L.; Lu, B.; Yu, J.; Wang, S.; et al. CircEZH2 promotes gallbladder cancer progression and lipid metabolism reprogramming through the miR-556-5p/SCD1 axis. iScience 2024, 27, 110428. [Google Scholar] [CrossRef]
- Fan, D.; Liu, H.; Hu, B.; Zhou, R.; Wang, C.; Yang, D. Inhibition of circRNA NGFR promotes ferroptosis in gallbladder carcinoma cells. Heliyon 2024, 10, e30260. [Google Scholar] [CrossRef]
- Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and Functions of Long Noncoding RNAs. Cell 2009, 136, 629–641. [Google Scholar] [CrossRef]
- Li, H.; Su, B.; Jiang, Y.; Zhang, B.; Du, R.; Song, C.; Hou, B.; Xu, K.; Wu, L.; Gu, Y. Circular RNA circDCUN1D4 suppresses hepatocellular carcinoma development via targeting the miR-590-5p/TIMP3 axis. Mol. Cancer 2025, 24, 95. [Google Scholar] [CrossRef]
- Xu, M.; Deng, C.; Man, Z.; Zhu, H. TRIM47 is a prognostic biomarker for gallbladder cancer and promotes tumor progression through regulating K63-linked ubiquitination of PARP1. Transl. Oncol. 2025, 51, 102164. [Google Scholar] [CrossRef]
- Qiang, J.; Zhao, C.; Shi, L.-Q.; Sun, S.-R.; Wang, H.-K.; Liu, S.-L.; Yang, Z.-Y.; Dong, P.; Xiang, S.-S.; Wang, J.-D.; et al. BRD9 promotes the progression of gallbladder cancer via CST1 upregulation and interaction with FOXP1 through the PI3K/AKT pathway and represents a therapeutic target. Gene Ther. 2024, 31, 594–606. [Google Scholar] [CrossRef]
- He, Z.; Zhong, Y.; Lv, T.; Wang, J.; Jin, Y.; Li, F.; Hu, H. PP4R1 promotes glycolysis and gallbladder cancer progression through facilitating ERK1/2 mediated PKM2 nuclear translocation. Cancer Lett. 2024, 586, 216677. [Google Scholar] [CrossRef]
- Yang, Y.; Li, H.; Liu, K.; Zou, L.; Xiang, S.; Geng, Y.; Li, X.; Qiu, S.; Yang, J.; Cui, X.; et al. Acylcarnitines promote gallbladder cancer metastasis through lncBCL2L11-THOC5-JNK axis. J. Transl. Med. 2024, 22, 299. [Google Scholar] [CrossRef]
- Qiu, S.; Liu, Z.; Hu, J.; Wang, Z.; Yue, Z.; Jia, Z.; Zhang, W.; Xue, Z.; Liu, Z.; Liu, Y. Fatty Acid Binding Protein 1 is an Independent Prognostic Biomarker for Gallbladder Cancer with Direct Hepatic Invasion. Int. J. Med. Sci. 2024, 21, 862–873. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, K.; Zhang, R.; Guo, Y.; Wang, J.; Liu, C.; Lu, X.; Zhou, Z.; Wu, W.; Zhang, F.; et al. Oleic acid-PPARγ-FABP4 loop fuels cholangiocarcinoma colonization in lymph node metastases microenvironment. Hepatology 2024, 80, 69–86. [Google Scholar] [CrossRef]
- Cheng, H.; Sun, Y.; Yu, X.; Zhou, D.; Ding, J.; Wang, S.; Ma, F. FASN promotes gallbladder cancer progression and reduces cancer cell sensitivity to gemcitabine through PI3K/AKT signaling. Drug Discov. Ther. 2023, 17, 328–339. [Google Scholar] [CrossRef]
- Raab, S.; Gadault, A.; Very, N.; Decourcelle, A.; Baldini, S.; Schulz, C.; Mortuaire, M.; Lemaire, Q.; Hardivillé, S.; Dehennaut, V.; et al. Dual regulation of fatty acid synthase (FASN) expression by O-GlcNAc transferase (OGT) and mTOR pathway in proliferating liver cancer cells. Cell. Mol. Life Sci. 2021, 78, 5397–5413. [Google Scholar] [CrossRef]
- Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 2016, 16, 582–598. [Google Scholar] [CrossRef]
- Gascard, P.; Tlsty, T.D. Carcinoma-associated fibroblasts: Orchestrating the composition of malignancy. Genes Dev. 2016, 30, 1002–1019. [Google Scholar] [CrossRef]
- Shi, Y.; Sun, L.; Zhang, R.; Hu, Y.; Wu, Y.; Dong, X.; Dong, D.; Chen, C.; Geng, Z.; Li, E.; et al. Thrombospondin 4/integrin α2/HSF1 axis promotes proliferation and cancer stem-like traits of gallbladder cancer by enhancing reciprocal crosstalk between cancer-associated fibroblasts and tumor cells. J. Exp. Clin. Cancer Res. 2021, 40, 14. [Google Scholar] [CrossRef]
- Yan, J.; Xiao, G.; Yang, C.; Liu, Q.; Lv, C.; Yu, X.; Zhou, Z.; Lin, S.; Bai, Z.; Lin, H.; et al. Cancer-Associated Fibroblasts Promote Lymphatic Metastasis in Cholangiocarcinoma via the PDGF-BB/PDGFR-β Mediated Paracrine Signaling Network. Aging Dis. 2024, 15, 369–389. [Google Scholar] [CrossRef]
- Hu, S.; Xia, C.; Zou, H.; Ren, W.; Liu, L.; Wang, L.; Kang, Q.; He, K.; Wang, T.; Zhang, X. HS6ST1 overexpressed in cancer-associated fibroblast and inhibited cholangiocarcinoma progression. Dig. Liver Dis. 2023, 55, 1114–1125. [Google Scholar] [CrossRef]
- Zheng, H.; An, M.; Luo, Y.; Diao, X.; Zhong, W.; Pang, M.; Lin, Y.; Chen, J.; Li, Y.; Kong, Y.; et al. PDGFRα+ITGA11+ fibroblasts foster early-stage cancer lymphovascular invasion and lymphatic metastasis via ITGA11-SELE interplay. Cancer Cell 2024, 42, 682–700.e12. [Google Scholar] [CrossRef]
- Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Ou Yang, T.-H.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A.; et al. The Immune Landscape of Cancer. Immunity 2018, 48, 812–830.e14. [Google Scholar] [CrossRef]
- Liu, J.; Geng, X.; Hou, J.; Wu, G. New insights into M1/M2 macrophages: Key modulators in cancer progression. Cancer Cell Int. 2021, 21, 389. [Google Scholar] [CrossRef]
- Kumari, N.; Choi, S.H. Tumor-associated macrophages in cancer: Recent advancements in cancer nanoimmunotherapies. J. Exp. Clin. Cancer Res. 2022, 41, 68. [Google Scholar] [CrossRef]
- Mantovani, A.; Allavena, P.; Marchesi, F.; Garlanda, C. Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 2022, 21, 799–820. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, S.; Jia, Z.; Hu, Y.; Cao, D.; Yang, M.; Liu, L.; Gao, L.; Qiu, S.; Yan, W.; et al. YKL-40 derived from infiltrating macrophages cooperates with GDF15 to establish an immune suppressive microenvironment in gallbladder cancer. Cancer Lett. 2023, 563, 216184. [Google Scholar] [CrossRef] [PubMed]
- Johansen, J.S.; Williamson, M.K.; Rice, J.S.; Price, P.A. Identification of proteins secreted by human osteoblastic cells in culture. J. Bone Miner. Res. 1992, 7, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Francescone, R.A.; Scully, S.; Faibish, M.; Taylor, S.L.; Oh, D.; Moral, L.; Yan, W.; Bentley, B.; Shao, R. Role of YKL-40 in the Angiogenesis, Radioresistance, and Progression of Glioblastoma. J. Biol. Chem. 2011, 286, 15332–15343. [Google Scholar] [CrossRef] [PubMed]
- De Robertis, M.; Greco, M.R.; Cardone, R.A.; Mazza, T.; Marzano, F.; Mehterov, N.; Kazakova, M.; Belev, N.; Tullo, A.; Pesole, G.; et al. Upregulation of YKL-40 Promotes Metastatic Phenotype and Correlates with Poor Prognosis and Therapy Response in Patients with Colorectal Cancer. Cells 2022, 11, 3568. [Google Scholar] [CrossRef]
- Tian, L.; Deng, Z.; Xu, L.; Yang, T.; Yao, W.; Ji, L.; Lu, Y.; Zhang, J.; Liu, Y.; Wang, J. Downregulation of ASPP2 promotes gallbladder cancer metastasis and macrophage recruitment via aPKC-ι/GLI1 pathway. Cell Death Dis. 2018, 9, 1115. [Google Scholar] [CrossRef]
- DeNardo, D.G.; Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 2019, 19, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; You, W.-H.; Li, X.; Wang, P.; Sha, B.; Liang, Y.; Qiu, J.; Zhou, J.; Hu, H.; Lu, L. Single-cell RNA-seq reveals transcriptional landscape and intratumor heterogenicity in gallbladder cancer liver metastasis microenvironment. Ann. Transl. Med. 2021, 9, 889. [Google Scholar] [CrossRef]
- Kai, K.; Tanaka, T.; Ide, T.; Kawaguchi, A.; Noshiro, H.; Aishima, S. Immunohistochemical analysis of the aggregation of CD1a-positive dendritic cells in resected specimens and its association with surgical outcomes for patients with gallbladder cancer. Transl. Oncol. 2021, 14, 100923. [Google Scholar] [CrossRef]
- Maeda, S.; Kai, K.; Kawasaki, K.; Tanaka, T.; Ide, T.; Noshiro, H. Analysis of CD1a-Positive Monocyte-Derived Cells in the Regional Lymph Nodes of Patients with Gallbladder Cancer. Int. J. Mol. Sci. 2024, 25, 12763. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, C.; Liu, L.; Hu, Y.; Yang, B.; Qiu, S.; Li, Y.; Cao, D.; Ju, Z.; Ge, J.; et al. Single-cell RNA-sequencing atlas reveals an MDK-dependent immunosuppressive environment in ErbB pathway-mutated gallbladder cancer. J. Hepatol. 2021, 75, 1128–1141. [Google Scholar] [CrossRef]
- Pirenne, S.; Manzano-Núñez, F.; Loriot, A.; Cordi, S.; Desmet, L.; Aydin, S.; Hubert, C.; Toffoli, S.; Limaye, N.; Sempoux, C.; et al. Spatial transcriptomics profiling of gallbladder adenocarcinoma: A detailed two-case study of progression from precursor lesions to cancer. BMC Cancer 2024, 24, 1025. [Google Scholar] [CrossRef]
- Lei, Z.; Yang, Y.; Xiang, Y. The utilisation of biliary organoids for biomedical applications. Front. Bioeng. Biotechnol. 2024, 12, 1501829. [Google Scholar] [CrossRef] [PubMed]
- Catalano, G.; Alaimo, L.; Chatzipanagiotou, O.P.; Ruzzenente, A.; Aucejo, F.; Marques, H.P.; Bhimani, N.; Hugh, T.; Maithel, S.K.; Kitago, M.; et al. Advantage of Log Odds of Metastatic Lymph Nodes After Curative-Intent Resection of Gallbladder Cancer. Ann. Surg. Oncol. 2025, 32, 1742–1751. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhu, Z. Efficacy of neoadjuvant therapy and lymph node dissection in advanced gallbladder cancer without distant metastases: A SEER database analysis. Front. Oncol. 2024, 14, 1511583. [Google Scholar] [CrossRef] [PubMed]
ncRNA Type | Name | Expression | Correlation with LNM | Key Mechanisms | Refs. |
---|---|---|---|---|---|
lncRNA | H19 | Upregulated | Positive | Promotes EMT via miR-342-3p/Wnt/β-catenin axis | [60,61] |
LINC00662 | Upregulated | Positive | Drives EMT through LINC00662/miR-335-5p/OCT4 axis | [62] | |
GCASPC | Downregulated | Negative | Suppresses tumor growth and LNM | [63] | |
MEG3 | Downregulated | Negative | Inhibits EMT and invasiveness | [63] | |
miRNA | miR-324-5p | Downregulated | Negative | Inhibits migration, invasion, and EMT by targeting TGF-β2 | [64] |
miR-141 | Upregulated | Positive | Promotes proliferation and suppresses apoptosis | [65] | |
circRNA | circPVT1 | Upregulated | Positive | Sponges miR-339-3p to upregulate MCL1, enhancing invasiveness | [66] |
circTP63 | Upregulated | Positive | Induces EMT via miR-217 sequestration | [67] | |
circAATF | Upregulated | Positive | Elevates PD-L1 via miR-142-5p sponging, promoting immune evasion | [68] | |
circEZH2 | Upregulated | Positive | Upregulates SCD1 via miR-556-5p sponging, reprogramming lipid metabolism | [69] | |
circNGFR | Upregulated | Positive | Suppresses ferroptosis to sustain tumor survival | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Q.; Guan, Y.; Ma, Y.; Li, Q.; Geng, Z. Molecular Mechanisms of Lymph Node Metastasis in Gallbladder Cancer: Insights into the Tumor Microenvironment. Biomedicines 2025, 13, 1372. https://doi.org/10.3390/biomedicines13061372
Tang Q, Guan Y, Ma Y, Li Q, Geng Z. Molecular Mechanisms of Lymph Node Metastasis in Gallbladder Cancer: Insights into the Tumor Microenvironment. Biomedicines. 2025; 13(6):1372. https://doi.org/10.3390/biomedicines13061372
Chicago/Turabian StyleTang, Qingyu, Yichen Guan, Yubo Ma, Qi Li, and Zhimin Geng. 2025. "Molecular Mechanisms of Lymph Node Metastasis in Gallbladder Cancer: Insights into the Tumor Microenvironment" Biomedicines 13, no. 6: 1372. https://doi.org/10.3390/biomedicines13061372
APA StyleTang, Q., Guan, Y., Ma, Y., Li, Q., & Geng, Z. (2025). Molecular Mechanisms of Lymph Node Metastasis in Gallbladder Cancer: Insights into the Tumor Microenvironment. Biomedicines, 13(6), 1372. https://doi.org/10.3390/biomedicines13061372