Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = optoelectronic transport behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10488 KiB  
Article
Morphological and Functional Evolution of Amorphous AlN Thin Films Deposited by RF-Magnetron Sputtering
by Maria-Iulia Zai, Ioana Lalau, Marina Manica, Lucia Chiriacescu, Vlad-Andrei Antohe, Cristina C. Gheorghiu, Sorina Iftimie, Ovidiu Toma, Mirela Petruta Suchea and Ștefan Antohe
Surfaces 2025, 8(3), 51; https://doi.org/10.3390/surfaces8030051 - 17 Jul 2025
Viewed by 332
Abstract
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron [...] Read more.
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical profilometry, spectroscopic ellipsometry (SE), and electrical measurements—was performed to explore the physical structure, morphology, and optical and electrical properties of the films. The analysis of the film structure by XRR revealed that increasing sputtering power resulted in thicker, denser AlN layers, while thermal treatment promoted densification by reducing density gradients but also induced surface roughening and the formation of island-like morphologies. Optical studies confirmed excellent transparency (>80% transmittance in the near-infrared region) and demonstrated the tunability of the refractive index with sputtering power, critical for optoelectronic applications. The electrical characterization of Au/AlN/Al sandwich structures revealed a transition from Ohmic to trap-controlled space charge limited current (SCLC) behavior under forward bias—a transport mechanism frequently present in a material with very low mobility, such as AlN—while Schottky conduction dominated under reverse bias. The systematic correlation between deposition parameters, thermal treatment, and the resulting physical properties offers valuable pathways to engineer AlN thin films for next-generation optoelectronic and high-frequency device applications. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

26 pages, 3149 KiB  
Review
Research Progress and Future Perspectives on Photonic and Optoelectronic Devices Based on p-Type Boron-Doped Diamond/n-Type Titanium Dioxide Heterojunctions: A Mini Review
by Shunhao Ge, Dandan Sang, Changxing Li, Yarong Shi, Qinglin Wang and Dao Xiao
Nanomaterials 2025, 15(13), 1003; https://doi.org/10.3390/nano15131003 - 29 Jun 2025
Cited by 1 | Viewed by 528
Abstract
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. [...] Read more.
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. For instance, TiO2 is widely used as a photocatalyst for hydrogen production via water splitting and for degrading organic pollutants, thanks to its efficient photo-generated electron–hole separation. Additionally, TiO2 exhibits remarkable performance in dye-sensitized solar cells and photodetectors, providing critical support for advancements in green energy and photoelectric conversion technologies. Boron-doped diamond (BDD) is renowned for its exceptional electrical conductivity, high hardness, wide electrochemical window, and outstanding chemical inertness. These unique characteristics enable its extensive use in fields such as electrochemical analysis, electrocatalysis, sensors, and biomedicine. For example, BDD electrodes exhibit high sensitivity and stability in detecting trace chemicals and pollutants, while also demonstrating excellent performance in electrocatalytic water splitting and industrial wastewater treatment. Its chemical stability and biocompatibility make it an ideal material for biosensors and implantable devices. Research indicates that the combination of TiO2 nanostructures and BDD into heterostructures can exhibit unexpected optical and electrical performance and transport behavior, opening up new possibilities for photoluminescence and rectifier diode devices. However, applications based on this heterostructure still face challenges, particularly in terms of photodetector, photoelectric emitter, optical modulator, and optical fiber devices under high-temperature conditions. This article explores the potential and prospects of their combined heterostructures in the field of optoelectronic devices such as photodetector, light emitting diode (LED), memory, field effect transistor (FET) and sensing. TiO2/BDD heterojunction can enhance photoresponsivity and extend the spectral detection range which enables stability in high-temperature and harsh environments due to BDD’s thermal conductivity. This article proposes future research directions and prospects to facilitate the development of TiO2 nanostructured materials and BDD-based heterostructures, providing a foundation for enhancing photoresponsivity and extending the spectral detection range enables stability in high-temperature and high-frequency optoelectronic devices field. Further research and exploration of optoelectronic devices based on TiO2-BDD heterostructures hold significant importance, offering new breakthroughs and innovations for the future development of optoelectronic technology. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Optoelectronics)
Show Figures

Graphical abstract

15 pages, 1742 KiB  
Article
Modeling of Phototransistors Based on Quasi-Two-Dimensional Transition Metal Dichalcogenides
by Sergey D. Lavrov and Andrey A. Guskov
Modelling 2025, 6(2), 47; https://doi.org/10.3390/modelling6020047 - 11 Jun 2025
Viewed by 591
Abstract
This study introduces a comprehensive physical modeling framework for phototransistors based on quasi-two-dimensional transition metal dichalcogenides, with a particular emphasis on MoS2. By integrating electromagnetic simulations of optical absorption with semiconductor transport calculations, the model captures both dark and photocurrent behaviors [...] Read more.
This study introduces a comprehensive physical modeling framework for phototransistors based on quasi-two-dimensional transition metal dichalcogenides, with a particular emphasis on MoS2. By integrating electromagnetic simulations of optical absorption with semiconductor transport calculations, the model captures both dark and photocurrent behaviors across diverse operating conditions. For 20 nm MoS2 films, the model reproduces the experimental transfer characteristics with a threshold voltage accuracy better than 0.1 V and achieves quantitative agreement with photocurrent and dark current values across the full range of gate voltages, with the worst-case deviation not exceeding a factor of seven. Additionally, the model captures a three-order-of-magnitude increase in the photocurrent as the MoS2 thickness varies from 4 nm to 40 nm, reflecting the strong thickness dependence observed experimentally. A key insight from the study is the critical role of defect states, including traps, impurities, and interfacial imperfections, in governing the dark current and photocurrent under channel pinch-off conditions (Vg < −1.0 V). The model successfully replicates the qualitative trends observed in experimental devices, highlighting how small variations in film thickness, doping levels, and contact geometries can significantly influence device performance, in agreement with published experimental data. These findings underscore the importance of precise defect characterization and optimization of material and structural parameters for 2D-material-based phototransistors. The proposed modeling framework serves as a powerful tool for the design and optimization of next-generation phototransistors, facilitating the integration of 2D materials into practical electronic and optoelectronic applications. Full article
Show Figures

Figure 1

18 pages, 9900 KiB  
Article
Doping Characteristics and Band Engineering of InSe for Advanced Photodetectors: A DFT Study
by Wenkai Zhang, Yafei Ning, Hu Li, Chaoqian Xu, Yong Wang and Yuhan Xia
Nanomaterials 2025, 15(10), 720; https://doi.org/10.3390/nano15100720 - 10 May 2025
Viewed by 531
Abstract
Two-dimensional materials have emerged as core components for next-generation optoelectronic devices due to their quantum confinement effects and tunable electronic properties. Indium selenide (InSe) demonstrates breakthrough photoelectric performance, with its remarkable light-responsive characteristics spanning from visible to near-infrared regions, offering application potential in [...] Read more.
Two-dimensional materials have emerged as core components for next-generation optoelectronic devices due to their quantum confinement effects and tunable electronic properties. Indium selenide (InSe) demonstrates breakthrough photoelectric performance, with its remarkable light-responsive characteristics spanning from visible to near-infrared regions, offering application potential in high-speed imaging, optical communication, and biosensing. This study investigates the doping characteristics of InSe using first-principles calculations, focusing on the doping and adsorption behaviors of Argentum (Ag) and Bismuth (Bi) atoms in InSe and their effects on its electronic structure. The research reveals that Ag atoms preferentially adsorb at interlayer vacancies with a binding energy of −2.19 eV, forming polar covalent bonds. This reduces the band gap from the intrinsic 1.51 eV to 0.29–1.16 eV and induces an indirect-to-direct band gap transition. Bi atoms doped at the center of three Se atoms exhibit a binding energy of −2.06 eV, narrowing the band gap to 0.19 eV through strong ionic bonding, while inducing metallic transition at inter-In sites. The introduced intermediate energy levels significantly reduce electron transition barriers (by up to 60%) and enhance carrier separation efficiency. This study links doping sites, electronic structures, and photoelectric properties through computational simulations, offering a theoretical framework for designing high-performance InSe-based photodetectors. It opens new avenues for narrow-bandgap near-infrared detection and carrier transport optimization. Full article
Show Figures

Figure 1

22 pages, 11861 KiB  
Article
Solution-Processed Nanostructured Hybrid Materials Based on Graphene Oxide Flakes Decorated with Ligand-Exchanged PbS QDs: Synthesis, Characterization and Optoelectronic Properties
by Giovanny Perez-Parra, Nayely Torres-Gomez, Vineetha Vinayakumar, Diana F. Garcia-Gutierrez, Selene Sepulveda-Guzman and Domingo I. Garcia-Gutierrez
Appl. Nano 2025, 6(2), 7; https://doi.org/10.3390/applnano6020007 - 1 Apr 2025
Viewed by 905
Abstract
Nanostructured hybrid materials based on the combination of semiconductor QDs and GO are promising candidates for different optoelectronic and catalytic applications and being able to produce such hybrid materials in solution will expand their possible range of applications. In the current work, capping [...] Read more.
Nanostructured hybrid materials based on the combination of semiconductor QDs and GO are promising candidates for different optoelectronic and catalytic applications and being able to produce such hybrid materials in solution will expand their possible range of applications. In the current work, capping ligand-exchange procedures have been developed to replace the lead oleate normally found on the surface of PbS QDs synthesized by the popular hot-injection method. After the capping ligand-exchange process, the QDs are water soluble, which makes them soluble in most GO solutions. Solution-processed nanostructured hybrid materials based on GO flakes decorated with ligand-exchanged (EDT, TBAI and L-Cysteine) PbS QDs were synthesized by combining PbS QDs and GO solutions. Afterward, the resulting hybrid materials were thoroughly characterized by means of FTIR, XPS, Raman, UV-Vis-NIR and photoluminescence spectroscopy, as well as SEM and TEM techniques. The results indicate a clear surface chemistry variation in the capping ligand-exchanged PbS QDs, showing the presence of the exchanged ligand molecules. Thin films from the solution-processed nanostructured hybrid materials were deposited by the spin coating technique, and their optoelectronic properties were studied. Depending on the capping ligand molecule, the photoresponse and resistance of the thin films varied; the sample with the EDT ligand exchange showed the highest photoresponse and the lowest resistance. This surface chemistry had a direct effect on the charge carrier transfer and transport behavior of the nanostructured hybrid materials synthesized. These results show a novel and accessible route for synthesizing solution-processed and affordable nanostructured hybrid materials based on semiconductor QDs and GO. Additionally, the importance of the surface chemistry displayed by the PbS QDs and GO was clearly seen in determining the final optoelectronic properties displayed by their hybrid materials. Full article
Show Figures

Figure 1

15 pages, 10623 KiB  
Article
Optical Transitions Dominated by Orbital Interactions in Two-Dimensional Fullerene Networks
by Haonan Bai, Xinwen Gai, Yi Zou and Jingang Wang
C 2025, 11(1), 17; https://doi.org/10.3390/c11010017 - 25 Feb 2025
Viewed by 714
Abstract
Fullerenes are a class of highly symmetric spherical carbon materials that have attracted significant attention in optoelectronic applications due to their excellent electron transport properties. However, the isotropy of their spherical structure often leads to disordered inter-sphere stacking in practical applications, limiting in-depth [...] Read more.
Fullerenes are a class of highly symmetric spherical carbon materials that have attracted significant attention in optoelectronic applications due to their excellent electron transport properties. However, the isotropy of their spherical structure often leads to disordered inter-sphere stacking in practical applications, limiting in-depth studies of their electron transport behavior. The successful fabrication of long-range ordered two-dimensional fullerene arrays has opened up new opportunities for exploring the structure–activity relationship in spatial charge transport. In this study, theoretical calculations were performed to analyze the effects of different periodic arrangements in two-dimensional fullerene arrays on electronic excitation and optical behavior. The results show that HLOPC60 exhibits a strong absorption peak at 1050 nm, while TLOPC60 displays prominent absorption features at 700 nm and 1300 nm, indicating that their electronic excitation characteristics are significantly influenced by the periodic structure. Additionally, analyses of orbital distribution and the spatial electron density reveal a close relationship between carrier transport and the structural topology. Quantitative studies further indicate that the interlayer interaction energies of the HLOPC60 and TLOPC60 arrangements are −105.65 kJ/mol and −135.25 kJ/mol, respectively. TLOPC60 also exhibits stronger dispersion interactions, leading to enhanced interlayer binding. These findings provide new insights into the structural regulation of fullerene materials and offer theoretical guidance for the design and synthesis of novel organic optoelectronic materials. Full article
(This article belongs to the Special Issue High-Performance Carbon Materials and Their Composites)
Show Figures

Graphical abstract

14 pages, 1943 KiB  
Article
High-Temperature Optoelectronic Transport Behavior of n-TiO2 Nanoball–Stick/p-Lightly Boron-Doped Diamond Heterojunction
by Shunhao Ge, Dandan Sang, Changxing Li, Yarong Shi, Cong Wang, Chunshuai Yu, Guangyu Wang, Hongzhu Xi and Qinglin Wang
Materials 2025, 18(2), 303; https://doi.org/10.3390/ma18020303 - 10 Jan 2025
Viewed by 1055
Abstract
The n-TiO2 nanoballs–sticks (TiO2 NBSs) were successfully deposited on p-lightly boron-doped diamond (LBDD) substrates by the hydrothermal method. The temperature-dependent optoelectronic properties and carrier transport behavior of the n-TiO2 NBS/p-LBDD heterojunction were investigated. The photoluminescence (PL) of the heterojunction detected [...] Read more.
The n-TiO2 nanoballs–sticks (TiO2 NBSs) were successfully deposited on p-lightly boron-doped diamond (LBDD) substrates by the hydrothermal method. The temperature-dependent optoelectronic properties and carrier transport behavior of the n-TiO2 NBS/p-LBDD heterojunction were investigated. The photoluminescence (PL) of the heterojunction detected four distinct emission peaks at 402 nm, 410 nm, 429 nm, and 456 nm that have the potential to be applied in white-green light-emitting devices. The results of the I-V characteristic of the heterojunction exhibited excellent rectification characteristics and good thermal stability at all temperatures (RT-200 °C). The forward bias current increases gradually with the increase in external temperature. The temperature of 150 °C is ideal for the heterojunction to exhibit the best electrical performance with minimum turn-on voltage (0.4 V), the highest forward bias current (0.295 A ± 0.103 mA), and the largest rectification ratio (16.39 ± 0.005). It is transformed into a backward diode at 200 °C, which is attributed to a large number of carriers tunneling from the valence band (VB) of TiO2 to the conduction band (CB) of LBDD, forming an obvious reverse rectification effect. The carrier tunneling mechanism at different temperatures and voltages is analyzed in detail based on the schematic energy band structure and semiconductor theoretical model. Full article
(This article belongs to the Special Issue Advances in Optical and Photonic Materials)
Show Figures

Graphical abstract

10 pages, 7445 KiB  
Article
Controlling Poly(3-hexythiophene) Hierarchical Polymer/SWCNT Nanohybrid Shish-Kebab Morphologies in Marginal Solvents
by Kevin Schnittker, Zahra Bahrami and Joseph Andrews
Crystals 2024, 14(12), 1065; https://doi.org/10.3390/cryst14121065 - 10 Dec 2024
Viewed by 859
Abstract
In organic optoelectronic devices, the self-assembly behavior of the conjugated polymer poly(3-hexylthiophene) (P3HT) into structured aggregates significantly influences the device’s performance, with processing conditions playing a key role. Incorporating carbon nanotubes (CNTs) into a P3HT solution can form hierarchical supramolecular structures known as [...] Read more.
In organic optoelectronic devices, the self-assembly behavior of the conjugated polymer poly(3-hexylthiophene) (P3HT) into structured aggregates significantly influences the device’s performance, with processing conditions playing a key role. Incorporating carbon nanotubes (CNTs) into a P3HT solution can form hierarchical supramolecular structures known as nanohybrid shish-kebabs (NHSKs). These structures alter the morphology of polymer aggregates and provide an alternative pathway for improved charge transport in thin film devices. Herein, we investigated the impact of solvent quality using different combinations of chloroform and anisole during the quasi-isothermal crystallization of P3HT:CNTs. We found that NHSKs of different nanowire lengths can be formed through changing solvent quality while maintaining a constant P3HT:SWCNT ratio and a constant SWCNT concentration. Optical absorbance measurements showed that increasing the amount of the good solvent (chloroform) to 10.19% (v/v) reduced the exciton bandwidth by 36.4% compared to the NHSK solution that only contained ~2.37% (v/v). This observation demonstrates the importance of solvent quality and how this processing parameter directly leads to the enhanced crystallization of supramolecular structures. Full article
Show Figures

Figure 1

16 pages, 4859 KiB  
Article
Organic Semiconductor Devices Fabricated with Recycled Tetra Pak®-Based Electrodes and para-Quinone Methides
by María Elena Sánchez Vergara, Eva Alejandra Santillán Esquivel, Ricardo Ballinas-Indilí, Octavio Lozada-Flores, René Miranda-Ruvalcaba and Cecilio Álvarez-Toledano
Coatings 2024, 14(8), 998; https://doi.org/10.3390/coatings14080998 - 7 Aug 2024
Cited by 1 | Viewed by 1653
Abstract
This work presents the synthesis of para-quinone methides (p-QMs), which were deposited as films using the high vacuum sublimation technique after being chemically characterized. The p-QMs films were characterized morphologically and structurally using scanning electron microscopy, atomic force microscopy, [...] Read more.
This work presents the synthesis of para-quinone methides (p-QMs), which were deposited as films using the high vacuum sublimation technique after being chemically characterized. The p-QMs films were characterized morphologically and structurally using scanning electron microscopy, atomic force microscopy, and X-ray diffraction. In addition, their optical behavior was studied by means of ultraviolet–visible spectroscopy, and the optical gaps obtained were in the range of 2.21–2.71 eV for indirect transitions, indicating the semiconductor behavior of the p-QMs. The above was verified through the manufacture and evaluation of the electrical behavior of rigid semiconductor devices, in which fluorine-doped tin oxide-coated glass slides (FTO) were used as an anode and substrate. Finally, as an original, ecological, and low-cost application, the FTO was replaced by substrates and anodes made from recycled Tetra Pak®, generating flexible semiconductor devices. Although the electrical current transported depends on the type of p-QMs, the substituent in its structure, and the morphology, the kinds of substrate and anode also influence the type of electrical behavior of the device. This current–voltage study demonstrates that p-QM2 with 4-Cl-Ph as a radical, p-QM3 with 4-Et2N-Ph as a radical, and p-QM6 with 5-(1,3-benzodioxol) as a radical can be used in optoelectronics as semiconductor films. Full article
(This article belongs to the Special Issue Advanced Thin Films Technologies for Optics, Electronics, and Sensing)
Show Figures

Figure 1

26 pages, 4191 KiB  
Article
A Density Functional Theory Study of the Physico-Chemical Properties of Alkali Metal Titanate Perovskites for Solar Cell Applications
by Shirzad Jouybar, Leila Naji, Saeedeh Sarabadani Tafreshi and Nora H. de Leeuw
Molecules 2024, 29(14), 3355; https://doi.org/10.3390/molecules29143355 - 17 Jul 2024
Cited by 10 | Viewed by 2334
Abstract
The urgent need to shift from non-renewable to renewable energy sources has caused widespread interest in photovoltaic technologies that allow us to harness readily available and sustainable solar energy. In the past decade, polymer solar cells (PSCs) and perovskite solar cells (Per-SCs) have [...] Read more.
The urgent need to shift from non-renewable to renewable energy sources has caused widespread interest in photovoltaic technologies that allow us to harness readily available and sustainable solar energy. In the past decade, polymer solar cells (PSCs) and perovskite solar cells (Per-SCs) have gained attention owing to their low price and easy fabrication process. Charge transport layers (CTLs), transparent conductive electrodes (TCEs), and metallic top electrodes are important constituents of PSCs and Per-SCs, which affect the efficiency and stability of these cells. Owing to the disadvantages of current materials, including instability and high cost, the development of alternative materials has attracted significant attention. Owing to their more flexible physical and chemical characteristics, ternary oxides are considered to be appealing alternatives, where ATiO3 materials—a class of ternary perovskite oxides—have demonstrated considerable potential for applications in solar cells. Here, we have employed calculations based on the density functional theory to study the structural, optoelectronic, and magnetic properties of ATiO3 (A=Li, Na, K, Rb, and Cs) in different crystallographic phases to determine their potential as PSCs and Per-SCs materials. We have also determined thermal and elastic properties to evaluate their mechanical and thermal stability. Our calculations have revealed that KTiO3 and RbTiO3 possess similar electronic properties as half-metallic materials, while LiTiO3 and CsTiO3 are metallic. Semiconductor behavior with a direct band gap of 2.77 eV was observed for NaTiO3, and calculations of the optical and electronic properties predicted that NaTiO3 is the most appropriate candidate to be employed as a charge transfer layer (CTL) and bottom transparent conducting electrode (TCE) in PSCs and Per-SCs, owing to its transparency and large bandgap, whereas NaTiO3 also provided superior elastic and thermal properties. Among the metallic and half-metallic ATiO3 compounds, CsTiO3 and KTiO3 exhibited the most appropriate features for the top electrode and additional absorbent in the active layer, respectively, to enhance the performance and stability of these cells. Full article
Show Figures

Figure 1

13 pages, 6187 KiB  
Article
Large-Area MoS2 Films Grown on Sapphire and GaN Substrates by Pulsed Laser Deposition
by Marianna Španková, Štefan Chromik, Edmund Dobročka, Lenka Pribusová Slušná, Marcel Talacko, Maroš Gregor, Béla Pécz, Antal Koos, Giuseppe Greco, Salvatore Ethan Panasci, Patrick Fiorenza, Fabrizio Roccaforte, Yvon Cordier, Eric Frayssinet and Filippo Giannazzo
Nanomaterials 2023, 13(21), 2837; https://doi.org/10.3390/nano13212837 - 26 Oct 2023
Cited by 6 | Viewed by 2518
Abstract
In this paper, we present the preparation of few-layer MoS2 films on single-crystal sapphire, as well as on heteroepitaxial GaN templates on sapphire substrates, using the pulsed laser deposition (PLD) technique. Detailed structural and chemical characterization of the films were performed using [...] Read more.
In this paper, we present the preparation of few-layer MoS2 films on single-crystal sapphire, as well as on heteroepitaxial GaN templates on sapphire substrates, using the pulsed laser deposition (PLD) technique. Detailed structural and chemical characterization of the films were performed using Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction measurements, and high-resolution transmission electron microscopy. According to X-ray diffraction studies, the films exhibit epitaxial growth, indicating a good in-plane alignment. Furthermore, the films demonstrate uniform thickness on large areas, as confirmed by Raman spectroscopy. The lateral electrical current transport of the MoS2 grown on sapphire was investigated by temperature (T)-dependent sheet resistance and Hall effect measurements, showing a high n-type doping of the semiconducting films (ns from ~1 × 1013 to ~3.4 × 1013 cm−2 from T = 300 K to 500 K), with a donor ionization energy of Ei = 93 ± 8 meV and a mobility decreasing with T. Finally, the vertical current injection across the MoS2/GaN heterojunction was investigated by means of conductive atomic force microscopy, showing the rectifying behavior of the I-V characteristics with a Schottky barrier height of ϕB ≈ 0.36 eV. The obtained results pave the way for the scalable application of PLD-grown MoS2 on GaN in electronics/optoelectronics. Full article
Show Figures

Figure 1

19 pages, 7155 KiB  
Article
A Comparative Study of Electronic, Optical, and Thermoelectric Properties of Zn-Doped Bulk and Monolayer SnSe Using Ab Initio Calculations
by Najwa Al Bouzieh, Muhammad Atif Sattar, Maamar Benkraouda and Noureddine Amrane
Nanomaterials 2023, 13(14), 2084; https://doi.org/10.3390/nano13142084 - 16 Jul 2023
Cited by 6 | Viewed by 2279
Abstract
In this study, we explore the effects of Zn doping on the electronic, optical, and thermoelectric properties of α-SnSe in bulk and monolayer forms, employing density functional theory calculations. By varying the doping concentrations, we aim to understand the characteristics of Zn-doped SnSe [...] Read more.
In this study, we explore the effects of Zn doping on the electronic, optical, and thermoelectric properties of α-SnSe in bulk and monolayer forms, employing density functional theory calculations. By varying the doping concentrations, we aim to understand the characteristics of Zn-doped SnSe in both systems. Our analysis of the electronic band structure using (PBE), (SCAN), and (HSE06) functionals reveals that all doped systems exhibit semiconductor-like behavior, making them suitable for applications in optoelectronics and photovoltaics. Notably, the conduction bands in SnSe monolayers undergo changes depending on the Zn concentration. Furthermore, the optical analysis indicates a decrease in the dielectric constant when transitioning from bulk to monolayer forms, which is advantageous for capacitor production. Moreover, heavily doped SnSe monolayers hold promise for deep ultraviolet applications. Examining the thermoelectric transport properties, we observe that Zn doping enhances the electrical conductivity in bulk SnSe at temperatures below 500 K. However, the electronic thermal conductivity of monolayer samples is lower compared to bulk samples, and it decreases consistently with increasing Zn concentrations. Additionally, the Zn-doped 2D samples exhibit high Seebeck coefficients across most of the temperature ranges investigated. Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Optoelectronics)
Show Figures

Figure 1

25 pages, 6778 KiB  
Review
Integrated Graphene Heterostructures in Optical Sensing
by Phuong V. Pham, The-Hung Mai, Huy-Binh Do, Vinoth Kumar Ponnusamy and Feng-Chuan Chuang
Micromachines 2023, 14(5), 1060; https://doi.org/10.3390/mi14051060 - 17 May 2023
Cited by 9 | Viewed by 3536
Abstract
Graphene—an outstanding low-dimensional material—exhibited many physics behaviors that are unknown over the past two decades, e.g., exceptional matter–light interaction, large light absorption band, and high charge carrier mobility, which can be adjusted on arbitrary surfaces. The deposition approaches of graphene on silicon to [...] Read more.
Graphene—an outstanding low-dimensional material—exhibited many physics behaviors that are unknown over the past two decades, e.g., exceptional matter–light interaction, large light absorption band, and high charge carrier mobility, which can be adjusted on arbitrary surfaces. The deposition approaches of graphene on silicon to form the heterostructure Schottky junctions was studied, unveiling new roadmaps to detect the light at wider-ranged absorption spectrums, e.g., far-infrared via excited photoemission. In addition, heterojunction-assisted optical sensing systems enable the active carriers’ lifetime and, thereby, accelerate the separation speed and transport, and then they pave new strategies to tune high-performance optoelectronics. In this mini-review, an overview is considered concerning recent advancements in graphene heterostructure devices and their optical sensing ability in multiple applications (ultrafast optical sensing system, plasmonic system, optical waveguide system, optical spectrometer, or optical synaptic system) is discussed, in which the prominent studies for the improvement of performance and stability, based on the integrated graphene heterostructures, have been reported and are also addressed again. Moreover, the pros and cons of graphene heterostructures are revealed along with the syntheses and nanofabrication sequences in optoelectronics. Thereby, this gives a variety of promising solutions beyond the ones presently used. Eventually, the development roadmap of futuristic modern optoelectronic systems is predicted. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

15 pages, 3097 KiB  
Article
New Benzotrithiophene-Based Molecules as Organic P-Type Semiconductor for Small-Molecule Organic Solar Cells
by Cristian Castillo, Andrés Aracena, Luis Ballesteros, Gloria Neculqueo, Loik Gence and Franck Quero
Materials 2023, 16(10), 3759; https://doi.org/10.3390/ma16103759 - 16 May 2023
Cited by 3 | Viewed by 2018
Abstract
A new benzotrithiophene-based small molecule, namely 2,5,8-Tris[5-(2,2-dicyanovinyl)-2-thienyl]-benzo[1,2-b:3,4-b′:6,5-b″]-trithiophene (DCVT-BTT), was successfully synthesized and subsequently characterized. This compound was found to present an intense absorption band at a wavelength position of ∼544 nm and displayed potentially relevant optoelectronic properties for photovoltaic devices. Theoretical studies demonstrated [...] Read more.
A new benzotrithiophene-based small molecule, namely 2,5,8-Tris[5-(2,2-dicyanovinyl)-2-thienyl]-benzo[1,2-b:3,4-b′:6,5-b″]-trithiophene (DCVT-BTT), was successfully synthesized and subsequently characterized. This compound was found to present an intense absorption band at a wavelength position of ∼544 nm and displayed potentially relevant optoelectronic properties for photovoltaic devices. Theoretical studies demonstrated an interesting behavior of charge transport as electron donor (hole-transporting) active material for heterojunction cells. A preliminary study of small-molecule organic solar cells based on DCVT-BTT (as the P-type organic semiconductor) and phenyl-C61-butyric acid methyl ester (as the N-type organic semiconductor) exhibited a power conversion efficiency of 2.04% at a donor: acceptor weight ratio of 1:1. Full article
(This article belongs to the Special Issue Advances in Semiconductor and Dielectric Materials)
Show Figures

Figure 1

18 pages, 3446 KiB  
Article
An Analysis of the Photo-Thermoelastic Waves Due to the Interaction between Electrons and Holes in Semiconductor Materials under Laser Pulses
by Hashim M. Alshehri and Khaled Lotfy
Mathematics 2023, 11(1), 127; https://doi.org/10.3390/math11010127 - 27 Dec 2022
Cited by 5 | Viewed by 1796
Abstract
In this paper, the interaction between holes and electrons in semiconductor media is analyzed based on the existing mathematical–physical model. The elasto-thermodiffusion (ETD) theory, according to photothermal (PT) transport processes, has been used to study the model under the impact of the non-Gaussian [...] Read more.
In this paper, the interaction between holes and electrons in semiconductor media is analyzed based on the existing mathematical–physical model. The elasto-thermodiffusion (ETD) theory, according to photothermal (PT) transport processes, has been used to study the model under the impact of the non-Gaussian laser pulse. A one-dimensional (1D) electronic/thermoelastic deformation is described, in detail, by the governing field equations. The governing field equations are taken in non-dimensional forms. The governing equations are established based on coupled elasticity theory, plasma diffusion equations, and moving equations. To determine the physical field quantities in this problem analytically in the Laplace domain, some boundary conditions are taken at the free surface of the semiconductor medium. The inversion of the Laplace transform is implemented using a numerical method to obtain the complete solutions in the time domain for the basic physical fields involved. The effects of the phase lag (relaxation time) of the temperature gradient, phase lag of the heat flux, and laser pulses are graphically obtained and discussed in comparison to silicon and germanium semiconductor materials. The wave behavior of the main fields in the semiconductors, according to optoelectronics and the thermoelastic processes, is obtained and graphically represented. Full article
(This article belongs to the Section E4: Mathematical Physics)
Show Figures

Figure 1

Back to TopTop