High-Temperature Optoelectronic Transport Behavior of n-TiO2 Nanoball–Stick/p-Lightly Boron-Doped Diamond Heterojunction
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, Y.; Huang, J.; Cui, Z.; Ge, M.; Zhang, K.; Chen, Z.; Chi, L. Recent advances in TiO2 based nanostructured surfaces with controllable wettability and adhesion. Small 2016, 12, 2203–2224. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Zhang, S.; Zhao, H. Recent applications of TiO2 nanomaterials in chemical sensing in aqueous media. Sens. Actuators B 2011, 160, 875–890. [Google Scholar] [CrossRef]
- Ge, S.; Sang, D.; Zou, L.; Yao, Y.; Zhou, C.; Fu, H.; Xi, H.; Fan, J.; Meng, L.; Wang, C. A review on the progress of optoelectronic devices based on TiO2 thin films and nanomaterials. Nanomaterials 2023, 13, 1141. [Google Scholar] [CrossRef] [PubMed]
- Heris, S.Z.; Etemadi, M.; Mousavi, S.B.; Mohammadpourfard, M.; Ramavandi, B. Preparation and characterizations of TiO2/ZnO nanohybrid and its application in photocatalytic degradation of tetracycline in wastewater. J. Photochem. Photobiol. A 2023, 443, 114893. [Google Scholar] [CrossRef]
- Jubu, P.R.; Chahrour, K.R.; Yam, F.K.; Awoji, O.; Yusof, Y.; Choo, E. Titanium oxide nanotube film decorated with β-Ga2O3 nanoparticles for enhanced water splitting properties. Sol. Energy 2022, 235, 152–162. [Google Scholar] [CrossRef]
- Pratyay, A.A.; Ariful, M.; Jasir, A.S.; Nahar, T. A Comparative Study on the Analytical Performance of AlAs and Silicon DGJLMOSFET in Terms of Gate Oxide Material and its Thickness. In Proceedings of the 2023 ICONAT, Goa, India, 24–26 January 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Chen, J.; Shu, J.; Anqi, Z.; Juyuan, H.; Yan, Z.; Chen, J. Synthesis of carbon quantum dots/TiO2 nanocomposite for photo-degradation of Rhodamine B and cefradine. Diam. Relat. Mater. 2016, 70, 137–144. [Google Scholar] [CrossRef]
- Sang, D.; Liu, J.; Wang, X.; Zhang, D.; Ke, F.; Hu, H.; Wang, W.; Zhang, B.; Li, H.; Liu, B.; et al. Negative differential resistance of n-ZnO nanorods/p-degenerated diamond heterojunction at high temperatures. Front. Chem. 2020, 8, 531. [Google Scholar] [CrossRef]
- Ge, S.; Sang, D.; Zou, L.; Li, C.; Wang, G.; Fan, J.; Wang, Q. High-temperature photoelectronic transport behavior of n-TiO2 nanorod clusters/p-degenerated boron-doped diamond heterojunction. Diam. Relat. Mater. 2024, 144, 110962. [Google Scholar] [CrossRef]
- Li, H.; Zhang, T.; Li, L.; Lü, X.; Li, B.; Jin, Z.; Zou, G. Investigation on crystalline structure, boron distribution, and residual stresses in freestanding boron-doped CVD diamond films. J. Cryst. Growth 2010, 312, 1986–1991. [Google Scholar] [CrossRef]
- Liu, X.; Wan, L.; Hu, W.; Wang, Y. Effect of TiO2 films on diamond: Oxidation resistance and wear performance. Adv. Appl. Ceram. 2009, 108, 501–505. [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, S.; Long, Y.; Zhang, L.; Xue, X.; Yin, Y.; Xu, B. Phase-transition kinetics of silicon-doped titanium dioxide based on high-temperature X-ray-diffraction measurements. J. Solid. State Chem. 2021, 303, 122544. [Google Scholar] [CrossRef]
- Sobaszek, M.; Brzhezinskaya, M.; Olejnik, A.; Mortet, V.; Alam, M.; Sawczak, M.; Ficek, M.; Gazda, M.; Weiss, Z.; Bogdanowicz, R. Highly Occupied Surface States at Deuterium-Grown Boron-Doped Diamond Interfaces for Efficient Photoelectrochemistry. J. Small 2023, 19, 2208265. [Google Scholar] [CrossRef] [PubMed]
- Belenkov, E.A.; Brzhezinskaya, M.M.; Greshnyakov, V.A. Novel carbon diamond-like phases LA5, LA7 and LA8. Diam. Relat. Mater. 2014, 50, 9–14. [Google Scholar] [CrossRef]
- Bamola, P.; Singh, B.; Bhoumik, A.; Sharma, M.; Dwivedi, C.; Singh, M.; Dalapati, G.; Sharma, H. Mixed-phase TiO2 nanotube–nanorod hybrid arrays for memory-based resistive switching devices. ACS Appl. Nano Mater. 2020, 3, 10591–10604. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Feng, Z.; Chen, J.; Li, C. UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. J. Phys. Chem. B 2006, 110, 927–935. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, G.; Cui, P.; Jia, M.; Li, Z.; Gundlach, L.; Zeng, Y. Enhancement-/depletion-mode TiO2 thin-film transistors via O2/N2 preannealing. IEEE Trans. Electron. Devices 2020, 67, 2346–2351. [Google Scholar] [CrossRef]
- Yang, D.; Ren, Y.; Du, F.; Hu, P.; Jiao, Y.; Teng, F.; Fan, H. Enhanced response speed of TiO2 nanoarrays based all solid-state ultraviolet photodetector via SiO2 dielectric layer. J. Alloys Compd. 2021, 867, 159053. [Google Scholar] [CrossRef]
- Osada, M.; Kobayashi, M.; Kakihana, M. Enhanced dielectric response induced by controlled morphology in rutile TiO2 nanocrystals. J. Ceram. Soc. Jpn. 2013, 121, 593–597. [Google Scholar] [CrossRef]
- Xu, J.; Yokota, Y.; Wong, R.A.; Kim, Y.; Einaga, Y. Unusual electrochemical properties of low-doped boron-doped diamond electrodes containing sp2 carbon. J. Am. Chem. Soc. 2020, 142, 2310–2316. [Google Scholar] [CrossRef]
- Baitinger, E.M.; Belenkov, E.A.; Brzhezinskaya, M.M.; Greshnyakov, V.A. Specific features of the structure of detonation nanodiamonds from results of electron microscopy investigations. Phys. Solid. State 2012, 54, 1715–1722. [Google Scholar] [CrossRef]
- Chetibi, L.; Busko, T.; Kulish, N.P.; Hamana, D.; Chaieb, S.; Achour, S. Photoluminescence properties of TiO2 nanofibers. J. Nanopart. Res. 2017, 19, 129. [Google Scholar] [CrossRef]
- Xiang, M.; Huang, C.; Xing, Y.; Liu, H.; Shao, X. Modulated Photoluminescence of Single-Layer MoS2 on Various Rutile TiO2 Surfaces: Implications for Photocatalytic Applications. ACS Appl. Nano Mater. 2022, 5, 7609–7618. [Google Scholar] [CrossRef]
- Bala, D.; Matei, I.; Ionita, G.; Cosma, D.V.; Rosu, M.C.; Stanca, M.; Gaidau, C.; Baleanu, M.; Virgolici, M.; Stanculescu, I. Luminescence, Paramagnetic, and Electrochemical Properties of Copper Oxides-Decorated TiO2/Graphene Oxide Nanocomposites. Int. J. Mol. Sci. 2022, 23, 14703. [Google Scholar] [CrossRef] [PubMed]
- Bolokang, A.S.; Cummings, F.R.; Dhonge, B.P.; Abdallah, H.M.I.; Moyo, T.; Swart, H.C.; Arendse, C.J.; Muller, T.F.G.; Motaung, D.E. Characteristics of the mechanical milling on the room temperature ferromagnetism and sensing properties of TiO2 nanoparticles. Appl. Surf. Sci. 2015, 331, 362–372. [Google Scholar] [CrossRef]
- Haldar, D.; Ghosh, A.; Bose, S.; Mondal, S.; Ghorai, U.K.; Saha, S.K. Defect induced photoluminescence in MoS2 quantum dots and effect of Eu3+/Tb3+ co-doping towards efficient white light emission. Opt. Mater. 2018, 79, 12–20. [Google Scholar] [CrossRef]
- Wang, Y.; Su, J.; Lin, Z.; Zhang, J.; Chang, J.; Hao, Y. Recent progress on the effects of impurities and defects on the properties of Ga2O3. J. Mater. Chem. C 2022, 10, 13395–13436. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, C.; Jiang, C.; Abrahams, I.; Du, Z.; Zhang, Q.; Sun, J.; Huang, X. Resistive switching behavior in memristors with TiO2 nanorod arrays of different dimensions. Appl. Surf. Sci. 2019, 485, 222–229. [Google Scholar] [CrossRef]
- Zou, L.; Sang, D.; Ge, S.; Yao, Y.; Wang, G.; Wang, X.; Fan, J.; Wang, Q. High-temperature optoelectronic transport behavior of n-MoS2 nanosheets/p-diamond heterojunction. J. Alloys Compd. 2024, 972, 172819. [Google Scholar] [CrossRef]
- Safa, S.; Sarraf-Mamoory, R.; Azimirad, R. Ultra-violet photodetection enhancement based on ZnO–graphene composites fabricated by sonochemical method. J. Sol-Gel Sci. Technol. 2015, 74, 499–506. [Google Scholar] [CrossRef]
- Landmann, M.; Köhler, T.; Köppen, S.; Rauls, E.; Frauenheim, T.; Schmidt, W.G. Fingerprints of order and disorder in the electronic and optical properties of crystalline and amorphous TiO2. Phys. Rev. B—Condens. Matter Mater. Phys. 2012, 86, 064201. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Li, Q.; Quhe, R.; Yang, C.; Guo, Y.; Zhang, X.; Pan, Y.; Li, J.; Zhang, H.; et al. Schottky barrier heights in two-dimensional field-effect transistors: From theory to experiment. Rep. Progress. Phys. 2021, 84, 056501. [Google Scholar] [CrossRef] [PubMed]
- Sellers, M.C.K.; Seebauer, E.G. Measurement method for carrier concentration in TiO2 via the Mott–Schottky approach. Thin Solid Films 2011, 519, 2103–2110. [Google Scholar] [CrossRef]
- Sigcha-Pallo, C.; Peralta-Hernández, J.M.; Alulema-Pullupaxi, P.; Carrera, P.; Fernández, L.; Pozo, P.; Espinoza-Montero, P.J. Photoelectrocatalytic degradation of diclofenac with a boron-doped diamond electrode modified with titanium dioxide as a photoanode. Environ. Res. 2022, 212, 113362. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yao, Y.; Sang, X.; Zou, L.; Ge, S.; Wang, X.; Zhang, D.; Wang, Q.; Zhou, H.; Fan, J.; et al. Photoluminescence and Electrical Properties of n-Ce-Doped ZnO Nanoleaf/p-Diamond Heterojunction. Nanomaterials 2022, 12, 3773. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Meng, A.; Zhang, Z.; Xiao, S.; Guo, X.; Wu, X.; Huang, S.; Ma, G.; Han, P.; He, B. Enhanced visible-light-driven photoelectrochemical activity in nitrogen-doped TiO2/boron-doped diamond heterojunction electrodes. ACS Appl. Energy Mater. 2022, 5, 7144–7156. [Google Scholar] [CrossRef]
- Di, B.A.; Giubileo, F.; Luongo, G.; Iemmo, L.; Martucciello, N.; Niu, G.; Fraschke, M.; Skibitzki, O.; Schroeder, T.; Lupina, G. Tunable Schottky barrier and high responsivity in graphene/Si-nanotip optoelectronic device. 2D Mater. 2016, 4, 015024. [Google Scholar] [CrossRef]
- Aydin, M.E.; Yakuphanoglu, F. Electrical characterization of inorganic-on-organic diode based InP and poly (3,4-ethylenedioxithiophene)/poly (styrenesulfonate) (PEDOT:PSS). Microelectron. Reliab. 2012, 52, 1350–1354. [Google Scholar] [CrossRef]
- Franceschini, E.A. Nanostructured Multifunctional Materials Synthesis, Characterization, Applications and Computational Simulation; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Wetzelaer, G.J.A.; Scheepers, M.; Sempere, A.M.; Momblona, C.; Ávila, J.; Bolink, H.J. Trap-assisted non-radiative recombination in organic–inorganic perovskite solar cells. Adv. Mater. 2015, 27, 1837–1841. [Google Scholar] [CrossRef]
- Lettieri, S.; Pavone, M.; Fioravanti, A.; Santamaria Amato, L.; Maddalena, P. Charge carrier processes and optical properties in TiO2 and TiO2-based heterojunction photocatalysts: A review. Materials 2021, 14, 1645. [Google Scholar] [CrossRef]
- Hao, R.; Wang, G.; Tang, H.; Sun, L.; Xu, C.; Han, D. Template-free preparation of macro/mesoporous g-C₃N₄/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl. Catal. B 2016, 187, 47–58. [Google Scholar] [CrossRef]
- Wu, S.; Chen, Z.; Yue, W.; Mine, S.; Toyao, T.; Matsuoka, M.; Xi, X.; Wang, L.; Zhang, J. Single-atom high-valent Fe (IV) for promoted photocatalytic nitrogen hydrogenation on porous TiO2-SiO2. ACS Catal. 2021, 11, 4362–4371. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, S.; Wu, C.; Pei, K.; Song, Y.; Li, H.; Wang, Q.; Sang, D. Fabrication and high temperature electronic behaviors of n-WO3 nanorods/p-diamond heterojunction. Appl. Phys. Lett. 2017, 110, 052106. [Google Scholar] [CrossRef]
- Cheraghizade, M.; Jamali-Sheini, F.; Shabani, P. Charge transportation mechanisms in TiO2/SnS/Ag solar cells. Mater. Res. Bull. 2020, 124, 110727. [Google Scholar] [CrossRef]
- Gul, F. Carrier transport mechanism and bipolar resistive switching behavior of a nano-scale thin film TiO2 memristor. Ceram. Int. 2018, 44, 11417–11423. [Google Scholar] [CrossRef]
- Sarker, B.K.; Khondaker, S.I. Thermionic emission and tunneling at carbon nanotube–organic semiconductor interface. ACS Nano 2012, 6, 4993–4999. [Google Scholar] [CrossRef]
- Wang, W.; Lee, T.; Kretzschmar, I.; Reed, M.A. Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer. Nano Lett. 2004, 4, 643–646. [Google Scholar] [CrossRef]
- Sarke, B.K.; Kang, N.; Khondaker, S.I. High performance semiconducting enriched carbon nanotube thin film transistors using metallic carbon nanotubes as electrodes. Nanoscale 2014, 6, 4896–4902. [Google Scholar] [CrossRef]
- Mousavi, M.; Soleimani, M.; Hamzehloo, M.; Badiei, A.; Ghasemi, J.B. Photocatalytic degradation of different pollutants by the novel gCN-NS/Black-TiO2 heterojunction photocatalyst under visible light: Introducing a photodegradation model and optimization by response surface methodology (RSM). Mater. Chem. Phys. 2021, 258, 123912. [Google Scholar] [CrossRef]
Temperature (°C) | RT | 50 °C | 100 °C | 150 °C | 200 °C |
---|---|---|---|---|---|
Current at 8 V (A) | 0.120 ± 0.042 mA | 0.160 ± 0.056 mA | 0.236 ± 0.082 mA | 0.295 ± 0.103 mA | 0.001 ± 0.0003 mA |
Current at −8 V (A) | 0.008 ± 0.002 mA | 0.023 ± 0.008 mA | 0.022 ± 0.007 mA | 0.018 ± 0.006 mA | 0.105 ± 0.036 mA |
Rectification ratio | 15 ± 0.005 | 6.96 ± 0.002 | 10.73 ± 0.003 | 16.39 ± 0.005 | 105 ± 0.036 |
Turn-on voltage (V) | 0.8 | 0.4 | 0.6 | 0.4 | 0.5 |
Ideality factor n | 19.23 ± 0.006 | 18.40 ± 0.006 | 16.43 ± 0.006 | 18.40 ± 0.006 | 17.72 ± 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, S.; Sang, D.; Li, C.; Shi, Y.; Wang, C.; Yu, C.; Wang, G.; Xi, H.; Wang, Q. High-Temperature Optoelectronic Transport Behavior of n-TiO2 Nanoball–Stick/p-Lightly Boron-Doped Diamond Heterojunction. Materials 2025, 18, 303. https://doi.org/10.3390/ma18020303
Ge S, Sang D, Li C, Shi Y, Wang C, Yu C, Wang G, Xi H, Wang Q. High-Temperature Optoelectronic Transport Behavior of n-TiO2 Nanoball–Stick/p-Lightly Boron-Doped Diamond Heterojunction. Materials. 2025; 18(2):303. https://doi.org/10.3390/ma18020303
Chicago/Turabian StyleGe, Shunhao, Dandan Sang, Changxing Li, Yarong Shi, Cong Wang, Chunshuai Yu, Guangyu Wang, Hongzhu Xi, and Qinglin Wang. 2025. "High-Temperature Optoelectronic Transport Behavior of n-TiO2 Nanoball–Stick/p-Lightly Boron-Doped Diamond Heterojunction" Materials 18, no. 2: 303. https://doi.org/10.3390/ma18020303
APA StyleGe, S., Sang, D., Li, C., Shi, Y., Wang, C., Yu, C., Wang, G., Xi, H., & Wang, Q. (2025). High-Temperature Optoelectronic Transport Behavior of n-TiO2 Nanoball–Stick/p-Lightly Boron-Doped Diamond Heterojunction. Materials, 18(2), 303. https://doi.org/10.3390/ma18020303