Controlling Poly(3-hexythiophene) Hierarchical Polymer/SWCNT Nanohybrid Shish-Kebab Morphologies in Marginal Solvents
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of SWCNT Supramolecular Structures
2.2. Characterization
3. Results
3.1. Optical Properties
3.2. Morphology and Structure of P3HT:SWCNT NHSKs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rathore, P.; Negi, C.M.S.; Verma, A.S.; Singh, A.; Chauhan, G.; Inigo, A.R.; Gupta, S.K. Investigation of the optical and electrical characteristics of solution-processed poly (3 hexylthiophene) (P3HT): Multiwall carbon nanotube (MWCNT) composite-based devices. Mater. Res. Express 2017, 4, 085905. [Google Scholar] [CrossRef]
- Tarekegn, E.N.; Harrell, W.R.; Luzinov, I.; Delaney, W. Photolithographic Fabrication of P3HT Based Organic Thin-Film Transistors with High Mobility. ECS J. Solid State Sci. Technol. 2022, 11, 025008. [Google Scholar] [CrossRef]
- Verma, A.; Sahu, P.K.; Chaudhary, V.; Singh, A.K.; Mishra, V.N.; Prakash, R. Fabrication and Characterization of P3HT/MoS₂ Thin-Film Based Ammonia Sensor Operated at Room Temperature. IEEE Sens. J. 2022, 22, 10361–10369. [Google Scholar] [CrossRef]
- Cao, Z.; Huo, X.; Ma, Q.; Song, J.; Pan, Q.; Chen, L.; Lai, J.; Shan, X.; Gao, J. TFT-CN/P3HT blending active layer based two-component organic field-effect transistor for improved H2S gas detection. Sens. Actuators B Chem. 2023, 385, 133685. [Google Scholar] [CrossRef]
- Xian, K.; Liu, Y.; Liu, J.; Yu, J.; Xing, Y.; Peng, Z.; Zhou, K.; Gao, M.; Zhao, W.; Lu, G.; et al. Delicate crystallinity control enables high-efficiency P3HT organic photovoltaic cells. J. Mater. Chem. A 2022, 10, 3418–3429. [Google Scholar] [CrossRef]
- Agha, M.; El-Kemary, M.; Oraby, A.H.; Salim, E. Efficient Multilayers Organic Solar Cells with Hybrid Interfacial Layer-based P3HT and CuO Nanoparticles. J. Inorg. Organomet. Polym. Mater. 2023, 34, 557–564. [Google Scholar] [CrossRef]
- Dey, K.; Chowdhury, S.R.; Dykstra, E.; Koronatov, A.; Lu, H.P.; Shinar, R.; Shinar, J.; Anzenbacher, P. Diazirine-based photo-crosslinkers for defect free fabrication of solution processed organic light-emitting diodes. J. Mater. Chem. C 2020, 8, 11988–11996. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Hsu, F.-C.; Chao, Y.-C.; Lu, G.-Z.; Mustaqeem, M.; Chen, Y.-F. Self-Assembled Monolayer for Low-Power-Consumption, Long-Term-Stability, and High-Efficiency Quantum Dot Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2023, 15, 25744–25751. [Google Scholar] [CrossRef]
- Spano, F.C. The Spectral Signatures of Frenkel Polarons in H- and J-Aggregates. Acc. Chem. Res. 2010, 43, 429–439. [Google Scholar] [CrossRef]
- Seidler, N.; Lazzerini, G.M.; Li Destri, G.; Marletta, G.; Cacialli, F. Enhanced crystallinity and film retention of P3HT thin-films for efficient organic solar cells by use of preformed nanofibers in solution. J. Mater. Chem. C 2013, 1, 7748–7757. [Google Scholar] [CrossRef]
- Sirringhaus, H.; Brown, P.J.; Friend, R.H.; Nielsen, M.M.; Bechgaard, K.; Langeveld-Voss, B.M.W.; Spiering, A.J.H.; Janssen, R.A.J.; Meijer, E.W.; Herwig, P.; et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999, 401, 685–688. [Google Scholar] [CrossRef]
- Poelking, C.; Andrienko, D. Effect of Polymorphism, Regioregularity and Paracrystallinity on Charge Transport in Poly(3-hexylthiophene) [P3HT] Nanofibers. Macromolecules 2013, 46, 8941–8956. [Google Scholar] [CrossRef]
- Dou, F.; Li, J.; Men, H.; Zhang, X. Controlling Molecule Aggregation and Electronic Spatial Coherence in the H-Aggregate and J-Aggregate Regime at Room Temperature. Polymers 2020, 12, 786. [Google Scholar] [CrossRef]
- Alam, K.M.; Garcia, J.C.; Kiriakou, M.V.; Chaulagain, N.; Vrushabendrakumar, D.; Cranston, E.D.; Gusarov, S.; Kobryn, A.E.; Shankar, K. Enhanced luminescence sensing performance and increased intrachain order in blended films of P3HT and cellulose nanocrystals. Nanotechnology 2023, 34, 205703. [Google Scholar] [CrossRef]
- Lee, Y.; Mongare, A.; Plant, A.; Ryu, D. Strain–Microstructure–Optoelectronic Inter-Relationship toward Engineering Mechano-Optoelectronic Conjugated Polymer Thin Films. Polymers 2021, 13, 935. [Google Scholar] [CrossRef]
- Scharsich, C.; Lohwasser, R.H.; Sommer, M.; Asawapirom, U.; Scherf, U.; Thelakkat, M.; Neher, D.; Köhler, A. Control of aggregate formation in poly(3-hexylthiophene) by solvent, molecular weight, and synthetic method. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 442–453. [Google Scholar] [CrossRef]
- Chu, Z.; Zhang, Q.; Luo, H.; Zhou, H.; Zhang, F.; Chen, W.; Zhang, W. Synergetic effect of microfluidic flow and ultrasonication on chains pre-ordering in conjugated polymer solution. Polymer 2024, 290, 126514. [Google Scholar] [CrossRef]
- Sun, S.; Salim, T.; Wong, L.H.; Foo, Y.L.; Boey, F.; Lam, Y.M. A new insight into controlling poly(3-hexylthiophene) nanofiber growth through a mixed-solvent approach for organic photovoltaics applications. J. Mater. Chem. 2011, 21, 377–386. [Google Scholar] [CrossRef]
- Neto, N.M.B.; Silva, M.D.R.; Araujo, P.T.; Sampaio, R.N. Photoinduced Self-Assembled Nanostructures and Permanent Polaron Formation in Regioregular Poly(3-hexylthiophene). Adv. Mater. 2018, 30, 1705052. [Google Scholar] [CrossRef]
- Roehling, J.D.; Arslan, I.; Moulé, A.J. Controlling microstructure in poly(3-hexylthiophene) nanofibers. J. Mater. Chem. 2012, 22, 2498–2506. [Google Scholar] [CrossRef]
- Liu, J.; Zou, J.; Zhai, L. Bottom-up Assembly of Poly(3-hexylthiophene) on Carbon Nanotubes: 2D Building Blocks for Nanoscale Circuits. Macromol. Rapid Commun. 2009, 30, 1387–1391. [Google Scholar] [CrossRef] [PubMed]
- Arras, M.M.L.; Jana, R.; Mühlstädt, M.; Maenz, S.; Andrews, J.; Su, Z.; Grasl, C.; Jandt, K.D. In Situ Formation of Nanohybrid Shish-Kebabs during Electrospinning for the Creation of Hierarchical Shish-Kebab Structures. Macromolecules 2016, 49, 3550–3558. [Google Scholar] [CrossRef]
- Li, C.Y.; Li, L.; Cai, W.; Kodjie, S.L.; Tenneti, K.K. Nanohybrid Shish-Kebabs: Periodically Functionalized Carbon Nanotubes. Adv. Mater. 2005, 17, 1198–1202. [Google Scholar] [CrossRef]
- Kim, K.; Shin, J.W.; Lee, Y.B.; Cho, M.Y.; Lee, S.H.; Park, D.H.; Jang, D.K.; Lee, C.J.; Joo, J. Poly(3-hexylthiophene)/Multiwalled Carbon Hybrid Coaxial Nanotubes: Nanoscale Rectification and Photovoltaic Characteristics. ACS Nano 2010, 4, 4197–4205. [Google Scholar] [CrossRef] [PubMed]
- Bergemann, K.; Léonard, F. Giga-Gain at Room Temperature in Functionalized Carbon Nanotube Phototransistors Based on a Nonequilibrium Mechanism. ACS Nano 2020, 14, 10421–10427. [Google Scholar] [CrossRef]
- Bahrami, Z.; Schnittker, K.; Adi, W.; Beisenova, A.; Yesilkoy, F.; Thompson, D.; Andrews, J. Solution Processable Phototransistors with Ultra-High Responsivity Enabled by Hierarchical Poly(3-Hexylthiophene) Carbon Nanotube Composites. Adv. Opt. Mater. 2024, 12, 2401269. [Google Scholar] [CrossRef]
- Misra, R.D.K.; Depan, D.; Challa, V.S.A.; Shah, J.S. Supramolecular structures fabricated through the epitaxial growth of semiconducting poly(3-hexylthiophene) on carbon nanotubes as building blocks of nanoscale electronics. Phys. Chem. Chem. Phys. 2014, 16, 19122–19129. [Google Scholar] [CrossRef]
- Li, J.-H.; Li, P.; Xu, J.-T.; Luscombe, C.K.; Fan, Z.-Q. Straightening Single-Walled Carbon Nanotubes by Adsorbed Rigid Poly(3-hexylthiophene) Chains via π–π Interaction. J. Phys. Chem. C 2016, 120, 27665–27674. [Google Scholar] [CrossRef]
- Agbolaghi, S.; Charoughchi, S.; Aghapour, S.; Abbasi, F.; Bahadori, A.; Sarvari, R. Bulk heterojunction photovoltaics with improved efficiencies using stem-leaf, shish-kebab and double-fibrillar nano-hybrids based on modified carbon nanotubes and poly(3-hexylthiophene). Sol. Energy 2018, 170, 138–150. [Google Scholar] [CrossRef]
- Liu, J.; Moo-Young, J.; McInnis, M.; Pasquinelli, M.A.; Zhai, L. Conjugated Polymer Assemblies on Carbon Nanotubes. Macromolecules 2014, 47, 705–712. [Google Scholar] [CrossRef]
- Charoughchi, S.; Agbolaghi, S.; Aghapour, S.; Sarvari, R.; Abbasi, F. Polymer wrapping versus well-oriented crystal growth of polythiophenes onto multi-wall carbon nanotubes via surface chemical modification and regioregularity deliberation. New J. Chem. 2018, 42, 14469–14480. [Google Scholar] [CrossRef]
- Laird, E.D.; Li, C.Y. Structure and Morphology Control in Crystalline Polymer–Carbon Nanotube Nanocomposites. Macromolecules 2013, 46, 2877–2891. [Google Scholar] [CrossRef]
- Luo, Y.; Santos, F.A.; Wagner, T.W.; Tsoi, E.; Zhang, S. Dynamic Interactions between Poly(3-hexylthiophene) and Single-Walled Carbon Nanotubes in Marginal Solvent. J. Phys. Chem. B 2014, 118, 6038–6046. [Google Scholar] [CrossRef]
- Agbolaghi, S. Confined/Unconfined Crystallization of Poly(3-Hexylthiophene) in Melt/Solution Environments Containing Carbonic Materials and Correlated Thermal and Structural Behaviors. IUST 2020, 17, 42–53. [Google Scholar] [CrossRef]
- Agbolaghi, S.; Abbaspoor, S. Nano-Hybrids Based on Surface Modified Reduced Graphene Oxide Nanosheets and Carbon Nanotubes and a Regioregular Polythiophene. J. Ultrafine Grained Nanostructured Mater. 2018, 51, 60–70. [Google Scholar] [CrossRef]
- Roesing, M.; Howell, J.; Boucher, D. Solubility characteristics of poly(3-hexylthiophene). J. Polym. Sci. Part B Polym. Phys. 2017, 55, 1075–1087. [Google Scholar] [CrossRef]
- Clark, J.; Chang, J.-F.; Spano, F.C.; Friend, R.H.; Silva, C. Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy. Appl. Phys. Lett. 2009, 94, 163306. [Google Scholar] [CrossRef]
- Louarn, G.; Trznadel, M.; Buisson, J.P.; Laska, J.; Pron, A.; Lapkowski, M.; Lefrant, S. Raman Spectroscopic Studies of Regioregular Poly(3-alkylthiophenes). J. Phys. Chem. 1996, 100, 12532–12539. [Google Scholar] [CrossRef]
- Hou, J.; Tan, Z.a.; Yan, Y.; He, Y.; Yang, C.; Li, Y. Synthesis and Photovoltaic Properties of Two-Dimensional Conjugated Polythiophenes with Bi(thienylenevinylene) Side Chains. J. Am. Chem. Soc. 2006, 128, 4911–4916. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Lu, T.-C.; Huang, C.-I. Exploring the correlation between molecular conformation and UV–visible absorption spectra of two-dimensional thiophene-based conjugated polymers. Polymer 2013, 54, 6489–6499. [Google Scholar] [CrossRef]
- Liu, J.; Arif, M.; Zou, J.; Khondaker, S.I.; Zhai, L. Controlling Poly(3-hexylthiophene) Crystal Dimension: Nanowhiskers and Nanoribbons. Macromolecules 2009, 42, 9390–9393. [Google Scholar] [CrossRef]
- Han, Y.; Guo, Y.; Chang, Y.; Geng, Y.; Su, Z. Chain Folding in Poly(3-hexylthiophene) Crystals. Macromolecules 2014, 47, 3708–3712. [Google Scholar] [CrossRef]
Sample ID | SWCNT Dispersion | NHSK Solution | |||||
---|---|---|---|---|---|---|---|
SWCNT Conc. (mg/mL) | P3HT: SWCNT | Anisole Amt. (mL) | Chloroform Amt. (mL) | Chloroform % (v/v) | P3HT:SWCNT Mass Ratio | SWCNT Conc. (mg/mL) | |
NHSK-0.4 mg/mL | 0.40 | 1:1.7 | 3.9075 | 0.0925 | 2.37 | 6 | 0.00925 |
NHSK-0.25 mg/mL | 0.25 | 1:1.7 | 3.8520 | 0.1480 | 3.84 | 6 | 0.00925 |
NHSK-0.1 mg/mL | 0.10 | 1:1.7 | 3.6300 | 0.3700 | 10.19 | 6 | 0.00925 |
NHSK-0.05 mg/mL | 0.05 | 1:1.7 | 3.2600 | 0.7400 | 22.70 | 6 | 0.00925 |
Sample ID | A0–1/A0–2 | A0–0/A0–1 | Exciton Bandwidth (meV) |
---|---|---|---|
P3HT/Ansiole | 0.742 | 0.508 | 177.1 |
NHSK-0.4 mg/mL | 0.918 | 0.724 | 88.8 |
NHSK-0.25 mg/mL | 0.858 | 0.767 | 73.6 |
NHSK-0.1 mg/mL | 0.973 | 0.817 | 56.5 |
NHSK-0.05 mg/mL | 0.973 | 0.917 | 24.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schnittker, K.; Bahrami, Z.; Andrews, J. Controlling Poly(3-hexythiophene) Hierarchical Polymer/SWCNT Nanohybrid Shish-Kebab Morphologies in Marginal Solvents. Crystals 2024, 14, 1065. https://doi.org/10.3390/cryst14121065
Schnittker K, Bahrami Z, Andrews J. Controlling Poly(3-hexythiophene) Hierarchical Polymer/SWCNT Nanohybrid Shish-Kebab Morphologies in Marginal Solvents. Crystals. 2024; 14(12):1065. https://doi.org/10.3390/cryst14121065
Chicago/Turabian StyleSchnittker, Kevin, Zahra Bahrami, and Joseph Andrews. 2024. "Controlling Poly(3-hexythiophene) Hierarchical Polymer/SWCNT Nanohybrid Shish-Kebab Morphologies in Marginal Solvents" Crystals 14, no. 12: 1065. https://doi.org/10.3390/cryst14121065
APA StyleSchnittker, K., Bahrami, Z., & Andrews, J. (2024). Controlling Poly(3-hexythiophene) Hierarchical Polymer/SWCNT Nanohybrid Shish-Kebab Morphologies in Marginal Solvents. Crystals, 14(12), 1065. https://doi.org/10.3390/cryst14121065