Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (368)

Search Parameters:
Keywords = optical emission spectroscopy (OES)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4965 KB  
Article
Research on Activation of Solid Waste Through Microbial Desilification
by Yuming Bai, Xiao Li, Limei Wu and Haiyang Qiao
Crystals 2026, 16(1), 54; https://doi.org/10.3390/cryst16010054 - 12 Jan 2026
Viewed by 141
Abstract
To investigate the biosilicification capabilities of Bacillus mucilaginosus and Bacillus polymyxa, silicon concentrations in supernatants from quartz and calcium silicate cultures were monitored over a 12-day period using inductively coupled plasma optical emission spectrometry (ICP-OES). Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), [...] Read more.
To investigate the biosilicification capabilities of Bacillus mucilaginosus and Bacillus polymyxa, silicon concentrations in supernatants from quartz and calcium silicate cultures were monitored over a 12-day period using inductively coupled plasma optical emission spectrometry (ICP-OES). Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to evaluate changes in the absorption intensity of Si–O–Si characteristic peaks, crystalline phase transformations in the reaction products, and the microstructural morphology of quartz and calcium silicate before and after microbial leaching. The results show that after leaching with B. mucilaginosus, the dissolved silicon concentration in the quartz supernatant reached a maximum of 73.868 mg/L on day 8. In contrast, following treatment with B. polymyxa, the silicon concentration in the calcium silicate supernatant peaked earlier, at 149.153 mg/L on day 4. After microbial leaching, both substrates exhibited marked changes in the intensity of the infrared absorption peaks at 1071 cm−1 and 1083 cm−1, suggesting the formation of Si–O–R type organosilicon complexes. Iron tailings (containing inert silica) and fly ash (containing active silica) were selected for experimental validation. Following treatment with B. mucilaginosus for desilication over an 8-day period, the activity index of iron tailings increased from 77.83% to 90.51%, while that of fly ash rose from 66.32% to 85.01%. ICP-OES analysis confirmed that under the action of B. mucilaginosus, the trends in silicon concentration and activity index in the supernatant of silica-containing solid wastes, such as iron tailings and fly ash, were consistent with those observed in quartz, thereby demonstrating effective biological desilication. These findings provide novel insights into the development of environmentally sound disposal methods for a wider range of solid waste types. Full article
Show Figures

Figure 1

13 pages, 408 KB  
Article
Essential, Non-Essential, and Toxic Elements in the Muscle of Meagre (Argyrosomus regius) from the Tagus Estuary (Portugal)
by André F. Jorge, Carla Rodrigues, Bernardo Quintella, Marco Gomes da Silva and Maria João Lança
Oceans 2026, 7(1), 3; https://doi.org/10.3390/oceans7010003 - 31 Dec 2025
Viewed by 387
Abstract
Monitoring trace metals in commercially important fish species provides an early warning of anthropogenic contamination and potential risk to consumers. This study semi-quantified and quantified essential, non-essential, and toxic elements in the muscle of wild meagre (Argyrosomus regius) captured in the [...] Read more.
Monitoring trace metals in commercially important fish species provides an early warning of anthropogenic contamination and potential risk to consumers. This study semi-quantified and quantified essential, non-essential, and toxic elements in the muscle of wild meagre (Argyrosomus regius) captured in the Tagus estuary (Portugal), which is used as a nursery and spawning aggregation area. Dry muscle was microwave-digested and analyzed using inductively coupled plasma–optical emission spectroscopy. Semi-quantified screening detected Al, B, Ca, Fe, K, Mg, Na, P, S, Si, Sr, and Ti, and eight elements were determined using multielement calibration (As, Cr, Cu, Hg, Mn, Ni, Se, and Zn); Cd, Pb (toxic elements), Co, and Mo were not detected in this study. Arsenic was detected in all individuals, with a minimum value of 0.348 mg/kg wet weight. A mercury level above the European Commission regulatory limit (0.5 mg/kg wet weight) was only detected in one individual, corresponding to 2% of the samples. Although other metals remain well below regulatory limits, continued biomonitoring is recommended to track temporal trends and safeguard seafood safety in transitional coastal systems, which is important for commercially relevant fish species. Full article
22 pages, 6141 KB  
Article
Construction and Characterization of PDA@MnO2-Cored Multifunctional Targeting Nanoparticles Loaded with Survivin siRNA for Breast Tumor Therapy
by Jing Zhang, Wenhao Jiang, Lei Hu, Qing Du, Nina Filipczak, Satya Siva Kishan Yalamarty and Xiang Li
Pharmaceutics 2026, 18(1), 10; https://doi.org/10.3390/pharmaceutics18010010 - 21 Dec 2025
Viewed by 534
Abstract
Objective: This study aims to engineer a novel nanoparticle formulation for combined tumor therapy, designated as PDA@Mn-siSur-c-NPs, which comprises a polydopamine/manganese dioxide (PDA@MnO2) core alongside survivin-targeting siRNA and cyclo(RGD-DPhe-K)-targeting moiety. Methods: The PDA@Mn-siSur-c-NPs were constructed and subjected to detailed characterization. [...] Read more.
Objective: This study aims to engineer a novel nanoparticle formulation for combined tumor therapy, designated as PDA@Mn-siSur-c-NPs, which comprises a polydopamine/manganese dioxide (PDA@MnO2) core alongside survivin-targeting siRNA and cyclo(RGD-DPhe-K)-targeting moiety. Methods: The PDA@Mn-siSur-c-NPs were constructed and subjected to detailed characterization. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was employed to quantify manganese content. To assess siRNA stability within the system, samples were incubated with 50% fetal bovine serum (FBS) before agarose gel electrophoresis analysis. Additionally, cellular internalization by 4T1 cells and in vitro photothermal conversion efficiency of the formulation were evaluated. ICP-OES was further utilized to investigate the in vivo pharmacokinetics and tissue distribution of manganese. Animal model studies were conducted to assess the anti-breast cancer efficacy of PDA@Mn-siSur-c-NPs in combination with infrared irradiation. Results: The newly developed PDA@Mn-siSur-c-NPs demonstrated superior siRNA protection, reduced toxicity, and high photothermal conversion capacity. When combined with photothermal therapy (PTT), these nanoparticles exerted enhanced synergistic anti-tumor effects. Delivery of survivin siRNA resulted in a significant downregulation of survivin protein expression in tumor tissues. Moreover, magnetic resonance imaging (MRI) confirmed that the nanoparticles possess favorable imaging properties. Conclusions: This research demonstrates that the integration of PDA@Mn-siSur-c-NPs with PTT holds considerable therapeutic promise for improved breast cancer treatment. Full article
(This article belongs to the Special Issue Hybrid Nanoparticles for Cancer Therapy)
Show Figures

Graphical abstract

22 pages, 4587 KB  
Article
Evaluation of Filter Types for Trace Element Analysis in Brake Wear PM10: Analytical Challenges and Recommendations
by Aleandro Diana, Mery Malandrino, Riccardo Cecire, Paolo Inaudi, Agnese Giacomino, Ornella Abollino, Agusti Sin and Stefano Bertinetti
Molecules 2025, 30(24), 4816; https://doi.org/10.3390/molecules30244816 - 18 Dec 2025
Viewed by 411
Abstract
Accurate analysis of trace elements in particulate matter (PM) emitted by brake systems critically depends on the filter selection and handling processes, which can significantly impact analytical results due to contamination and elemental interference from filter elemental composition. This study systematically evaluated two [...] Read more.
Accurate analysis of trace elements in particulate matter (PM) emitted by brake systems critically depends on the filter selection and handling processes, which can significantly impact analytical results due to contamination and elemental interference from filter elemental composition. This study systematically evaluated two widely used filter types, EMFAB (borosilicate glass microfiber reinforced with PTFE) and Teflon (PTFE), for their suitability in the trace element determination of brake-wear PM10 collected using a tribometer set-up. A total of twenty-three PM10 samples were analyzed, encompassing two different friction materials, to thoroughly assess the performance and analytical implications of each filter type. Filters were tested for their chemical background, handling practicality and potential contamination risk through extensive elemental analysis by inductively coupled plasma–optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS). Additionally, morphological characterization of both filter types was conducted via scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) to elucidate structural features affecting particle capture and subsequent analytical performance. Significant differences emerged between the two filters regarding elemental interferences: EMFAB filters exhibited substantial background contribution, particularly for alkali and alkaline earth metals (Ca, Na, Mg and K), complicating accurate quantification at trace levels. Conversely, Teflon filters demonstrated considerably lower background but required careful manipulation due to their structural fragility and the necessity to remove supporting rings, potentially introducing analytical variability. Statistical analysis confirmed that the filter material significantly affects elemental quantification, particularly when the collected PM10 mass is limited, highlighting the importance of careful filter selection and handling procedures. Recommendations for optimal analytical practices are provided to minimize contamination risks and enhance reliability in trace element analysis of PM10 emissions. These findings contribute to refining analytical methodologies essential for accurate environmental monitoring and regulatory assessments of vehicular non-exhaust emissions. Full article
(This article belongs to the Special Issue Advances in Trace Element Analysis: Techniques and Applications)
Show Figures

Figure 1

17 pages, 6831 KB  
Article
Impact of Molecular Reactive Gas Injection on Species Emitted at the Exit of a Tubular Atmospheric Pressure Plasma Jet Source
by Catalin Constantin, Marian Bazavan, Cristian Stancu, Bogdana Mitu and Gheorghe Dinescu
Appl. Sci. 2025, 15(24), 13042; https://doi.org/10.3390/app152413042 - 11 Dec 2025
Viewed by 308
Abstract
Control of reactive species generation lies at the core of atmospheric pressure plasma processing. In this work, we investigate the ability of a cold RF argon plasma jet source to produce reactive oxygen and nitrogen species (RONS) following the injection of a molecular [...] Read more.
Control of reactive species generation lies at the core of atmospheric pressure plasma processing. In this work, we investigate the ability of a cold RF argon plasma jet source to produce reactive oxygen and nitrogen species (RONS) following the injection of a molecular gas (N2 or O2), either premixed with the main gas (Ar) or introduced separately into an already generated Ar discharge. We show that, when reactive gases are injected directly into the Ar discharge, the range of operating parameters—particularly the ratio of reactive gas to main gas—is considerably widened compared to conventional injections through the main argon flow. The plasma characteristics at the source exit were analyzed using optical emission spectroscopy (OES), including the determination of electron density, rotational temperature, and the emission intensities of plasma species such as Ar I, NO(A), OH(A), and N2(C) for both injection types. Overall, the results show that plasmas generated using in-discharge injection are more stable and capable of sustaining enhanced production of reactive radicals such as NO(A) and OH(A), whereas injection through the main gas can be tuned to selectively enhance NO generation. These findings highlight the potential of plasma sources employing premixed or in-discharge reactive gas injection for surface treatment and for the processing of gas and liquid phases. Full article
Show Figures

Figure 1

12 pages, 1648 KB  
Article
Influence of Niobium Content on the Chemical Composition, Microstructure, and Microhardness of Hardfacing Coatings Applied by SMAW
by Jaime Perez, Jesus Gutierrez, Jhon Olaya, Oscar Piamba and Americo Scotti
Materials 2025, 18(24), 5477; https://doi.org/10.3390/ma18245477 - 5 Dec 2025
Viewed by 356
Abstract
This study investigates the chemical composition, microstructural evolution, and mechanical behavior of hardfacing coatings produced by Shielded Metal Arc Welding (SMAW) using electrodes with varying niobium (Nb) contents (0%, 2%, 4%, 6%, and 8%), deposited at a constant current of 120 A and [...] Read more.
This study investigates the chemical composition, microstructural evolution, and mechanical behavior of hardfacing coatings produced by Shielded Metal Arc Welding (SMAW) using electrodes with varying niobium (Nb) contents (0%, 2%, 4%, 6%, and 8%), deposited at a constant current of 120 A and employing two- and three-layer configurations. Optical Emission Spectroscopy (OES) revealed a significant reduction in niobium transfer efficiency, with the Nb content in the coatings reaching up to 3.5 wt%, approximately 50% lower than in the electrodes. Chromium (Cr) content also decreased with increasing Nb additions due to the higher thermochemical affinity of niobium for oxygen, which promotes the formation of Nb oxides during welding. X-ray diffraction (XRD) analyses confirmed the presence of complex carbides, primarily NbC and M7C3-type Cr carbides, embedded in eutectic austenitic matrices. The incorporation of niobium promoted grain refinement and the precipitation of primary NbC carbides, particularly in multilayer coatings where dilution effects were reduced. Scanning Electron Microscopy (SEM) and Energy-Dispersive Spectroscopy (EDS) provided additional evidence, revealing an increased density of NbC particles and a concomitant reduction in CrC particle size with higher Nb contents. Microhardness testing showed a slight increase in hardness with increasing niobium, attributed to the higher intrinsic hardness and finer size of NbC particles. Overall, these findings highlight the role of niobium as an effective grain refiner and hard-phase promoter in SMAW-applied coatings, providing a foundation for optimizing wear-resistant overlays for demanding industrial environments. Full article
(This article belongs to the Special Issue Microstructural and Mechanical Characteristics of Welded Joints)
Show Figures

Figure 1

28 pages, 7727 KB  
Article
The Use of Metal Oxides (Al2O3 and ZrO2) and Supports (Glass and Kaolin) to Enhance DBD Plasma-Catalytic CO2 Conversion
by Agata Dorosz, Krzysztof Zaraska, Michał Lewak, Artur Małolepszy, Jakub Jaworski and Arkadiusz Moskal
Materials 2025, 18(23), 5411; https://doi.org/10.3390/ma18235411 - 1 Dec 2025
Cited by 1 | Viewed by 652
Abstract
Background: The conversion of carbon dioxide (CO2) into valuable products like carbon monoxide (CO) is an important process facing limitations due to poor energy efficiency. Dielectric barrier discharge (DBD) plasma reactors offer a potential solution through synergistic plasma catalysis, making the [...] Read more.
Background: The conversion of carbon dioxide (CO2) into valuable products like carbon monoxide (CO) is an important process facing limitations due to poor energy efficiency. Dielectric barrier discharge (DBD) plasma reactors offer a potential solution through synergistic plasma catalysis, making the selection of an optimal solid packing material a critical design challenge. Methods: This study investigated the impact of four different packing materials—Al2O3, ZrO2, glass beads, and kaolin pellets—on the CO2 conversion process in a DBD reactor. The materials’ physical and chemical properties (porosity and composition) were analyzed. Experiments were conducted to examine the influence of gas flow rates and bead size on CO2 and CO concentrations. The study utilized optical emission spectroscopy (OES) and kinetic mathematical modeling to characterize the discharge and the reaction. Results: Higher gas flow rates led to a decrease in CO2 conversion due to reduced specific energy input. The addition of solid packing significantly improved system efficiency by promoting filamentary and surface discharges, with smaller beads yielding higher conversion rates. Notably, kaolin demonstrated unique performance characteristics, suggested by its increased plasma brightness, likely due to flow-induced turbulence promoting the reaction. Conclusions: Proper material selection and packing design are crucial for efficient CO2 splitting, concurrently boosting energy efficiency and maintaining high conversion. While Al2O3 (corundum) shows high intrinsic activity, kaolin emerges as a highly competitive and advantageous material when associated costs are considered paramount for large-scale applications. Full article
(This article belongs to the Special Issue Advances in Plasma Treatment of Materials)
Show Figures

Graphical abstract

13 pages, 2712 KB  
Article
Temporal Variation in Nano-Enhanced Laser-Induced Plasma Spectroscopy (NELIPS)
by Ashraf EL Sherbini and AbdelNasser Aboulfotouh
Quantum Beam Sci. 2025, 9(4), 34; https://doi.org/10.3390/qubs9040034 - 28 Nov 2025
Viewed by 390
Abstract
The NELIPS acronym stands for Nano-Enhanced Laser-Induced Plasma Spectroscopy. Within this framework, the temporal variation in the enhanced plasma emissions from pure nanomaterials with respect to corresponding bulk materials was monitored as a function of delay time in the range from 1 to [...] Read more.
The NELIPS acronym stands for Nano-Enhanced Laser-Induced Plasma Spectroscopy. Within this framework, the temporal variation in the enhanced plasma emissions from pure nanomaterials with respect to corresponding bulk materials was monitored as a function of delay time in the range from 1 to 5–11 μs. Six different pure nanomaterials were employed including silver, zinc, aluminum, titanium, iron, and silicon. Radiation from pulsed Nd: YAG laser at wavelength 1064 nm was used to induce both bulk and pure nanomaterial plasmas under similar experimental conditions. Plasma emissions from both targets were monitored via optical emission spectroscopy technique (OES). The spectral line intensities (Signal-To-Noise ratio S/N) from the pure nanomaterial plasma turns out to decline in a constant logarithmic manner but at a slower rate than that from the corresponding bulk material plasma. Consequently, the measured average enhanced emission from different nanomaterials features an increase in an exponential manner with delay time. This trend of increase was accounted for via mathematical elaboration of enhanced emission based on the measured Signal-To-Noise data. Plasma parameters (electron density and temperature) were precisely measured at each delay time as well. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2025)
Show Figures

Figure 1

22 pages, 4926 KB  
Article
Recycling Copper (Cu) from Waste Automotive Printed Circuit Boards (WPCBs) After Characterization and Liberation Study by Mineral Processing Techniques
by Mahsa Pourmohammad, Josep Oliva, Hernan Anticoi, Carlos Hoffmann Sampaio, Pura Alfonso, César Valderrama, Jose Luis Cortina and Percy Escalante
Minerals 2025, 15(12), 1259; https://doi.org/10.3390/min15121259 - 27 Nov 2025
Viewed by 1070
Abstract
Waste printed circuit boards (WPCBs) are one of the fastest-growing waste streams and pose a significant environmental challenge while also representing a valuable secondary resource due to their rich metal content, particularly copper (Cu). Since effective recovery of metals requires mechanical pre-treatment and [...] Read more.
Waste printed circuit boards (WPCBs) are one of the fastest-growing waste streams and pose a significant environmental challenge while also representing a valuable secondary resource due to their rich metal content, particularly copper (Cu). Since effective recovery of metals requires mechanical pre-treatment and advanced characterization, WPCB boards were subjected to size reduction and then characterized through X-ray fluorescence (XRF), inductively coupled plasma optical emission spectroscopy (ICP-OES), scanning electron microscopy (SEM-EDS), and mineral liberation analysis (MLA). Results indicated that copper is predominantly found in coarser particle sizes due to its ductility, while glass fibers and ceramics dominate finer fractions. Liberation studies revealed that Cu is essentially free in fine particles (<100 μm) but tends to remain locked in coarser fractions. Based on these results, gravity separation methods were employed to concentrate the copper: coarse particles (>300 μm) were treated on a shaking table, achieving a Cu recovery of 95%, while fine particles (<300 μm) were processed using a multi-gravity separator (MGS), with recoveries of 94% for 100 × 300 μm and 81.5% for <100 μm size fractions. This study presents a gravity-based separation strategy that combines shaking tables and MGS to optimize Cu recovery from automotive WPCBs. To the authors’ knowledge, the MGS application for WPCBs has received little attention, despite its strong potential for separating this type of waste. The proposed methodology enhances the concentration and purity of the metallic fraction (in this case, Cu), especially in fine particles, which are challenging to work with, while reducing environmental impacts through minimal chemical use, thereby contributing to sustainable e-waste recycling. Full article
Show Figures

Figure 1

15 pages, 4352 KB  
Article
Effects of the Hydrogen-to-Nitrogen Ratio in Plasma Nitriding on the Surface Properties of Cold Work Tool Steels
by Kodchaporn Chinnarat, Artit Chingsungnoen, Yasuharu Ohgoe and Toshiyuki Fukahori
Coatings 2025, 15(12), 1372; https://doi.org/10.3390/coatings15121372 - 24 Nov 2025
Viewed by 616
Abstract
This study systematically investigates the effect of hydrogen flow rate (100, 200, 300, and 400 sccm) on the properties of DC53 steel during a 4 h plasma nitriding process conducted at 400 °C in an asymmetric bipolar pulsed reactor. A comprehensive characterisation approach [...] Read more.
This study systematically investigates the effect of hydrogen flow rate (100, 200, 300, and 400 sccm) on the properties of DC53 steel during a 4 h plasma nitriding process conducted at 400 °C in an asymmetric bipolar pulsed reactor. A comprehensive characterisation approach was employed. X-ray diffraction (XRD) was used to identify the phase composition, revealing the formation of a compound layer consisting of ε-Fe2–3N (identified by its (100), (101), and (102) planes) and γ’-Fe4N (identified by its (220) plane). Mechanical properties were assessed using Vickers microhardness for surface measurements and nanoindentation for depth profiling. Glow discharge optical emission spectroscopy (GD-OES) provided elemental depth analysis, while a ball-on-disk tribometer evaluated the tribological performance. The optimal treatment was achieved at a hydrogen flow rate of 200 sccm. This condition yielded a peak surface hardness of 1121.5 ± 69.2 HV0.2. GD-OES analysis directly correlated this mechanical enhancement to a high surface nitrogen content of approximately 8.5% and an effective diffusion depth of about 50 µm. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Figure 1

21 pages, 1599 KB  
Article
Porous Metal Electrodes in Microbubble Surface Dielectric Barrier Discharge Plasma Reactors for Methylene Blue Removal
by Emil Ninan Skariah and Minkwan Kim
Separations 2025, 12(11), 306; https://doi.org/10.3390/separations12110306 - 5 Nov 2025
Viewed by 523
Abstract
The present study evaluates a surface dielectric barrier discharge (SDBD) plasma system utilizing porous metal electrodes to enhance the performance of non-thermal plasma (NTP)-based water treatment. A custom high-voltage, variable-frequency power driver was developed to operate SDBD reactors featuring novel porous electrode configurations [...] Read more.
The present study evaluates a surface dielectric barrier discharge (SDBD) plasma system utilizing porous metal electrodes to enhance the performance of non-thermal plasma (NTP)-based water treatment. A custom high-voltage, variable-frequency power driver was developed to operate SDBD reactors featuring novel porous electrode configurations aimed at enhancing plasma–liquid interaction. Three types of porous metal electrodes—copper (60 ppi), copper (20 ppi), and nickel (60 ppi)—were investigated as ground electrodes to evaluate their impact on discharge behavior and treatment performance. Electrical characterization via Lissajous plot analysis and optical emission spectroscopy (OES) was used to assess plasma power and reactive species generation. Ozone measurement and hydroxyterephthalic acid (HTA) dosimetry confirmed the formation of O3 and hydroxyl radicals (·OH), while methylene blue (MB) removal experiments quantified pollutant removal percentage and energy yield. Among the tested electrodes, the copper (20 ppi) configuration achieved the highest MB removal percentage of 95.07%, followed by nickel (60 ppi) with 90.53%, and copper (60 ppi) with only 27.55%. Correspondingly, the energy yield (EY) reached 0.349 g/kWh for copper (20 ppi) at 15 min of plasma exposure, 0.19 g/kWh for nickel (60 ppi) at 20 min, and 0.049 g/kWh for copper (60 ppi) at 15 min. These results highlight the potential of porous metal electrodes as effective design choices for optimizing plasma–liquid interaction in SDBD systems. The findings support the development of compact, energy-efficient plasma water purification technologies using air-fed, surface DBD configurations. Full article
(This article belongs to the Special Issue Adsorption/Degradation Methods for Water and Wastewater Treatment)
Show Figures

Figure 1

18 pages, 3719 KB  
Article
Nanostructured Sr-Doped Hydroxyapatite: A Material with Antimicrobial Potential
by Miljana Mirković, Aleksandra Sknepnek, Ana Kalijadis, Aleksandar Krstić, Marija Šuljagić, Marko Perić and Ljubica Andjelković
Nanomaterials 2025, 15(21), 1651; https://doi.org/10.3390/nano15211651 - 29 Oct 2025
Viewed by 916
Abstract
This research investigated the feasibility of producing strontium-doped nanocrystalline hydroxyapatite (SrHAp) through an environmentally benign synthesis approach and evaluated the antimicrobial activity of the resulting material. The synthesized nanomaterial was subjected to comprehensive characterization. The antimicrobial efficacy of SrHAp was tested against Gram-positive [...] Read more.
This research investigated the feasibility of producing strontium-doped nanocrystalline hydroxyapatite (SrHAp) through an environmentally benign synthesis approach and evaluated the antimicrobial activity of the resulting material. The synthesized nanomaterial was subjected to comprehensive characterization. The antimicrobial efficacy of SrHAp was tested against Gram-positive and Gram-negative bacterial strains. X-ray diffraction (XRD) analysis in combination with Fourier-transform infrared (FT-IR) spectroscopy confirmed the successful formation of pure monocrystalline SrHAp. The scanning electron microscopy (SEM) examination revealed two predominant morphological structures: nanorods and prismatic configurations of the SrHAp. Transmission electron microscopy (TEM) demonstrated that the rod-like SrHAp nanocrystals aggregate into elongated grain structures with a size of about 25 nm × 10 nm. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) analysis confirmed the presence and quantification of the concentrations of calcium, strontium, and phosphorus, while confirming the expected calcium–phosphorus ratio characteristic of hydroxyapatite. The study established that the positive surface charge of the material, with a point of zero charge near pH 10, is essential for its antimicrobial efficiency. These results suggest that SrHAp nanomaterials hold promise for biomedical applications, particularly as antimicrobial coatings for implants and scaffolds for bone tissue, where the prevention of infection is critical. Overall, despite its selective and material quantity-dependent antimicrobial efficacy, environmentally friendly synthesized SrHAp can be successfully applied as an effective controller of targeted microbial contamination, especially of Gram-positive bacterial species S. aureus, L. monocytogenes, S. Enteritidis, and A. baumanii. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

21 pages, 9821 KB  
Article
Tapping into the Past: First Approach to a Diachronic Material Characterization of Mayapán Pottery
by Miguel Pérez, Oscar G. de Lucio, Alejandro Mitrani, Carlos Peraza Lope, Wilberth Cruz Alvarado, Hugo Sobral, Ciro Márquez Herrera and Soledad Ortiz Ruiz
Ceramics 2025, 8(4), 131; https://doi.org/10.3390/ceramics8040131 - 27 Oct 2025
Viewed by 667
Abstract
The great city of Mayapan has experienced a technological change in pottery making, and our results confirm a shift in the raw materials and possibly the potters’ knowledge about them. The dynamics of change during the Postclassic period in the Maya area are [...] Read more.
The great city of Mayapan has experienced a technological change in pottery making, and our results confirm a shift in the raw materials and possibly the potters’ knowledge about them. The dynamics of change during the Postclassic period in the Maya area are reflected in the material changes used to make pottery. A comprehensive analysis was conducted on a collection of 248 pottery items from the archaeological site of Mayapán in Yucatán, Mexico, dating from the Middle Preclassic to Postclassic periods (700 BC–1500 CE). Non-invasive methods were used for the entire pottery set, including X-ray fluorescence (XRF) and fiber-optic reflectance spectroscopy (FORS). Additionally, for a representative subset, minimally invasive techniques such as inductively coupled plasma optical emission spectrometry (ICP-OES) and laser-induced breakdown spectroscopy (LIBS) were employed. The resulting data enabled the identification of materials used in the pottery’s manufacture. The elemental composition of the objects was determined, revealing correlations between elements such as Si with Al that yield a R2 factor of 0.94. The results indicate the presence of smectite clays, carbonates, and iron oxides. The results show that a higher proportion of carbonates was found in the pieces from the Postclassic period compared to those from the Preclassic period, which may be associated with a change in the manufacturing process. Likewise, the Postclassic pieces are distinguished by a greater contribution of the Mg-OH signal, unlike the Preclassic and Classic, which show a greater contribution of the Al-OH group. The implications for the technological knowledge of the potters suggest the use of different technologies across various periods and material changes driven by shifts in political and economic relations in the city and the northern plains. Full article
Show Figures

Figure 1

18 pages, 2836 KB  
Article
Silica Spheres Functionalized with Silver and Bismuth Nanoparticles—Antibacterial Activity Against Clinically Relevant Bacterial Pathogens
by Marcin Gajek, Karolina Klesiewicz, Maria Biegun-Żurowska, Paula Parreira, Magdalena Ziąbka, Agnieszka Różycka and Alicja Rapacz-Kmita
Int. J. Mol. Sci. 2025, 26(20), 10203; https://doi.org/10.3390/ijms262010203 - 20 Oct 2025
Cited by 1 | Viewed by 913
Abstract
The aim of the study was to develop hybrid nanomaterials based on monodisperse silica spheres as carriers for silver nanoparticles (AgNPs) or bismuth nanoparticles (BiNPs) and to evaluate their antimicrobial properties. Silica spheres were synthesized using a modified Stöber method, either unmodified or [...] Read more.
The aim of the study was to develop hybrid nanomaterials based on monodisperse silica spheres as carriers for silver nanoparticles (AgNPs) or bismuth nanoparticles (BiNPs) and to evaluate their antimicrobial properties. Silica spheres were synthesized using a modified Stöber method, either unmodified or functionalized with (3-aminopropyl)triethoxysilane (APTES), prior to AgNP or BiNP deposition. The materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), inductively coupled plasma optical emission spectroscopy (ICP-OES), and zeta potential measurements, while antimicrobial activity was assessed by microdilution against Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Enterococcus faecium) and Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa), with Helicobacter pylori as a clinical model. The results show that both SiO2-AgNP and SiO2-BiNP composites completely inhibited H. pylori and showed high activity against other pathogens, although P. aeruginosa remained less susceptible. Functionalization of AgNP-coated samples with APTES promoted uniform distribution of AgNPs, with the minimum bactericidal concentration (MBC) to minimum inhibitory concentration (MIC) ratios ranging from 1 to 4, confirming a bactericidal rather than bacteriostatic effect. In contrast, BiNP-coated samples without APTES exhibited lower MIC values from 74 to 595 μg mL−1, consistent with increased Bi3+ release from amorphous phases. This indicates the antimicrobial potential, highlighting the role of surface functionalization in regulating ion release and biological performance, and suggesting applications in the biomedical and food industries. Full article
Show Figures

Figure 1

16 pages, 842 KB  
Article
Traceability and Heavy Metal Contamination in Agrosystems of Two Rice-Producing Areas of the Ecuadorian Coast
by Jairo Jaime-Carvajal, Jaime Naranjo-Morán, Kevin Cedeño Vinces, José Ballesteros, Fernando Espinoza-Lozano, Ivan Chóez-Guaranda and Simón Pérez-Martinez
Agronomy 2025, 15(10), 2359; https://doi.org/10.3390/agronomy15102359 - 9 Oct 2025
Viewed by 909
Abstract
Rice (Oryza sativa) plays a fundamental role in the Ecuadorian diet. This study evaluated traceability and contamination by heavy metals in two rice-producing areas of Ecuador. Microwave-assisted digestion was used to process samples from rice agrosystems including irrigation water, soil, roots, [...] Read more.
Rice (Oryza sativa) plays a fundamental role in the Ecuadorian diet. This study evaluated traceability and contamination by heavy metals in two rice-producing areas of Ecuador. Microwave-assisted digestion was used to process samples from rice agrosystems including irrigation water, soil, roots, stems, and leaves. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was employed for elemental analysis. Arsenic (As), cadmium (Cd), lead (Pb), and chromium (Cr) were measured in samples collected in Daule and Ventanas. In soils, the concentrations of As (1.50–2.82 mg/kg) and Cd (1.22–1.45 mg/kg) exceeded the internationally recommended safety thresholds. In irrigation water, the content of As (0.85–1.12 mg/L), Pb (0.25–0.38 mg/L), and Cr (0.37–0.53 mg/L) surpass the international/national permissible limits. However, the limits established by Ecuadorian legislation indicate that As in soils did not exceed contamination thresholds. Additionally, the bioaccumulation of As and Pb in roots from Daule and Ventanas, respectively, was observed, along with the movement of Pb to aerial parts in Daule. Finally, preliminary As found in commercial rice grains suggest a potential health concern to the Ecuadorian population. These findings highlight the need for stricter heavy metal restrictions for rice agrosystems and effective agricultural pollution mitigation. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

Back to TopTop