Nanostructured Sr-Doped Hydroxyapatite: A Material with Antimicrobial Potential
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis Procedure of SrHAp Material
2.2. Characterization Analyses
2.3. Antimicrobial Activity
3. Results
3.1. X-Ray Diffraction (XRD) and Microstructural Analysis Results of SrHAp
3.2. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FT-IR) Analysis Results of SrHAp
3.3. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) Analysis
3.4. Scanning Electron Microscopy (SEM) Analysis Results of SrHAp
3.5. Transmission Electron Microscopy (TEM) Results of SrHAp
3.6. The Point Zero Charge (PZC) Analysis of SrHAp
3.7. Density Functional Theory (DFT) Calculations
4. Antimicrobial Analysis of SrHAp
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic Resistance in the Food Chain: A Developing Country-Perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.; Takahashi, E.; Hongsuwan, M.; Wuthiekanun, V.; Thamlikitkul, V.; Hinjoy, S.; Day, N.P. Epidemiology and burden of multidrug-resistant bacterial infection in a developing country. eLife 2016, 5, e18082. [Google Scholar] [CrossRef]
- Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature 2016, 529, 336–343. [Google Scholar] [CrossRef]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control 2017, 6, 47. [Google Scholar] [CrossRef]
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Robles Aguilar, G.; Mestrovic, T.; Smith, G.; Han, C.; et al. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef]
- Ajulo, S.; Awosile, B. Global antimicrobial resistance and use surveillance system (GLASS 2022): Investigating the relationship between antimicrobial resistance and antimicrobial consumption data across the participating countries. PLoS ONE 2024, 19, e0297921. [Google Scholar] [CrossRef] [PubMed]
- Lazarević, M.M.; Ignjatović, N.L.; Mahlet, Q.; Bumah, V.V.; Radunović, M.; Milašin, J.; Uskoković, D.P.; Uskoković, V. Biocompatible Germanium-Doped Hydroxyapatite Nanoparticles for Promoting Osteogenic Differentiation and Antimicrobial Activity. ACS Appl. Nano Mater. 2024, 7, 8580–8592. [Google Scholar] [CrossRef]
- Habraken, W.; Habibovic, P.; Epple, M.; Bohner, M. Calcium phosphates in biomedical applications: Materials for the future? Mater. Today 2016, 19, 69–87. [Google Scholar] [CrossRef]
- Yilmaz, B.; Alshemary, A.Z.; Evis, Z. Co-doped hydroxyapatites as potential materials for biomedical applications. Microchem. J. 2019, 144, 443–453. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 2010, 6, 715–734. [Google Scholar] [CrossRef]
- Mushtaq, A.; Zhao, R.; Luo, D.; Dempsey, E.; Wang, X.; Iqbal, M.Z.; Kong, X. Magnetic hydroxyapatite nanocomposites: The advances from synthesis to biomedical applications. Mater. Des. 2021, 197, 109269. [Google Scholar] [CrossRef]
- Lamkhao, S.; Phaya, M.; Jansakun, C.; Chandet, N.; Thongkorn, K.; Rujijanagul, G.; Bangrak, P.; Randorn, C. Synthesis of Hydroxyapatite with Antibacterial Properties Using a Microwave-Assisted Combustion Method. Sci. Rep. 2019, 9, 4015. [Google Scholar] [CrossRef]
- Uskoković, V.; Uskoković, D.P. Nanosized hydroxyapatite and other calcium phosphates: Chemistry of formation and application as drug and gene delivery agents. J. Biomed. Mater. Res. Part B Appl. Biomater. 2011, 96, 152–191. [Google Scholar] [CrossRef]
- Ghosh, R.; Das, S.; Mallick, S.P.; Beyene, Z. A review on the antimicrobial and antibiofilm activity of doped hydroxyapatite and its composites for biomedical applications. Mater. Today Commun. 2022, 31, 103311. [Google Scholar] [CrossRef]
- Pompili, A.; Caroli, F.; Carpanese, L.; Caterino, M.; Raus, L.; Sestili, G.; Occhipinti, E. Cranioplasty performed with a new osteoconductive osteoinducing hydroxyapatite-derived material. J. Neurosurg. 1998, 89, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Ripamonti, U.; Roden, L.C.; Renton, L.F. Osteoinductive hydroxyapatite-coated titanium implants. Biomaterials 2012, 33, 3813–3823. [Google Scholar] [CrossRef]
- Itoh, S.; Kikuchi, M.; Takakuda, K.; Koyama, Y.; Matsumoto, H.N.; Ichinose, S.; Tanaka, J.; Kawauchi, T.; Shinomiya, K. The biocompatibility and osteoconductive activity of a novel hydroxyapatite/collagen composite biomaterial, and its function as a carrier of rhBMP-2. J. Biomed. Mater. Res. 2001, 54, 445–453. [Google Scholar] [CrossRef]
- Lin, L.; Chow, K.L.; Leng, Y. Study of hydroxyapatite osteoinductivity with an osteogenic differentiation of mesenchymal stem cells. J. Biomed. Mater. Res. Part A 2009, 89, 326–335. [Google Scholar] [CrossRef] [PubMed]
- LeGeros, R.Z. Calcium Phosphate-Based Osteoinductive Materials. Chem. Rev. 2008, 108, 4742–4753. [Google Scholar] [CrossRef]
- Uskoković, V. Ion-doped hydroxyapatite: An impasse or the road to follow? Ceram. Int. 2020, 46, 11443–11465. [Google Scholar] [CrossRef]
- Balakrishnan, S.; Padmanabhan, V.P.; Kulandaivelu, R.; Sankara Narayanan Nellaiappan, T.S.; Sagadevan, S.; Paiman, S.; Mohammad, F.; Al-Lohedan, H.A.; Obulapuram, P.K.; Oh, W.C. Influence of iron doping towards the physicochemical and biological characteristics of hydroxyapatite. Ceram. Int. 2021, 47, 5061–5070. [Google Scholar] [CrossRef]
- Alshemary, A.Z.; Akram, M.; Goh, Y.-F.; Tariq, U.; Butt, F.K.; Abdolahi, A.; Hussain, R. Synthesis, characterization, in vitro bioactivity and antimicrobial activity of magnesium and nickel doped silicate hydroxyapatite. Ceram. Int. 2015, 41, 11886–11898. [Google Scholar] [CrossRef]
- Kolekar, T.V.; Thorat, N.D.; Yadav, H.M.; Magalad, V.T.; Shinde, M.A.; Bandgar, S.S.; Kim, J.H.; Agawane, G.L. Nanocrystalline hydroxyapatite doped with aluminium: A potential carrier for biomedical applications. Ceram. Int. 2016, 42, 5304–5311. [Google Scholar] [CrossRef]
- Fan, Q.; Fan, F.; Xu, W.; Zhang, H.; Liu, N. The structural and surface properties of Al-doped hydroxyapatite (Ca5(PO4)3OH) nanorods and their applications for pH-induced drug delivery. J. Alloys Compd. 2021, 879, 160414. [Google Scholar] [CrossRef]
- Habib, M.L.; Disha, S.A.; Sahadat Hossain, M.; Uddin, M.N.; Ahmed, S. Enhancement of antimicrobial properties by metals doping in nano-crystalline hydroxyapatite for efficient biomedical applications. Heliyon 2024, 10, e23845. [Google Scholar] [CrossRef]
- Wu, H.-C.; Wang, T.-W.; Sun, J.-S.; Wang, W.-H.; Lin, F.-H. A novel biomagnetic nanoparticle based on hydroxyapatite. Nanotechnology 2007, 18, 165601. [Google Scholar] [CrossRef]
- Stojanović, Z.; Ljiljana, V.; Smilja, M.; Nenad, I.; Uskoković, D. Hydrothermal Synthesis of Nanosized Pure and Cobalt-Exchanged Hydroxyapatite. Mater. Manuf. Process. 2009, 24, 1096–1103. [Google Scholar] [CrossRef]
- Mollaei, M.; Varshosaz, J. Preparation and characterization of hydroxyapatite nanoparticles doped with nickel, tin, and molybdate ions for their antimicrobial effects. Drug Dev. Ind. Pharm. 2023, 49, 168–178. [Google Scholar] [CrossRef]
- Nicácio, T.C.N.; Castro, M.A.M.; Melo, M.C.N.; Silva, T.A.; Teodoro, M.D.; Bomio, M.R.D.; Motta, F.V. Zn and Ni doped hydroxyapatite: Study of the influence of the type of energy source on the photocatalytic activity and antimicrobial properties. Ceram. Int. 2024, 50, 27540–27552. [Google Scholar] [CrossRef]
- Laurencin, D.; Almora-Barrios, N.; de Leeuw, N.H.; Gervais, C.; Bonhomme, C.; Mauri, F.; Chrzanowski, W.; Knowles, J.C.; Newport, R.J.; Wong, A.; et al. Magnesium incorporation into hydroxyapatite. Biomaterials 2011, 32, 1826–1837. [Google Scholar] [CrossRef] [PubMed]
- Stanić, V.; Dimitrijević, S.; Antić-Stanković, J.; Mitrić, M.; Jokić, B.; Plećaš, I.B.; Raičević, S. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl. Surf. Sci. 2010, 256, 6083–6089. [Google Scholar] [CrossRef]
- Kumar, B.K.S.; Jagannatham, M.; Venkateswarlu, B.; Dumpala, R.; Sunil, B.R. Synthesis, characterization, and antimicrobial properties of strontium-substituted hydroxyapatite. J. Aust. Ceram. Soc. 2021, 57, 195–204. [Google Scholar] [CrossRef]
- Ravi, N.D.; Balu, R.; Sampath Kumar, T.S. Strontium-Substituted Calcium Deficient Hydroxyapatite Nanoparticles: Synthesis, Characterization, and Antibacterial Properties. J. Am. Ceram. Soc. 2012, 95, 2700–2708. [Google Scholar] [CrossRef]
- O’ Sullivan, C.; O’ Neill, L.; O’ Leary, N.D.; O’ Gara, J.P.; Crean, A.M.; Ryan, K.B. Osteointegration, antimicrobial and antibiofilm activity of orthopaedic titanium surfaces coated with silver and strontium-doped hydroxyapatite using a novel blasting process. Drug Deliv. Transl. Res. 2021, 11, 702–716. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Zhang, W.; Yang, L.; Ullah, M.W.; Atta, O.M.; Khan, S.; Wu, B.; Wu, T.; Zhang, X. Impact of structural features of Sr/Fe co-doped HAp on the osteoblast proliferation and osteogenic differentiation for its application as a bone substitute. Mater. Sci. Eng. C 2020, 110, 110633. [Google Scholar] [CrossRef]
- Chadha, R.K.; Singh, K.L.; Sharma, C.; Singh, A.P.; Naithani, V. Structural and bioactive investigation of Sr and Sr-Zr doped hydroxyapatite: A comparative study. Mater. Chem. Phys. 2024, 314, 128829. [Google Scholar] [CrossRef]
- Erol, I.; Mutlu, T.; Hazman, Ö.; Khamidov, G. Investigation of antimicrobial, antioxidant, and anticancer properties of novel chitosan-based nanocomposite materials reinforced with biosynthesized Ag nanoparticles. J. Mol. Liq. 2025, 420, 126855. [Google Scholar] [CrossRef]
- Guo, J.; Liu, J.; Feng, Y.; Gou, J.; Chen, A.; Xie, G. A study on the preparation, antimicrobial property and durability of Ag-based coating deposited by electric spark discharge with silver nitrate solution. J. Alloys Compd. 2025, 1015, 178798. [Google Scholar] [CrossRef]
- Miljana, M.; Anja, D.; Suzana, E.; Marija, S.; Branko, M.; Aleksandra, R. Structural, morphological and electrical properties of multi-doped calcium phosphate materials as solid electrolytes for intermediate temperature solid oxide fuel cells. Sci. Sinter. 2018, 50, 95–109. [Google Scholar] [CrossRef]
- Rigaku. PDXL Integrated X-Ray Powder Diffraction Software, 2.8.3.0.; Rigaku: Tokyo, Japan, 2011.
- International Crystallographical Database (ICDD). PDF-2 Release Database; ICDD: Newtown Square, PA, USA, 2023. [Google Scholar]
- Faria, P.C.C.; Órfão, J.J.M.; Pereira, M.F.R. Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Res. 2004, 38, 2043–2052. [Google Scholar] [CrossRef]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef]
- van Lenthe, E.; Baerends, E.J.; Snijders, J.G. Relativistic regular two-component Hamiltonians. J. Chem. Phys. 1993, 99, 4597–4610. [Google Scholar] [CrossRef]
- van Lenthe, E.; Baerends, E.J.; Snijders, J.G. Snijders. Relativistic total energy using regular approximations. J. Chem. Phys. 1994, 101, 9783–9792. [Google Scholar] [CrossRef]
- Wüllen, C.V. Molecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations. J. Chem. Phys. 1998, 109, 392–399. [Google Scholar] [CrossRef]
- Ahlrichs, F.W.a.R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Neese, F. ORCA. An Ab Initio, DFT and Semiempirical Electronic Structure Package, Version 4.1.10; HKU: Hong Kong, 2018.
- Ivankovic, T.; Turk, H.; Hrenovic, J.; Schauperl, Z.; Ivankovic, M.; Ressler, A. Antibacterial activity of silver doped hydroxyapatite toward multidrug-resistant clinical isolates of Acinetobacter baumannii. J. Hazard. Mater. 2023, 458, 131867. [Google Scholar] [CrossRef]
- Sknepnek, A.; Filipović, S.; Pavlović, V.B.; Mirković, N.; Miletić, D.; Gržetić, J.; Mirković, M. Effects of Synthesis Parameters on Structure and Antimicrobial Properties of Bacterial Cellulose/Hydroxyapatite/TiO2 Polymer–Ceramic Composite Material. Polymers 2024, 16, 470. [Google Scholar] [CrossRef]
- Seil, J.T.; Webster, T.J. Antimicrobial applications of nanotechnology: Methods and literature. Int. J. Nanomed. 2012, 7, 2767–2781. [Google Scholar] [CrossRef]
- Terra, J.; Dourado, E.R.; Eon, J.-G.; Ellis, D.E.; Gonzalez, G.; Rossi, A.M. The structure of strontium-doped hydroxyapatite: An experimental and theoretical study. Phys. Chem. Chem. Phys. 2009, 11, 568–577. [Google Scholar] [CrossRef]
- Ning, Z.; Chang, Z.; Li, W.; Sun, C.; Zhang, J.; Liu, Y. Solvothermal Synthesis and Optical Performance of One-dimensional Strontium Hydroxyapatite Nanorod. Chin. J. Chem. Eng. 2012, 20, 89–94. [Google Scholar] [CrossRef]
- Dengo, N.; Masciocchi, N.; Cervellino, A.; Guagliardi, A.; Bertolotti, F. Effects of Structural and Microstructural Features on the Total Scattering Pattern of Nanocrystalline Materials. Nanomaterials 2022, 12, 1252. [Google Scholar] [CrossRef]
- Diputra, A.H.; Hariscandra Dinatha, I.K.; Yusuf, Y. A comparative X-ray diffraction analysis of Sr2+substituted hydroxyapatite from sand lobster shell waste using various methods. Heliyon 2025, 11, e41781. [Google Scholar] [CrossRef]
- Markovic, M.; Fowler, B.O.; Tung, M.S. Preparation and Comprehensive Characterization of a Calcium Hydroxyapatite Reference Material. J. Res. Natl. Inst. Stand. Technol. 2004, 109, 553–568. [Google Scholar] [CrossRef]
- Bhatnagar, V.M. Infrared spectrum of strontium hydroxyapatite. Experientia 1967, 23, 697–699. [Google Scholar] [CrossRef]
- Gritsch, L.; Maqbool, M.; Mouriño, V.; Ciraldo, F.E.; Cresswell, M.; Jackson, P.R.; Lovell, C.; Boccaccini, A.R. Chitosan/hydroxyapatite composite bone tissue engineering scaffolds with dual and decoupled therapeutic ion delivery: Copper and strontium. J. Mater. Chem. B 2019, 7, 6109–6124. [Google Scholar] [CrossRef]
- Xu, Y.; An, L.; Chen, L.; Xu, H.; Zeng, D.; Wang, G. Controlled hydrothermal synthesis of strontium-substituted hydroxyapatite nanorods and their application as a drug carrier for proteins. Adv. Powder Technol. 2018, 29, 1042–1048. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, N.; Chai, Y.; Xu, X.; Wang, Y. Synthesis of nanosize single-crystal strontium hydroxyapatite via a simple sol–gel method. Ceram. Int. 2014, 40, 16061–16064. [Google Scholar] [CrossRef]
- Baldassarre, F.; Altomare, A.; Mesto, E.; Lacalamita, M.; Dida, B.; Mele, A.; Bauer, E.M.; Puzone, M.; Tempesta, E.; Capelli, D.; et al. Structural Characterization of Low-Sr-Doped Hydroxyapatite Obtained by Solid-State Synthesis. Crystals 2023, 13, 117. [Google Scholar] [CrossRef]
- Rabelo Neto, J.S.; Ricardo, P.C.; Valério, M.E.G.; Xia, W.; Engqvist, H.; Fredel, M.C. The influence of strontium doping on the crystal morphology of synthetic calcium phosphates. J. Mol. Struct. 2024, 1316, 139030. [Google Scholar] [CrossRef]
- Padmanabhan, V.P.; Pugalmani, S.; Veerla, S.C.; Mubashera, S.M.; Kulandaivelu, R. An alternative approach in the synthesis of strontium-hydroxyapatite and strontium hydroxyapatite embedded in graphitic carbon nitride nanocomposites for potential tissue engineering applications. Diam. Relat. Mater. 2024, 149, 111561. [Google Scholar] [CrossRef]
- Frasnelli, M.; Cristofaro, F.; Sglavo, V.M.; Dirè, S.; Callone, E.; Ceccato, R.; Bruni, G.; Cornaglia, A.I.; Visai, L. Synthesis and characterization of strontium-substituted hydroxyapatite nanoparticles for bone regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 653–662. [Google Scholar] [CrossRef]
- Bongiovanni, M.; Cavallo, C.; Barda, B.; Strulak, L.; Bernasconi, E.; Cardia, A. Clinical Findings of Listeria monocytogenes Infections with a Special Focus on Bone Localizations. Microorganisms 2024, 12, 178. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Yang, Z.; Cheng, J.; Wang, L. Synthesis, characterization and antibacterial property of strontium half and totally substituted hydroxyapatite nanoparticles. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2008, 23, 475–479. [Google Scholar] [CrossRef]
- Saleem, O.; Wahaj, M.; Akhtar, M.A.; Ur Rehman, M.A. Fabrication and Characterization of Ag–Sr-Substituted Hydroxyapatite/Chitosan Coatings Deposited via Electrophoretic Deposition: A Design of Experiment Study. ACS Omega 2020, 5, 22984–22992. [Google Scholar] [CrossRef]
- Geng, Z.; Wang, R.; Zhuo, X.; Li, Z.; Huang, Y.; Ma, L.; Cui, Z.; Zhu, S.; Liang, Y.; Liu, Y.; et al. Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 852–861. [Google Scholar] [CrossRef]
- Wang, D.; Yang, K.; Jiang, D.; Cui, L.-Y.; Zhang, F.; Li, S.-Q.; Gao, L.; Zhi, K.-Q. Encapsulation of ciprofloxacin in strontium doped hydroxyapatite microspheres: The enhanced antibacterial property and the alleviated cytotoxicity. Mater. Lett. 2024, 375, 137252. [Google Scholar] [CrossRef]
- Fu, H.; Fang, J.; Ye, H. Cell membrane-coated nanoparticles: Pioneering targeted nanotherapy for bacterial infections. Int. J. Pharm. 2025, 683, 126086. [Google Scholar] [CrossRef] [PubMed]
- Mahnashi, M.H.; Khan, A.U.; Muhsinah, A.B.; Alzahrani, H.A.; Alqahtani, O.; Jawaid, A. Longan peel extract for eco-benign synthesis of gold nanoparticles: Antibacterial activity and microscopic determination of bacterial cell deterioration. J. Mol. Liq. 2025, 437, 128305. [Google Scholar] [CrossRef]
- Kolmas, J.; Groszyk, E.; Kwiatkowska-Różycka, D. Substituted hydroxyapatites with antibacterial properties. BioMed Res. Int. 2014, 2014, 178123. [Google Scholar] [CrossRef] [PubMed]
- Godoy-Gallardo, M.; Eckhard, U.; Delgado, L.M.; de Roo Puente, Y.J.D.; Hoyos-Nogués, M.; Gil, F.J.; Perez, R.A. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioact. Mater. 2021, 6, 4470–4490. [Google Scholar] [CrossRef] [PubMed]
- Nagyné-Kovács, T.; Studnicka, L.; Kincses, A.; Spengler, G.; Molnár, M.; Tolner, M.; Lukács, I.E.; Szilágyi, I.M.; Pokol, G. Synthesis and characterization of Sr and Mg-doped hydroxyapatite by a simple precipitation method. Ceram. Int. 2018, 44, 22976–22982. [Google Scholar] [CrossRef]
- Shi, C.; Gao, J.; Wang, M.; Fu, J.; Wang, D.; Zhu, Y. Ultra-trace silver-doped hydroxyapatite with non-cytotoxicity and effective antibacterial activity. Mater. Sci. Eng. C 2015, 55, 497–505. [Google Scholar] [CrossRef]
- Uskoković, V. The role of hydroxyl channel in defining selected physicochemical peculiarities exhibited by hydroxyapatite. RSC Adv. 2015, 5, 36614–36633. [Google Scholar] [CrossRef]








| Space Group | Unit Cell Parameters (Å, Å3) | Figure of Merit (%) | ||||
|---|---|---|---|---|---|---|
| P63/m | a | b | c | V | crystallite sizes | Rwp = 6.24 | 
| 9.41 (5) Å | 9.41 (5) Å | 6.92 (8) Å | 531 (7) Å3 | 48.8 (8) Å | S = 1.5152 | |
| Elements | Nominal Concentrations (%) | ICP OES (%) | 
|---|---|---|
| Ca | 29.11 | 25.8 | 
| Sr | 15.94 | 11.53 | 
| P | 16.92 | 17.90 | 
| Elements | Nominal Ratio | ICP OES Ratio | 
|---|---|---|
| Ca/P | 1.33 | 1.12 | 
| Ca/Sr | 4.0 | 4.8 | 
| (Ca + Sr)/P in HAP | 1.67 | 1.35 | 
| Compound | M (Ca, Sr) | P | Ocoord | O | 
|---|---|---|---|---|
| 1. [Ca(PO4)2]4− | 1.550850 | 0.456892 | −0.818077, −0.823031, −0.820176 | −0.770593 | 
| 0.460227 | −0.819471, −0.824140, −0.822686 | −0.769794 | ||
| 2. [Sr(PO4)2]4− | 1.710723 | 0.405369 | −0.823579, −0.821199, −0.824062 | −0.791906 | 
| 0.405468 | −0.821761, −0.823546, −0.823669 | −0.791838 | 
| Bacteria | Inoculum 0 h | Control 24 h | SrHAp 50 mg/mL 24 h | SrHAp 100 mg/mL 24 h | 
|---|---|---|---|---|
| Staphylococcus aureus | 5.42 ± 0.08 a,1 | 9.32 ± 0.02 b | 8.97 ± 0.03 c | 8.68 ± 0.03 d | 
| Listeria monocytogenes | 5.74 ± 0.06 a | 9.87 ± 0.12 b | 9.41 ± 0.9 c | 9.13 ± 0.16 d | 
| Salmonella Enteritidis | 5.23 ± 0.60 a | 9.30 ± 0.0 b | 9.43 ± 0.07 b | 8.47 ± 0.0 c | 
| Acinetobacter baumannii | 5.46 ± 0.04 a | 9.45 ± 0.26 b | 9.58 ± 0.20 b | 8.21 ± 0.13 c | 
| Escherichia coli | 5.61 ± 0.54 a | 9.35 ± 0.21 b | 9.54 ± 0.09 b | 9.39 ± 0.11 b | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirković, M.; Sknepnek, A.; Kalijadis, A.; Krstić, A.; Šuljagić, M.; Perić, M.; Andjelković, L. Nanostructured Sr-Doped Hydroxyapatite: A Material with Antimicrobial Potential. Nanomaterials 2025, 15, 1651. https://doi.org/10.3390/nano15211651
Mirković M, Sknepnek A, Kalijadis A, Krstić A, Šuljagić M, Perić M, Andjelković L. Nanostructured Sr-Doped Hydroxyapatite: A Material with Antimicrobial Potential. Nanomaterials. 2025; 15(21):1651. https://doi.org/10.3390/nano15211651
Chicago/Turabian StyleMirković, Miljana, Aleksandra Sknepnek, Ana Kalijadis, Aleksandar Krstić, Marija Šuljagić, Marko Perić, and Ljubica Andjelković. 2025. "Nanostructured Sr-Doped Hydroxyapatite: A Material with Antimicrobial Potential" Nanomaterials 15, no. 21: 1651. https://doi.org/10.3390/nano15211651
APA StyleMirković, M., Sknepnek, A., Kalijadis, A., Krstić, A., Šuljagić, M., Perić, M., & Andjelković, L. (2025). Nanostructured Sr-Doped Hydroxyapatite: A Material with Antimicrobial Potential. Nanomaterials, 15(21), 1651. https://doi.org/10.3390/nano15211651
 
        


 
       