error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,153)

Search Parameters:
Keywords = operating forces characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 14576 KB  
Article
Design and Experimental Validation of a Weeding Device Integrating Weed Stem Damage and Targeted Herbicide Application
by He Li, Chenxu Li, Jiajun Chai, Lele Wang, Zishang Yang, Yechao Yuan and Shangshang Cheng
Agronomy 2026, 16(2), 151; https://doi.org/10.3390/agronomy16020151 - 7 Jan 2026
Abstract
In view of the problems of high weed regeneration rate in traditional mechanical weeding and environmental risk in chemical weeding, a synergetic strategy of “mechanical damage + wound spraying mechanism” was proposed, and an intelligent weeding device combining synchronous cutting and spraying was [...] Read more.
In view of the problems of high weed regeneration rate in traditional mechanical weeding and environmental risk in chemical weeding, a synergetic strategy of “mechanical damage + wound spraying mechanism” was proposed, and an intelligent weeding device combining synchronous cutting and spraying was designed to enhance the efficacy of herbicides and reduce their use. Focusing on the physical characteristics of weeds and the cutting mechanism, the analysis of the weed-cutting system and the force characteristics of the cutting tool were conducted. Key factors affecting cutting quality were identified, and their respective value ranges were determined. A targeted spraying system was developed, featuring a conical nozzle, DC diaphragm pump, and electromagnetic control valve. The Delta parallel manipulator, equipped with both the cutting tool and nozzle, was designed, and a kinematic model was established for both its forward and inverse movements. Genetic algorithms were applied to optimize structural parameters, aiming to ensure effective coverage of typical weed distribution areas within the working space. A simulated environment measurement was built to verify the motion accuracy of the manipulator. Field experiments demonstrated that the equipment achieved an 81.5% wound weeding rate on malignant weeds in the seedling stage at an operating speed of 0.6 m/s, with a seedling injury rate below 5%. These results validate the high efficiency of the integrated mechanical cutting and targeted spraying system, offering a reliable technical solution for green and intelligent weed control in agriculture. This study fills the blank of only focusing on recognition accuracy or weeding rate under a single weeding method, but lacks a cooperative weeding operation. Full article
(This article belongs to the Special Issue Recent Advances in Legume Crop Protection—2nd Edition)
Show Figures

Figure 1

20 pages, 4893 KB  
Article
Motion Analysis of a Fully Wind-Powered Ship by Using CFD
by Akane Yasuda, Tomoki Taniguchi and Toru Katayama
J. Mar. Sci. Eng. 2026, 14(2), 121; https://doi.org/10.3390/jmse14020121 - 7 Jan 2026
Abstract
This study investigates the sailing performance and maneuverability of a fully wind-powered ship equipped with two rigid wing sails and a rudder, using Computational Fluid Dynamics (CFD). Unlike some conventional approaches that separately analyze above-water and underwater forces, this research employs a comprehensive [...] Read more.
This study investigates the sailing performance and maneuverability of a fully wind-powered ship equipped with two rigid wing sails and a rudder, using Computational Fluid Dynamics (CFD). Unlike some conventional approaches that separately analyze above-water and underwater forces, this research employs a comprehensive CFD model to predict ship motion and performance under various wind directions and sail angles, from a stationary state to steady sailing. The accuracy of the CFD method is confirmed through comparison with experimental drift test data. Although the simulated drift data showed some discrepancies from the observed data due to the difficulty of accurately modeling the wind field in the simulation, the results indicate that the CFD method can effectively reproduce the ship motions observed in the experiments. Simulations reveal that the previously proposed L-shaped and T-shaped sail arrangements, which were designed to maximize thrust without considering maneuvering effects, remain effective even when ship motion is included. However, the results also show that conventional sail arrangements can achieve higher steady-state speeds due to reduced leeway-related resistance, while the L-shaped and T-shaped arrangements yield distinct steady-state leeway (drift) characteristics under heading control. These findings suggest that dynamically adjusting sail arrangements according to operational requirements may help manage the ship’s trajectory (lateral offset) and mitigate maneuvering difficulties, contributing to the practical application of fully wind-powered ships. The study provides quantitative insights into the relationship between sail arrangement, acceleration, and leeway/drift behavior, supporting the design of next-generation wind-powered ships. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

29 pages, 5082 KB  
Article
Technology Readiness of Biomass Waste-to-Energy in Indonesia: A Multistakeholder Assessment of Anaerobic Digestion of Palm Oil Mill Effluent and Municipal Organic Waste
by Nanda Asridinan Noor, Andante Hadi Pandyaswargo, Meita Rumbayan and Hiroshi Onoda
Energies 2026, 19(1), 255; https://doi.org/10.3390/en19010255 - 2 Jan 2026
Viewed by 438
Abstract
Indonesia faces growing pressure to strengthen waste management while expanding renewable energy generation, particularly from high-moisture biomass such as palm oil mill effluent (POME) and the organic fraction of municipal solid waste (OFMSW). Anaerobic digestion technology (ADT) is technically suitable for both feedstocks; [...] Read more.
Indonesia faces growing pressure to strengthen waste management while expanding renewable energy generation, particularly from high-moisture biomass such as palm oil mill effluent (POME) and the organic fraction of municipal solid waste (OFMSW). Anaerobic digestion technology (ADT) is technically suitable for both feedstocks; however, its deployment depends on broader operational, financial, social, and institutional conditions. This study evaluates ADT readiness for biomass waste-to-energy (BWTE) development in Indonesia using a multistakeholder Japanese Technology Readiness Assessment (J-TRA) framework. The results and discussion are supported by a literature review, secondary data analysis, and interviews with government agencies, industry actors, financiers, non-governmental organizations, and researchers. The results reveal a clear divergence in readiness outcomes. POME-based ADT reaches Technology Readiness Levels (TRLs) of 6–8, supported by a stable and homogeneous feedstock supply, established industrial operations, and corporate incentives to mitigate methane emissions. Key remaining constraints relate to high capital costs for smaller mills, low electricity purchase tariffs, and competing export incentives for untreated POME. In contrast, OFMSW-based ADT remains at TRL 2–4, constrained by inconsistent waste segregation, insufficient operation and maintenance capacity, limited municipal budgets, residential safety concerns, and fragmented governance across waste and energy institutions. Across both cases, readiness is shaped by five interacting forces. The first three are technical: feedstock characteristics, operations and maintenance (O&M) capability, and financial certainty. The remaining two are enabling conditions: social acceptance and institutional coordination. This study concludes that Indonesia’s BWTE transition requires integrated technological, behavioral, and policy interventions, supported by further research on hybrid valorization pathways and context-specific life-cycle and cost analyses. Full article
Show Figures

Figure 1

24 pages, 7819 KB  
Article
Gait Planning and Load-Bearing Capacity Analysis of Bionic Quadrupedal Robot Actuated by Water Hydraulic Artificial Muscles
by Jun Li, Zengmeng Zhang, Shoujie Feng, Yong Yang and Yongjun Gong
Biomimetics 2026, 11(1), 24; https://doi.org/10.3390/biomimetics11010024 - 1 Jan 2026
Viewed by 140
Abstract
The gecko-inspired crawling robot driven by water hydraulic artificial muscles (WHAMs) incorporates the stable structural characteristics of geckos, making it particularly suitable for operation in aquatic environments. Conventional crawling robots typically employ electric or oil hydraulic actuation systems, which require complex sealing and [...] Read more.
The gecko-inspired crawling robot driven by water hydraulic artificial muscles (WHAMs) incorporates the stable structural characteristics of geckos, making it particularly suitable for operation in aquatic environments. Conventional crawling robots typically employ electric or oil hydraulic actuation systems, which require complex sealing and waterproof designs when working in water. This study presented a bionic quadruped robot actuated by WHAMs that fundamentally circumvents waterproofing challenges. Although the joint module can dynamically adjust its output torque according to requirements, there has been a lack of theoretical basis for load adjustment. This research established the relationship between the leg joint load and the WHAM pressure difference, resulting in a pressure difference–load model for the leg joint. Through gait planning analysis, the maximum supporting force during robot motion was determined. Experimental tests on a single-leg prototype demonstrated a maximum static load capacity of 23 kg under stationary conditions, while during cycloidal motion the dynamic load capacity reached 10 kg. Both values satisfied the supporting force requirements of the planned gait. Furthermore, the pressure difference–load model showed good agreement with experimental results, providing theoretical guidance for load adjustment in leg joints. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Figure 1

18 pages, 3721 KB  
Article
Research on Longitudinal Dynamics of 20,000-Ton Heavy Haul Trains Considering Braking Characteristics
by Bo Zhang, Guoyun Liu, Shun Guo, Zhaorui Chang, Siqi Hu, Xingwen Wu and Wubin Cai
Mathematics 2026, 14(1), 158; https://doi.org/10.3390/math14010158 - 31 Dec 2025
Viewed by 172
Abstract
With the development of heavy-haul trains towards long formation and large axle load, the longitudinal impulse problem of trains is aggravated not only by improving the transport capacity of railway freight cars, but also by the braking characteristics such as the asymmetry in [...] Read more.
With the development of heavy-haul trains towards long formation and large axle load, the longitudinal impulse problem of trains is aggravated not only by improving the transport capacity of railway freight cars, but also by the braking characteristics such as the asymmetry in brake release, which has a greater impact on the longitudinal impulse of trains, seriously affecting the operation safety of trains. In this paper, a 20,000-ton heavy-haul train is taken as the research object, a train air brake system model is established by the parallel method, and the train longitudinal dynamics model is co-simulated to study the influence of braking characteristics on the longitudinal force of the train. The results indicate that the train is primarily subjected to compressive coupler forces during braking, with the maximum compressive force occurring at car 109. Compared to the maximum compressive coupler force observed under a 50 kPa reduction in brake pipe pressure, the maximum forces under 70 kPa and 100 kPa reductions increased by 16.8% and 36.8%, respectively. The controllable tail system influences the braking of middle and rear cars by supplying a braking source to the last car. When the delay time of the controllable tail system is set to 3 s, braking synchronization can be improved. Furthermore, compared to scenarios without last-car charging, the installation of a last-car charging device reduces the maximum tensile coupler force from 780 kN to 489 kN, representing a 37% decrease. The findings of this study provide theoretical insights for ensuring the safe operation of heavy-haul trains and contribute to enhancing their operational performance. Full article
(This article belongs to the Special Issue Recent Developments in Vehicle System Dynamics)
Show Figures

Figure 1

17 pages, 3548 KB  
Article
Study on Separation Density of Feeding Group Particle in the Gas–Solid Separation Fluidized Bed
by Xuchen Fan, Yuping Fu, Yongliang He, Liying Sun and Yijiang Li
Separations 2026, 13(1), 12; https://doi.org/10.3390/separations13010012 - 26 Dec 2025
Viewed by 176
Abstract
Gas–solid separation fluidized bed is an efficient coal cleaning and separation technology, and this technology has been extensively used in coal separation. The separation of the feeding coal particles in the fluidized bed is generally carried out in the form of particle groups, [...] Read more.
Gas–solid separation fluidized bed is an efficient coal cleaning and separation technology, and this technology has been extensively used in coal separation. The separation of the feeding coal particles in the fluidized bed is generally carried out in the form of particle groups, hence, a systematic examination of stratification as well as diffusion of the feeding particle group in the gas–solid separation fluidized bed is required. Simulated particles are used in this study and the technique that combines both theoretical calculation and an experimental method is used to investigate the effect of the inherent properties of the feeding particle group, bed characteristics, and operating parameters on the variation in voidage and air drag force in the separation process. According to the correlation between the separation density of the single-component particle group and the voidage of the gas–solid separation fluidized bed, the ρG.drag (change in separation density brought about by the upward airflow drag force during particle group fluidized bed separation) prediction model of the single-component spherical feeding particle group in the gas–solid separation fluidized bed is developed with the correction of voidage. When the prediction error of the ρG.drag prediction model is 10%, the confidence degree is 90.00%. Based on the particle segregation model and the ρG.drag prediction model, the separation density prediction model for the single-component spherical feeding particle group in the gas–solid separation fluidized bed is proposed. On this basis, the separation density prediction model for the single-component non-spherical feeding particle group in the gas–solid separation fluidized bed is further introduced. The separation density prediction model provides critical guidance for optimizing the gas–solid fluidized bed separation process. Full article
(This article belongs to the Special Issue Research Progress of Gas–Solid Fluidized Dry Separation)
Show Figures

Figure 1

9 pages, 2591 KB  
Proceeding Paper
Application of Momentary Shoulder-Contraction Principles from Traditional Japanese Martial Arts to Reduce Upper-Body Load in Agricultural Tasks
by Hajime Shiraishi, Taisuke Sakaki, Makoto Iwamura and Haruhiro Shiraishi
Eng. Proc. 2025, 120(1), 9; https://doi.org/10.3390/engproc2025120009 - 26 Dec 2025
Viewed by 202
Abstract
In agricultural workplaces, upper-body strain arises not only from lifting and carrying harvest crates but also from pushing, pulling, twisting, and squatting motions. Drawing inspiration from the momentary shoulder contraction and whole-body coordination characteristic of traditional Japanese martial arts, this study proposes a [...] Read more.
In agricultural workplaces, upper-body strain arises not only from lifting and carrying harvest crates but also from pushing, pulling, twisting, and squatting motions. Drawing inspiration from the momentary shoulder contraction and whole-body coordination characteristic of traditional Japanese martial arts, this study proposes a method for “moving efficiently with minimal exertion” across multiple task actions, specifically, lateral pushing, fore-aft pulling, and trunk rotation. Each action is modeled as a control system, and mechanical-engineering simulations are employed to derive optimal muscle-output patterns. Simulation results indicate that peak muscular force can be lowered compared with conventional techniques. A simple physical test rig confirms the load-reduction effect, showing decreases in both perceived exertion and electromyographic activity. These findings offer practical knowledge that can be immediately applied not only to agriculture but also to logistics, nursing care, and other settings involving repetitive handling of heavy objects or machine operations. Full article
(This article belongs to the Proceedings of 8th International Conference on Knowledge Innovation and Invention)
Show Figures

Figure 1

16 pages, 5136 KB  
Article
Mechanical and Deformation Response of WJ-8B Rail Fastener Under Cyclic Lateral Loading
by Fengyu Zhang, Qidong Chen, Xiang Liu and Wei Zhang
Buildings 2026, 16(1), 100; https://doi.org/10.3390/buildings16010100 - 25 Dec 2025
Viewed by 133
Abstract
The mechanical performance of rail fasteners plays a crucial role in the track–structure interaction of high-speed railways. A reasonable lateral stiffness of the fastener system can enhance the stability and safety of train operation and prevent derailment accidents. Under seismic action, adjacent bridge [...] Read more.
The mechanical performance of rail fasteners plays a crucial role in the track–structure interaction of high-speed railways. A reasonable lateral stiffness of the fastener system can enhance the stability and safety of train operation and prevent derailment accidents. Under seismic action, adjacent bridge spans undergo reciprocating displacement, causing the rail-fastener system near the beam ends to be subjected to lateral cyclic forces. To investigate the mechanical and deformation behavior of the WJ-8B fastener system under lateral loading, low-cycle reciprocating loading tests were conducted on the rail-fastener system considering different bolt torques. The load–displacement curves and torque–rotation curves of the fastener system were obtained, and formulas for calculating the characteristic values of the mechanical properties of the WJ-8B fastener system were fitted, which show good agreement with the experimental results. The results indicate that the lateral mechanical behavior of the WJ-8B fastener exhibits significant nonlinear characteristics, marked by three distinct inflection points in the load–displacement curve that delineate five stages: initial stage, rail shearing stage, rail sliding stage, rail contact stage, and three-point contact. The bolt torque is positively correlated with the lateral stiffness of the fastener system. Increasing the torque from 115 N·m to 190 N·m enhances the lateral bearing capacity by 29.06% in the push direction and by 38.74% in the pull direction. Meanwhile, the system torque decreases by 21.45% in the push direction and increases by 21.14% in the pull direction. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

27 pages, 12739 KB  
Article
Unveiling Tank-Liquid Sloshing Effect on Joint Boom Stability of a Field Sprayer Under Different Running Process
by Shunzeng Wang, Zhenduo Zhang, Guoping Wang, Xianhui Zhou and Junjie Li
Electronics 2026, 15(1), 111; https://doi.org/10.3390/electronics15010111 - 25 Dec 2025
Viewed by 193
Abstract
The strong vibration excited by the tank-liquid sloshing of the field sprayer can result in uneven spraying, vehicle-body cartwheel, and the break of the boom during running process. So, it is crucial to investigate the stability of a field-sprayer boom under hazardous operating [...] Read more.
The strong vibration excited by the tank-liquid sloshing of the field sprayer can result in uneven spraying, vehicle-body cartwheel, and the break of the boom during running process. So, it is crucial to investigate the stability of a field-sprayer boom under hazardous operating conditions on a specified ground surface, focusing on the coupled effects of tank-liquid sloshing, boom-connection stiffness, and nozzle jetting-force characteristics. A fluid–structure interaction framework combining volume of fluid (VOF)-based sloshing simulation, finite element modeling, and full-scale experiments is developed. It is shown that high liquid-filling ratios significantly amplify transient sloshing forces during braking and swerving, inducing strong direction-dependent boom vibrations and a distinct resonance band near 50–60 Hz. Increasing connection stiffness raises natural frequencies and reduces damping, thereby enlarging vibration amplitudes. The jetting-force amplitude attenuates X-direction vibration, while frequency variation produces notable resonance excitation aligned with the harmonics of the boom. Simulation and experimental results demonstrate strong consistency, validating the proposed model. The findings reveal key coupling mechanisms governing boom stability and provide practical guidance for structural optimization and vibration suppression in field sprayers. Full article
Show Figures

Figure 1

31 pages, 8440 KB  
Article
Parametric Characterization and Multi-Objective Optimization of Low-Pressure Abrasive Water Jets for Biofouling Removal from Net Cages Using Response Surface Methodology and the Entropy Method
by Yingjie Wu, Yongqiang Tu, Bin Deng, Hui Li, Guohong Xiao and Hu Chen
Sustainability 2026, 18(1), 215; https://doi.org/10.3390/su18010215 - 24 Dec 2025
Viewed by 216
Abstract
Deep-sea cages are highly susceptible to biofouling due to long-term seawater immersion, which promotes the attachment and growth of marine organisms on nets, significantly reducing fish survival. To address this issue, this study explores the use of low-pressure abrasive water jets (LPAWJs) for [...] Read more.
Deep-sea cages are highly susceptible to biofouling due to long-term seawater immersion, which promotes the attachment and growth of marine organisms on nets, significantly reducing fish survival. To address this issue, this study explores the use of low-pressure abrasive water jets (LPAWJs) for cage fouling removal through numerical simulation. Based on a Box-Behnken response surface design, nozzle inlet pressure X1, nozzle outlet diameter X2, and target distance X3 were selected as optimization parameters. The peak jet impact force Z1, stable jet impact force Z2, peak abrasive water jet velocity Z3, and peak abrasive particle velocity Z4 were chosen as evaluation indicators to characterize the jet’s instantaneous impact ability, sustained action ability, and dynamic particle behavior. Using the entropy method, weights for each indicator were determined, and the jet’s overall removal capability was calculated. A regression model was developed by integrating numerical simulation with the response surface methodology (RSM), and the optimal parameter combination was identified as X1 = 4.5 MPa, X2 = 10 mm, and X3 = 205.396 mm. Compared with the poorest experimental condition (Condition 1), the jet’s overall removal capability obtained under the optimal parameter combination increases by 101.35%. Experimental validation further confirms that the optimized parameters yield the best oyster-removal performance of the low-pressure abrasive jet, with the average removal rate improving by 100.55% relative to Condition 1. The methodology and results of this study provide a theoretical foundation and technical reference for the design and optimization of automated net-cleaning systems or net-cleaning robots equipped with low-pressure abrasive jets. By integrating the proposed model and operating parameters, future robotic systems will be able to predict and dynamically adjust jet conditions according to fouling characteristics, thereby improving the efficiency, cost-effectiveness, and sustainability of maintenance operations in marine aquaculture. Full article
(This article belongs to the Section Sustainable Oceans)
Show Figures

Figure 1

22 pages, 9165 KB  
Article
Experimental Study on the Energy Absorption, Ductility, and Stiffness of CFDS Connections for Floating Offshore Structures
by Ji-Hun Park, Min-Su Park and Jung-Woo Lee
Appl. Sci. 2026, 16(1), 196; https://doi.org/10.3390/app16010196 - 24 Dec 2025
Viewed by 168
Abstract
This study experimentally evaluates the structural performance of Concrete-Filled Double-Skin (CFDS) hybrid connections that are intended as key components of large-scale floating offshore wind substructures. The innovative aspect of this work lies in the direct experimental comparison of five representative connection details—Headed Stud [...] Read more.
This study experimentally evaluates the structural performance of Concrete-Filled Double-Skin (CFDS) hybrid connections that are intended as key components of large-scale floating offshore wind substructures. The innovative aspect of this work lies in the direct experimental comparison of five representative connection details—Headed Stud (HS), Perfobond (PB), L-beam-joint (LJ), L-beam-spacing (LS), and Angle (AN)—with respect to multiple performance indices that are critical under harsh offshore environments. First, full-scale CFDS specimens were fabricated with identical global dimensions while varying only the connection details. The hybrid behavior of the CFDS system arises from the complementary actions of the outer steel tube, which primarily resists tensile forces, and the infilled concrete, which provides dominant compressive resistance and confinement. This composite interaction enhances the stiffness, ductility, and energy absorption capacity of the member under flexural demands, which are essential for floating offshore structures operating under complex marine loading. Second, monotonic bending tests were conducted using a 2000 kN actuator under a cantilever-type configuration, and load–displacement responses were recorded at three locations. Third, the stiffness, ductility, and energy absorption capacity (toughness) were quantified from the measured curves to clarify the deformation and failure characteristics of each connection type. The results show that the PB connection achieved the highest maximum load and exhibited stable ductile behavior with plastic energy dominating the total toughness. The LJ connection provided well-balanced stiffness and deformation capacity with low sensitivity to measurement locations, indicating high reliability for design applications. In contrast, the HS and LS connections experienced localized slip and position-dependent stiffness, while the AN connection showed the lowest load-carrying efficiency. Overall, the findings highlight that connection-level detailing has a decisive influence on the global performance of CFDS hybrid members and provide fundamental data for developing design guidelines for floating offshore structures operating under complex marine loading conditions. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

18 pages, 3356 KB  
Article
Response of Transmission Tower Guy Wires Under Impact: Theoretical Analysis and Finite Element Simulation
by Jin-Gang Yang, Shuai Li, Chen-Guang Zhou, Liu-Yi Li, Bang Tian, Wen-Gang Yang and Shi-Hui Zhang
Appl. Sci. 2026, 16(1), 123; https://doi.org/10.3390/app16010123 - 22 Dec 2025
Viewed by 128
Abstract
Transmission tower guy wires are critical flexible tension members ensuring the stability and safe operation of overhead power transmission networks. However, these components are vulnerable to external impacts from falling rocks, ice masses, and other natural hazards, which can cause excessive deformation, anchorage [...] Read more.
Transmission tower guy wires are critical flexible tension members ensuring the stability and safe operation of overhead power transmission networks. However, these components are vulnerable to external impacts from falling rocks, ice masses, and other natural hazards, which can cause excessive deformation, anchorage loosening, and catastrophic failure. Current design standards primarily consider static loads, lacking comprehensive models for predicting dynamic impact responses. This study presents a theoretical model for predicting the peak impact response of guy wires by modeling the impact process as a point mass impacting a nonlinear spring system. Using an energy-based elastic potential method combined with cable theory, analytical solutions for axial force, displacement, and peak impact force are derived. Newton–Cotes numerical integration solves the implicit function to obtain closed-form solutions for efficient prediction. Validated through finite element simulations, deviations of peak displacement, peak impact force, and peak axial force between theoretical and numerical results are within ±4%, ±18%, and ±4%, respectively. Using the validated model, parametric studies show that increasing the inclination angle from 15° to 55° slightly reduces peak displacement by 2–4%, impact force by 1–13%, and axial force by 1–10%. Higher prestress (100–300 MPa) decreases displacement and impact force but increases axial force. Longer lengths (15–55 m) cause linear displacement growth and nonlinear force reduction. Impacts near anchorage points help control displacement risks, and impact velocity generally has a more significant influence on response characteristics than impactor mass. This model provides a scientific basis for impact-resistant design of power grid infrastructure and guidance for optimizing de-icing strategies, enhancing transmission system safety and reliability. Full article
(This article belongs to the Special Issue Power System Security Assessment and Risk Analysis)
Show Figures

Figure 1

19 pages, 2801 KB  
Article
Safety-Constrained Energy-Efficient Control for High-Speed Trains Considering Wheel–Rail Interaction
by Jia Liu, Yuemiao Wang, Rang Xu, Yirong Liu, Yaoming Huang and Shaofeng Lu
Electronics 2025, 14(24), 4949; https://doi.org/10.3390/electronics14244949 - 17 Dec 2025
Viewed by 209
Abstract
During train operation, the adhesion characteristics between the wheels and rails, which are influenced by driving environments and operating conditions, result in a traction force lower than the motor’s nominal output. Traditional control strategies often overlook the nonlinear relationship between wheel–rail adhesion limits [...] Read more.
During train operation, the adhesion characteristics between the wheels and rails, which are influenced by driving environments and operating conditions, result in a traction force lower than the motor’s nominal output. Traditional control strategies often overlook the nonlinear relationship between wheel–rail adhesion limits and traction motor output, which can lead to wheel slippage, accelerated wear, and excessive energy consumption. This paper establishes an energy-efficient train control model considering wheel–rail adhesion characteristics. Based on convex optimization methods, the model jointly optimizes the train’s speed trajectory and motor control strategy. Before optimization, nonlinear constraints are simplified through function approximation and tightened McCormick envelope relaxation, significantly reducing the computational complexity of the model. Numerical experiments demonstrate that the proposed driving strategy can adjust the train’s speed in response to poor rail conditions, ensuring adherence to adhesion safety limits. Simulations based on real-world high-speed rail line data in China show that, compared to the traditional EETC model with anti-skid control measures, the proposed model achieves a safer driving strategy. Additionally, in the context of speed trajectory tracking control, it reduces energy consumption by 19.49% compared to the traditional EETC model with anti-skid control measures. Furthermore, the model demonstrates high computational efficiency, indicating its potential for integration into a real-time driving strategy optimization framework. Full article
(This article belongs to the Section Electrical and Autonomous Vehicles)
Show Figures

Figure 1

12 pages, 1599 KB  
Article
Finite Element Analysis of an Automotive Steering System Considering Spherical Joint Clearance
by Mihai Gingarasu, Daniel Ganea and Elena Mereuta
Vibration 2025, 8(4), 80; https://doi.org/10.3390/vibration8040080 - 16 Dec 2025
Viewed by 221
Abstract
The steering linkage represents a key subsystem of any automobile, playing a direct role in vehicle handling, driving safety, and overall comfort. Within this mechanism, the tie rod and tie rod end are crucial for transmitting steering forces from the gear to the [...] Read more.
The steering linkage represents a key subsystem of any automobile, playing a direct role in vehicle handling, driving safety, and overall comfort. Within this mechanism, the tie rod and tie rod end are crucial for transmitting steering forces from the gear to the wheel hub. A typical issue that gradually develops in these components is the clearance appearing in the spherical joint, caused by wear, corrosion, and repeated operational stresses. Even small clearances can noticeably reduce stiffness and natural frequencies, making the system more sensitive to vibration and premature failure. In this work, the effect of spherical joint clearance on the dynamic behavior of the tie rod-tie rod end assembly was analyzed through numerical simulation combined with experimental observation. Three-dimensional CAD models were meshed with tetrahedral elements and subjected to modal analysis under several clearance conditions, while boundary constraints were set to replicate real operating conditions. Experimental measurements on a dedicated test rig were used to assess joint clearance and wear in service parts. The results indicate a strong nonlinear relationship between clearance magnitude and modal response, with PTFE bushing degradation identified as the main source of clearance. These findings link the evolution of clearance to the change in vibration characteristics, providing useful insight for diagnostic approaches and predictive maintenance aimed at improving steering reliability and vehicle safety. Full article
Show Figures

Figure 1

33 pages, 2339 KB  
Article
Transitioning to Hydrogen Trucks in Small Economies: Policy, Infrastructure, and Innovation Dynamics
by Aleksandrs Kotlars, Justina Hudenko, Inguna Jurgelane-Kaldava, Jelena Stankevičienė, Maris Gailis, Igors Kukjans and Agnese Batenko
Sustainability 2025, 17(24), 11272; https://doi.org/10.3390/su172411272 - 16 Dec 2025
Viewed by 212
Abstract
Decarbonizing heavy-duty freight transport is essential for achieving climate neutrality targets. Although internal combustion engine (ICE) trucks currently dominate logistics, they contribute substantially to greenhouse gas emissions. Zero-emission alternatives, such as battery electric vehicles (BEVs) and hydrogen fuel cell vehicles (H2), provide different [...] Read more.
Decarbonizing heavy-duty freight transport is essential for achieving climate neutrality targets. Although internal combustion engine (ICE) trucks currently dominate logistics, they contribute substantially to greenhouse gas emissions. Zero-emission alternatives, such as battery electric vehicles (BEVs) and hydrogen fuel cell vehicles (H2), provide different decarbonization pathways; however, their relative roles remain contested, particularly in small economies. While BEVs benefit from technological maturity and declining costs, hydrogen offers advantages for high-payload, long-haul operations, especially within energy-intensive cold supply chains. The aim of this paper is to examine the gradual transition from ICE trucks to hydrogen-powered vehicles with a specific focus on cold-chain logistics, where reliability and energy intensity are critical. The hypothesis is that applying a system dynamics forecasting approach, incorporating investment costs, infrastructure coverage, government support, and technological progress, can more effectively guide transition planning than traditional linear methods. To address this, the study develops a system dynamics economic model tailored to the structural characteristics of a small economy, using a European case context. Small markets face distinct constraints: limited fleet sizes reduce economies of scale, infrastructure deployment is disproportionately costly, and fiscal capacity to support subsidies is restricted. These conditions increase the risk of technology lock-in and emphasize the need for coordinated, adaptive policy design. The model integrates acquisition and maintenance costs, fuel consumption, infrastructure rollout, subsidy schemes, industrial hydrogen demand, and technology learning rates. It incorporates subsystems for fleet renewal, hydrogen refueling network expansion, operating costs, industrial demand linkages, and attractiveness functions weighted by operator decision preferences. Reinforcing and balancing feedback loops capture the dynamic interactions between fleet adoption and infrastructure availability. Inputs combine fixed baseline parameters with variable policy levers such as subsidies, elasticity values, and hydrogen cost reduction rates. Results indicate that BEVs are structurally more favorable in small economies due to lower entry costs and simpler infrastructure requirements. Hydrogen adoption becomes viable only under scenarios with strong, sustained subsidies, accelerated station deployment, and sufficient cross-sectoral demand. Under favorable conditions, hydrogen can approach cost and attractiveness parity with BEVs. Overall, market forces alone are insufficient to ensure a balanced zero-emission transition in small markets; proactive and continuous government intervention is required for hydrogen to complement rather than remain secondary to BEV uptake. The novelty of this study lies in the development of a system dynamics model specifically designed for small-economy conditions, integrating industrial hydrogen demand, policy elasticity, and infrastructure coverage limitations, factors largely absent from the existing literature. Unlike models focused on large markets or single-sector applications, this approach captures cross-sector synergies, small-scale cost dynamics, and subsidy-driven points, offering a more realistic framework for hydrogen truck deployment in small-country environments. The model highlights key leverage points for policymakers and provides a transferable tool for guiding freight decarbonization strategies in comparable small-market contexts. Full article
Show Figures

Figure 1

Back to TopTop