Ultrasonographic Elastography of the Spleen for Diagnosing Neoplastic Myeloproliferation: Identifying the Most Promising Methods—A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
Study | Risk of Bias by Domain | Applicability by Domain | |||||
---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D4 | D1 | D2 | D3 | |
[50] | Low | Unclear | Unclear | Low | Low | Low | Low |
[51] | High | Unclear | Unclear | High | Low | Low | Low |
[52] | Unclear | Unclear | High | Unclear | Low | Low | Low |
[53] | Low | Low | Low | Low | Low | Low | Low |
[54] | Low | Low | Unclear | Low | Low | Low | Low |
[55] | High | High | Unclear | Low | Low | Low | Low |
[56] | Low | Low | Unclear | Low | Low | Low | Low |
[57] | Low | Low | Unclear | Low | Low | Low | Low |
[58] | Low | Unclear | High | Low | Low | Low | Low |
[59] | Low | Low | Unclear | Low | Low | Low | Low |
[60] | Low | Low | Unclear | Low | Low | Low | Low |
[61] | Low | Unclear | Low | Low | Low | Low | Low |
[62] | Low | Low | Unclear | Low | Low | Low | Low |
[63] | Low | Low | Low | Low | Low | Low | Low |
[64] | Low | Low | Unclear | Low | Low | Low | Low |
[65] | Low | Low | Unclear | Low | Low | Low | Low |
[66] | Low | Low | Low | Low | Low | Low | Low |
[67] | Low | Low | Low | Low | Low | Low | Low |
[68] | Low | Low | Low | Low | Low | Low | Low |
[69] | Low | Low | Low | Low | Low | Low | Low |
[70] | Low | Low | Unclear | Low | Low | Low | Low |
[71] | Low | Unclear | Unclear | Low | Unclear | Low | Low |
[72] | Low | Low | Low | Low | Low | Low | Low |
[49] | Low | Low | Low | Low | Low | Low | Low |
[73] | Low | Low | Unclear | Low | Low | Low | Low |
[74] | Low | Low | Unclear | Low | Low | Low | Low |
[75] | Low | Low | Unclear | Low | Unclear | Low | Low |
[76] | Low | Low | Low | Low | Low | Low | Low |
[77] | Low | Low | Unclear | Low | Low | Low | Low |
[78] | Low | Low | Low | Low | Low | Low | Low |
[79] | Low | Low | Unclear | Low | Low | Low | Low |
[80] | Low | Unclear | Unclear | Low | Low | Low | Low |
[81] | Low | Unclear | High | Low | Low | Low | Low |
[82] | Low | Unclear | Unclear | Low | Low | Low | Low |
[83] | Low | Low | Low | Low | Low | Low | Low |
[84] | Low | Unclear | Low | Low | Low | Low | Low |
[85] | Low | Low | Unclear | Low | Low | Low | Low |
[86] | High | Unclear | Unclear | Low | Low | Low | Low |
[87] | Low | Unclear | Low | Low | Low | Low | Low |
[88] | High | Low | Low | Low | Low | Low | Low |
[89] | Low | Low | Unclear | Low | Low | Low | Low |
[90] | Low | Unclear | Unclear | Low | Low | Low | Low |
[91] | Low | Low | Low | Low | Low | Low | Low |
[92] | Low | Unclear | Unclear | Low | Low | Low | Low |
3.1. Results for SSM in MNs
3.2. Results for SSM in Other Applications
3.3. Reproductivity of US SSM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2D-SWE | Two-Dimensional Shear Wave Elastography |
ARFI | Acoustic Radiation Force Impulse |
AUC | Area Under Curve |
AUROC | Area Under the Receiver Operating Characteristic Curve |
CML | Chronic Myeloid Leukemia |
CSPH | Clinically Significant Portal Hypertension |
ETH | Essential Thrombocythemia |
EUS | Endoscopic Ultrasound |
EUS-elastography | Endoscopic Ultrasound Elastography |
EVs | Esophageal Varices |
HREVs | High-Risk Esophageal Varices |
HVPG | Hepatic Venous Pressure Gradient |
ICC | Intraclass Correlation Coefficient |
LSM | Liver Stiffness Measurement |
MNs | Myeloproliferative Neoplasms |
MYF | Primary myelofibrosis |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
p-SWE | Point Shear Wave Elastography |
PV | Polycythemia vera |
QUADAS-2 | Quality Assessment of Diagnostic Accuracy Studies 2 |
SSI | Supersonic Shear Imaging |
SSM | Spleen Stiffness Measurement |
SWE | Shear Wave Elastography |
SWV | Shear Wave Velocity |
TC | Training Cohort |
TE | Transient Elastography |
US | Ultrasound |
VCTE | Vibration-Controlled Transient Elastography |
Appendix A
Study | Type of the Study | Number of Patients | Medical Conditions (Research Group) |
---|---|---|---|
MNs | |||
Benedetti et al. [50] | Retrospective | 70 | Myelofibrosis and other Philadelphia-negative MNs |
Sansone et al. [51] | Prospective | 218 (143 with MNs) | Myeloproliferative neoplasms vs. healthy volunteers |
Ekinci et al. [52] | Prospective | 121 (69 with MNs) | Polycythemia vera, essential thrombocythemia, and secondary myelofibrosis |
Rigamonti et al. [53] | Retrospective | 420 (63 with MNs) | Reproducibility of spleen stiffness measurement in Philadelphia-negative MNs and CLD |
Other conditions | |||
Ahmad et al. [54] | Prospective | 50 | Portal hypertension in patients with liver disease of various etiologies |
Arya et al. [44] | Quasi-experimental | 100 | CLD and prediction of EVs |
Cho et al., 2022 [56] | Retrospective | 65 | HBV-related cirrhosis and prediction of EVs |
Cho et al., 2022 [57] | Retrospective | 274 | cACLD (comparing non-invasive criteria for endoscopy avoidance) |
Dajti et al. [58] | Cross-sectional | 34 (with valid SSM) | Pediatric and adult CF patients |
Darweesh et al. [59] | Cross-sectional | 90 | HCV patients for EVs prediction |
Dogan et al. [60] | Case–control | 100 (40 brucellosis, 60 control) | Acute brucellosis and healthy controls |
Dong et al. [61] | Prospective | 100 | CHB |
Fofiu et al., 2021 [62] | Prospective | 132 | Compensated cirrhosis for HREV prediction |
Fofiu et al., 2021 [63] | Prospective | 107 | Compensated cirrhosis (predicting varices needing treatment) |
Gaspar et al. [64] | Prospective | 209 | Cirrhotic patients (prediction of high-risk varices) |
Giuffrè et al. [65] | Cross-sectional | 210 | Cirrhosis (presence of EVs) |
Giunta et al. [66] | Prospective | 24 | TIPS dysfunction (before and after TIPS placement/revision) |
Huang et al. [67] | Retrospective | 741 (407 with compensated cirrhosis) | Compensated cirrhosis (HBV and other etiologies) comparing ARFI-based and Baveno VI strategies |
Jachs et al. [68] | Prospective | 407 | cACLD (CSPH prediction) |
Jain et al. [69] | Cross-sectional | 90 | Cirrhosis (prediction of EVs) |
Karagiannakis et al., 2022 [70] | Prospective | 177 | Cirrhosis (follow-up of clinical events over 31 months) |
Kurniawan et al., 2024 [71] | Prospective | 141 | Cirrhosis (diagnostic accuracy of SSM, LSM, APRI for EVs) |
Kuroda et al. [72] | Prospective | 111 | Cirrhosis (HV-PV gradient, spleen stiffness, and liver stiffness for high-risk EV) |
Lantinga et al., 2023 [49] | Prospective | 118 | Portal hypertension prediction by liver VCTE |
Muñoz-Codoceo et al. [73] | Cross-sectional | 97 | HCV-related cirrhosis post-antiviral therapy (gastroesophageal varices) |
Nardelli et al. [93] | Cross-sectional | 51 | Hepatosplenic schistosomiasis (EVs) |
Mnif et al. [74] | Retrospective | 84 | CHB (prediction of EVs) |
Odriozola et al. [75] | Retrospective | 85 | Mainly MAFLD (diagnostic performance of SSM for clinically significant portal hypertension) |
Peagu et al. [76] | Prospective | 175 | HBV/HCV-related cirrhosis (diagnosing EVs) |
Petrisor et al. [77] | Prospective | 130 | Cirrhosis stratified by bleeding risk |
Robles-Medranda et al. [95] | Prospective | 61 | Cirrhosis (predicting portal hypertension using endoscopic ultrasonographic elastography) |
Stefanescu et al. [94] | Prospective | 260 | Diagnosis of EVs using novel spleen-dedicated FibroScan® (SSM@100 Hz) vs. standard methods |
Takuma et al. [78] | Prospective | 20 | Gastric varices (pre/post-balloon-occluded retrograde transvenous obliteration) |
Tanaka et al. [79] | Prospective | 200 | Cirrhosis (predicting EVs with a new TE+ultrasound fusion de-vice) |
Vanderschueren et al. [80] | Retrospective | 377 | Ruling out varices needing treatment using TE SSM algorithms vs. Baveno VI criteria |
Wang et al. [81] | Retrospective | 107 | Compensatory viral cirrhosis (portal vein pressure) |
Williams et al. [82] | Prospective | 60 | MAFLD—diagnosis of cirrhosis and EVs |
Xu X et al. [83] | Prospective | 320 | B-viral cirrhosis (predicting EV grades and high-risk EV) |
Zhang W et al. [84] | Prospective | 603 | CHB—diagnosing cirrhosis across various ALT levels |
Zhang X et al. [85] | Prospective | 504 | HBV-related cirrhosis (detecting high-risk varices using VCTE with AGD as reference) |
Zhang Z et al. [86] | Cross-sectional | 173 | Validating Baveno VI criteria and spleen diameter (including SSM) to rule out high-risk varices |
Zhou et al., 2021 [87] | Prospective | 107 | Gastroesophageal varices severity post-TIPS (2D-SWE measurement) |
Zhou et al., 2023 [88] | Retrospective | 188 (86 IPH, 102 HBV) | Idiopathic portal hypertension vs. HBV (presence of high-risk varices) |
Zhu et al., 2020 [89] | Prospective | 89 | CLD in TIPS patients (SSM to predict survival) |
Zhu et al., 2020 [90] | Retrospective | 58 | HBV-related cirrhosis (LSM and SSM correlation with HVPG) |
Yalçın et al. [91] | Cross-sectional | 61 | Splenomegaly of various etiologies vs. healthy controls |
Grgurevic et al. [92] | Prospective | 76 | Spleen stiffness vs. HVPG for diagnosing CSPH and HRV |
Study | Study Desing | Population | Technique Used | Diagnostic Performance | Main Conclusions |
---|---|---|---|---|---|
[50] | Prospective observational study | 70 patients with MNs (43 MF, 17 PV, 10 ET) and 20 HCs | B-mode US and pSWE for SSM and LSM | SS significantly higher in MF and PV compared to ET and HCs (p < 0.0001). SS strongly correlated with bone marrow fibrosis (p < 0.0001), with SS > 40 kPa associated with worse progression-free survival (HR 1.939). LSM increased only in MF vs. HCs (p = 0.001). | SSM by pSWE is a reliable non-invasive marker of bone marrow fibrosis and progression risk in MF and PV |
[51] | Prospective observational study | 218 participants (143 MNs: 63 MF, 33 PV, 46 ET, and 75 HCs) | pSWE and 2D-SWE for LSM and SSM, combined with B-mode and Doppler US | SSM significantly higher in MF vs. ET, PV, and HCs (p < 0.001). ROC analysis for MF detection yielded AUROC 0.723 for pSWE (30.9 kPa) and 0.752 for 2D-SWE (25.6 kPa). SSM correlated strongly with bone marrow fibrosis grades (p < 0.001). | SWE effectively differentiates MF from other MNs and HCs, and SSM correlates with bone marrow fibrosis |
[52] | Retrospective observational study | 121 participants (52 HCs, 52 PV and/or ET, 17 secondary myelofibrosis) | SWE for SSM | Correlated to bone marrow fibrosis and spleen size. Median SSM 0.82 m/s (HV), 1.41 m/s (PV/ET), and 2.32 m/s (SMF), with significant differences across groups (p < 0.001). SSM strongly correlated with bone marrow fibrosis degree (r = 0.757, p < 0.001). | SWE can differentiate SMF from PV/ET and HCs |
[53] | Prospective multicenter observational study | 420 participants (297 patients with CLD, 63 Philadelphia-negative MNs, and 60 HCs) | VCTE with a spleen-dedicated module (SSM@100 Hz), alongside LSM | Median SSM values were 26.5 kPa (CLD), 26.3 kPa (MPNs), and 16.1 kPa (HCs). ICC = 0.90), with AUROC = 0.76 for detecting EVs in cirrhotic patients (cutoff ≥ 40 kPa, sensitivity 85%, specificity 54%). | SSM using the spleen-dedicated VCTE module is feasible, quick, and highly reproducible across different operators and patient groups |
[91] | Prospective observational study | 61 treatment-naïve patients with splenomegaly (21 hepatoportal, 23 MNs, 17 infectious) and 20 HCs | ARFI imaging, measuring SWV | Median SWV 3.85 m/s (hepatoportal), 3.42 m/s (myeloproliferative), 2.66 m/s (infectious), and 2.22 m/s (HCs). ROC cutoffs effectively distinguished etiologies: 3.42 m/s (hepatoportal vs. myeloproliferative; sensitivity 80.9%, specificity 56.5), 3.02 m/s (hepatoportal vs. infectious; sensitivity 100%, specificity 100), 2.84 m/s (myeloproliferative vs. infectious; sensitivity 91.3%, specificity 88.2). | ARFI-based SWE of the SSM is a useful, non-invasive tool to differentiate the etiology of splenomegaly |
Study | Technique | Diseased | Condition Screened/Predicted | AUROC |
---|---|---|---|---|
MNs Discrimination | ||||
[67] | ARFI | Splenomegaly | Myeloproliferative vs. infectious | 0.963 (p < 0.001) |
[67] | ARFI | Splenomegaly | Hepatoportal vs. myeloproliferative | 0.776 (p < 0.001) |
[51] | 2D-SWE | MF | MF | 0.752 |
[51] | p-SWE | Bone Marrow Fibrosis | Low vs. High-Grade Fibrosis | 0.702 |
[51] | p-SWE | PV | Fibrosis Grade (0–1 vs. 2–3) | 0.505 |
[51] | 2D-SWE | PV | Fibrosis Grade (0–1 vs. 2–3) | 0.479 |
[51] | 2D-SWE | Essential Thrombocythemia (ET) | Fibrosis Grade (0–1 vs. 2–3) | 0.412 |
[51] | p-SWE | ET | Fibrosis Grade (0–1 vs. 2–3) | 0.389 |
[67] | ARFI | Splenomegaly | Hepatoportal vs. Infectious | 1.000 (p < 0.001) |
Other Conditions | ||||
[84] | ARFI | CHB cirrhosis | Small EV | 0.996 (95% CI 0.989–1.000) |
[88] | 2D-SWE | Idiopathic portal hypertension | HREV | 0.98 |
[55] | ARFI | CLD | EV | 0.98 |
[76] | ARFI | CHC/CHB | Large EV | 0.969 (95% CI 0.935–0.99) |
[88] | 2D-SWE | CHB | HREV | 0.96 |
[65] | SSPI by pSWE | Compensated cirrhosis | EV | 0.95 |
[75] | VCTE at 100 Hz | MAFLD | CSPH | 0.95 |
[64] | TE (FibroScan) | Cirrhosis | HREV | 0.934 (95% CI 0.621–0.793) |
[79] | TE—new fusion device | Cirrhosis | HREV | 0.921 |
[74] | Impulse elastography (FibroScan Echosens) | CLD | EV | 0.906 (p = 0.000) |
[74] | Impulse elastography (FibroScan Echosens) | CLD | Large EV | 0.906 (p = 0.000) |
[60] | p-SWE | Acute brucellosis | Presence of acute brucellosis | 0.903 |
[61] | 2D-SWE-STE | CHB | Cirrhosis | 0.90 (95% CI 0.81–1.00) |
[63] | p-SWE | Compensated cirrhosis | HREV | 0.90 |
[81] | 2D-SWE | CHC/CHB | CSPH | 0.895 (95% IC 0.834–0.957, p < 0.05) |
[71] | VCTE at 100 Hz | Cirrhosis | EV | 0.892 (95% CI 0.814–0.969, p < 0.0001) |
[84] | ARFI | CHB cirrhosis | HREV | 0.881 (95% CI 0.825–0.937) |
[80] | TE | Advanced CLD | HREV | 0.88 |
[92] | 2D-SWE | Compensated advanced CLD | CSPH | 0.877 (95% CI 0.792–0.963) |
[76] | ARFI | CHC/CHB | EV | 0.872 (95% CI 0.799–0.944) |
[77] | ARFI | Cirrhosis | HREV | 0.863 (95% CI 0.791–0.917, p < 0.001) |
[66] | p-SWE | CLD | TIPS dysfunction | 0.86 (95% CI 0.70–0.96) |
[62] | 2D-SWE | Compensated cirrhosis | HREV | 0.86 |
[78] | TE | Cirrhosis | HREV | 0.858 |
[92] | TE (FibroScan) | Compensated advanced CLD | CSPH | 0.857 (95% CI 0.763–0.951) |
[93] | TE (FibroScan) | Hepatosplenic schistosomiasis | EV | 0.856 (95% CI 0.752–0.961, p = 0.001) |
[90] | 2D-SWE | CHB cirrhosis | CSPH | 0.85 (95% CI 0.59–0.96) |
[58] | TE (FibroScan) | Compensated CLD | PH | 0.841 (95% CI 0.706–0.976) |
[63] | 2D-SWE | Compensated cirrhosis | HREV | 0.84 |
[84] | ARFI | CHB cirrhosis | Large EV | 0.838 (95% CI 0.738–0.938) |
[86] | 2D-SWE | Compensated advanced CLD | HREV | 0.834 |
[61] | 2D-SWE-STE | CHB | S > 3 liver fibrosis | 0.83 (95% CI 0.73–0.92) |
[81] | 2D-SWE | CHC/CHB | Cirrhosis | 0.827 (95% IC 0.770–0.884, p < 0.05) |
[82] | VCTE | MAFLD | HREV | 0.82 (95% CI 0.75–0.98, p < 0.001) |
[72] | 2D-SWE | Cirrhosis | HREV | 0.82 (95% CI 0.75–0.90) |
[78] | VTQ | Gastric varices undergoing ballooning | Exacerbation of EV | 0.818 |
[95] | EUS-elastography | CLD | PH | 0.815 (95% CI 70.7–92.2) |
[90] | 2D-SWE | CHB cirrhosis | Severe portal hypertension | 0.81 (95% CI 0.55–0.97 |
[68] | VCTE | Compensated advanced CLD | CSPH | 0.804 (95% CI 0.743–0.864] |
[70] | 2D-SWE | Cirrhosis | 1-year death or liver transplantation in high-risk patients | 0.80 (p < 0.001) |
[92] | TE (FibroScan) | Compensated advanced CLD | HREV | 0.797 (95% CI 0.682–0.912) |
[92] | 2D-SWE | Compensated advanced CLD | HREV | 0.795 (95% CI 0.687–0.904) |
[94] | SSM@100 Hz | CLD | EV | 0.782 |
[94] | SSM@100 Hz | CLD | HREV | 0.780 |
[82] | VCTE | MAFLD | Cirrhosis | 0.78 (95% CI 0.70–0.85, p < 0.001) |
[56] | 2D-SWE | CHB cirrhosis | HREV | 0.778 (95% CI 0.658–0.872) |
[89] | p-SWE | CLD | Survival with TIPS | 0.769 (95% CI 0.657–0.881) |
[56] | 2D-SWE | CHB cirrhosis | EV | 0.767 (95% CI 0.646–0.863) |
[59] | ARFI | CHC advanced liver fibrosis | EV | 0.76 (p = 0.000) |
[53] | VCTE | CLD | EV | 0.76 (95% CI 0.65–0.87) |
[57] | SSI | Compensated advanced CLD | HREV | 0.757 |
[94] | SSM@100 Hz | CLD | HREV | 0.756 |
[82] | VCTE | MAFLD | EV | 0.74 (95% CI 0.61–0.84, p < 0.001) |
[87] | 2D-SWE | Patients after TIPS | Severe gastroesophageal varices | 0.739 |
[94] | SSM@100 Hz | CLD | EV | 0.728 |
[77] | p-SWE | MF | MF | 0.723 |
[94] | SSM@50 Hz | CLD | Large EV | 0.720 |
[70] | 2D-SWE | Cirrhosis | 1-year death or liver transplantation | 0.72 (p = 0.006) |
[54] | p-SWE | Various etiologies | HP | 0.712 (p = 0.010) |
[70] | 2D-SWE | Cirrhosis | 1 year—liver decomposition | 0.710 (p = 0.003) |
[84] | ARFI | CHB cirrhosis | Medium EV | 0.707 (95% CI 0.576–0.837) |
[84] | 2D-SWE-STE | CHB A2-3 inflammation activity | Cirrhosis | 0.70 (95% CI 0.62–0.78, p < 0.51) |
[69] | ARFI | Cirrhosis | HP | 0.698 (p = 0.0274) |
[84] | 2D-SWE-STE | CHB, ALT > 2 Upper Normal Limit | Cirrhosis | 0.67 (95% CI 0.57–0.76, p < 0.34) |
[61] | 2D-SWE-STE | CHB | S > 2 liver fibrosis | 0.67 (95% CI 0.56–0.78) |
[67] | ARFI | Compensated cirrhosis | HREV | 0.66 (95% CI 0.62–0.70) |
[84] | 2D-SWE-STE | CHB | Cirrhosis | 0.66 (95% CI 0.61–0.71, p < 0.001) |
[84] | 2D-SWE-STE | CHB, ALT < 2 Upper Normal Limit | Cirrhosis | 0.66 (95% CI 0.60–0.71, p < 0.001) |
[87] | 2D-SWE | Patients after TIPS | Moderate gastroesophageal varices | 0.655 |
[73] | TE (FibroScan) | CHC-related cirrhosis | Gastroesophageal varices | 0.624 |
[87] | 2D-SWE | Patients after TIPS | Mild gastroesophageal varices | 0.585 |
[84] | 2D-SWE-STE | CHB A0-1 inflammation activity | Cirrhosis | 0.52 (95% CI 0.46–0.58, p < 0.001) |
References
- Gonçalves, A.C.; Freitas-Tavares, P.; Couceiro, P.; Rodrigues-Santos, P.; Sarmento-Ribeiro, A.B. ABC expression as additionally marker to monitoring response in cml—A preliminary study. Blood 2013, 122, 5183. [Google Scholar] [CrossRef]
- Alves, R.; Fonseca, R.; Gonçalves, A.C.; Alves, V.; Abrantes, A.M.; Botelho, F.; Sarmento-Ribeiro, A.B. Drug transporters in imatinib resistance: A new therapeutic targeted approach in cml. Blood 2011, 118, 5010. [Google Scholar] [CrossRef]
- Malcovati, L.; Rumi, E.; Cazzola, M. Somatic mutations of calreticulin in myeloproliferative neoplasms and myelodysplastic/myeloproliferative neoplasms. Haematologica 2014, 99, 1650–1652. [Google Scholar] [CrossRef]
- Olteanu, A.L.; Mihăilă, R.; Catana, A.-C.; Flucuş, O.; Buş, C.; Mihalache, M. Platelet indices in philadelphia-negative chronic myeloproliferative neoplasms/indicii plachetari de volum în neoplasmele mieloproliferative cronice philadelphia-negative. Rom. Rev. Lab. Med. 2015, 23, 169–177. [Google Scholar] [CrossRef]
- Varghese, C.; Immanuel, T.; Ruskova, A.; Theakston, E.; Kalev-Zylinska, M.L. The epidemiology of myeloproliferative neoplasms in New Zealand between 2010 and 2017: Insights from the New Zealand cancer registry. Curr. Oncol. 2021, 28, 1544–1557. [Google Scholar] [CrossRef] [PubMed]
- Roaldsnes, C.; Waage, A.; Nørgaard, M.; Ghanima, W. Epidemiology of myeloproliferative neoplasms in Norway. Blood 2014, 124, 1858. [Google Scholar] [CrossRef]
- Polyakov, A.S.; Tyrenko, V.V.; Noskov, Y.A.; Zhogolev, D.K.; Kovalev, A.V. Clinical and laboratory features of different types of interferon therapy classic ph-negative myeloproliferative neoplasms. Genes Cells 2016, 11, 153–161. [Google Scholar] [CrossRef]
- Murphy, I.G.; Mitchell, E.L.; Raso-Barnett, L.; Godfrey, A.L.; Godfrey, E.M. Imaging features of myeloproliferative neoplasms. Clin. Radiol. 2017, 72, 801–809. [Google Scholar] [CrossRef]
- Siniluoto, T.M.; Hyvarinen, S.A.; Paivansalo, M.J.; Alavaikko, M.J.; Suramo, I.J. Abdominal ultrasonography in myelofibrosis. Acta Radiol. 1992, 33, 343–346. [Google Scholar] [CrossRef]
- Rosenzweig, S.; Palmeri, M.; Nightingale, K. Analysis of rapid multi-focal-zone ARFI imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2015, 62, 280–289. [Google Scholar] [CrossRef]
- Jeong, E.Y.; Sung, J.H.; Jeong, J.S. Improved acoustic radiation force impulse imaging using split-focused ultrasound transducer with phase inversion technique. IEEE Sens. J. 2020, 21, 1395–1403. [Google Scholar] [CrossRef]
- Czernuszewicz, T.J.; Streeter, J.E.; Dayton, P.A.; Gallippi, C.M. Experimental validation of displacement underestimation in ARFI ultrasound. Ultrason. Imaging 2013, 35, 196–213. [Google Scholar] [CrossRef]
- Ebihara, B.; Miyasaka, H.; Fukaya, T.; Mutsuzaki, H. Quantitative evaluation of the effects of several weeks of static stretching on the flexibility of the rectus femoris using shear wave elastography: A before-after study. J. Ultrason. 2024, 24, 9. [Google Scholar] [CrossRef]
- Dietrich, C.F.; Dong, Y. Shear wave elastography with a new reliability indicator. J. Ultrason. 2016, 16, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Kyriakidou, G.; Friedrich-Rust, M.; Sircar, I.; Schrecker, C.; Bogdanou, D.; Herrmann, E.; Bojunga, J.; Cloutier, G. Comparison of strain elastography, point shear wave elastography using acoustic radiation force impulse imaging and 2D-shear wave elastography for the differentiation of thyroid nodules. PLoS ONE 2018, 13, e0204095. [Google Scholar] [CrossRef] [PubMed]
- Ronot, M.; Ferraioli, G.; Müller, H.P.; Friedrich-Rus, M.; Filice, C.; Vilgrain, V.; Cosgrove, D.; Lim, A.K. Comparison of liver stiffness measurements by a 2D-shear wave technique and transient elastography: Results from a European prospective multi-centre study. Eur Radiol. 2021, 31, 1578–1587. [Google Scholar] [CrossRef]
- Bruce, M.; Kolokythas, O.; Ferraioli, G.; Filice, C.; O’Donnell, M. Limitations and artifacts in shear-wave elastography of the liver. Biomed. Eng. Lett. 2017, 7, 81–89. [Google Scholar] [CrossRef]
- Bouchet, P.; Gennisson, J.L.; Podda, A.; Alilet, M.; Carrié, M.; Aubry, S. Artifacts and technical restrictions in 2D shear wave elastography. Ultraschall Med. 2020, 41, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Yu, Y. Prognosis value of liver stiffness measurements by 2D-SWE in primary HBV-positive hepatocellular carcinoma following radiofrequency ablation. Transl. Cancer Res. 2020, 9, 2518–2526. [Google Scholar] [CrossRef]
- Bercoff, J.; Tanter, M.; Fink, M. Supersonic shear imaging: A new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2004, 51, 396–409. [Google Scholar] [CrossRef]
- Winder, A.A.; Jadidian, B.; Muratore, R. Synthetic Structural Imaging (SSI). Target 2015, 5, 1–4. [Google Scholar]
- Wang, Y.; Peng, B.; Jiang, J. Building an open-source simulation platform of acoustic radiation force-based breast elastography. Phys. Med. Biol. 2017, 62, 1949–1965. [Google Scholar] [CrossRef] [PubMed]
- Oudry, J.; Vappou, J.; Choquet, P.; Willinger, R.; Sandrin, L.; Constantinesco, A. Ultrasound-based transient elastography compared to magnetic resonance elastography in soft tissue-mimicking gels. Phys. Med. Biol. 2009, 54, 6979–6990. [Google Scholar] [CrossRef]
- Sandrin, L.; Fourquet, B.; Hasquenoph, J.M.; Yon, S.; Fournier, C.; Mal, F.; Christidis, C.; Ziol, M.; Poulet, B.; Kazemi, F.; et al. Transient elastography: A new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med. Biol. 2003, 29, 1705–1713. [Google Scholar] [CrossRef] [PubMed]
- Almeida, T.W.; Sampaio, D.R.T.; Bruno, A.C.; Pavan, T.Z.; Carneiro, A.A. Comparison between shear wave dispersion magneto motive ultrasound and transient elastography for measuring tissue-mimicking phantom viscoelasticity. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2015, 62, 2138–2145. [Google Scholar] [CrossRef] [PubMed]
- Bastard, C.; Audière, S.; Foucquier, J.; Lorée, H.; Miette, V.; Bronowicki, J.P.; Stern, C.; Caussy, C.; Sandrin, L. Guided-VCTE: An Enhanced FibroScan Examination With Improved Guidance and Applicability. Ultrasound Med. Biol. 2025, 51, 1143–1147. [Google Scholar] [CrossRef]
- Sasso, M.; Beaugrand, M.; de Ledinghen, V.; Douvin, C.; Marcellin, P.; Poupon, R.; Sandrin, L.; Miette, V. Controlled attenuation parameter (CAP): A novel VCTE™ guided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: Preliminary study and validation in a cohort of patients with chronic liver disease from various causes. Ultrasound Med. Biol. 2010, 36, 1825–1835. [Google Scholar] [CrossRef]
- Frulio, N.; Trillaud, H. Ultrasound elastography in liver. Diagn. Interv. Imaging 2013, 94, 515–534. [Google Scholar] [CrossRef]
- Yoneda, M.; Suzuki, K.; Kato, S.; Fujita, K.; Nozaki, Y.; Hosono, K.; Saito, S.; Nakajima, A. Nonalcoholic fatty liver disease: US-based acoustic radiation force impulse elastography. Radiology 2010, 256, 640–647. [Google Scholar] [CrossRef]
- Dietrich, C.; Sharma, M.; Hollerbach, S.; Fusaroli, P.; Löwe, A.; Koch, J.; Ignee, A.; Jenssen, C. General principles of image optimization in EUS. Endosc. Ultrasound 2021, 10, 168–184. [Google Scholar] [CrossRef]
- Săftoiu, A.; Vilmann, P.; Ciurea, T.; Popescu, G.L.; Iordache, A.; Hassan, H.; Gorunescu, F.; Iordache, S. Dynamic analysis of EUS used for the differentiation of benign and malignant lymph nodes. Gastrointest. Endosc. 2007, 66, 291–300. [Google Scholar] [CrossRef]
- Cenariu, D.; Iluta, S.; Zimta, A.-A.; Petrushev, B.; Qian, L.; Dirzu, N.; Tomuleasa, C.; Bumbea, H.; Zaharie, F. Extramedullary Hematopoiesis of the Liver and Spleen. J. Clin. Med. 2021, 10, 5831. [Google Scholar] [CrossRef]
- Saito, Y.; Matsumoto, N.; Aizawa, Y.; Fukamachi, D.; Kitano, D.; Kazuto, T.; Tamaki, T.; Fujito, H.; Sezai, A.; Okumura, Y. Clinical significance of spleen stiffness in patients with acute decompensated heart failure. ESC Heart Fail. 2020, 7, 4323–4332. [Google Scholar] [CrossRef]
- Cheng, Y.W.; Chang, Y.C.; Chen, Y.L.; Chen, R.C.; Chou, C.T. Feasibility of measuring spleen stiffness with MR elastography and splenic volume to predict hepatic fibrosis stage. PLoS ONE 2019, 14, e0217876. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, S.K.; Wells, M.L.; Miller, F.H.; Jhaveri, K.S.; Silva, A.C.; Taouli, B.; Ehman, R.L. Magnetic resonance elastography: Beyond liver fibrosis—A case-based pictorial review. Abdom. Radiol. 2018, 43, 1590–1611. [Google Scholar] [CrossRef]
- Slot, S.; van de Donk, N.W.C.J.; Otten, R.H.J.; Boden, B.J.H.; Zijlstra, J.; Raijmakers, P.G.H.M.; Zweegman, S. The value of bone marrow, liver, and spleen imaging in diagnosis, prognostication, and follow-up monitoring of myeloproliferative neoplasms: A systematic review. Cancer Imaging 2021, 21, 36. [Google Scholar] [CrossRef]
- Iurlo, A.; Cattaneo, D.; Giunta, M.; Gianelli, U.; Consonni, D.; Fraquelli, M.; Orofino, N.; Bucelli, C.; Bianchi, P.; Augello, C.; et al. Transient elastography spleen stiffness measurements in primary myelofibrosis patients: A pilot study in a single Centre. Br. J. Haematol. 2015, 170, 890–892. [Google Scholar] [CrossRef]
- Webb, M.; Shibolet, O.; Halpern, Z.; Nagar, M.; Amariglio, N.; Levit, S.B.; Steinberg, D.M.; Santo, E.; Salomon, O. Assessment of liver and spleen stiffness in patients with Myelofibrosis using FibroScan and shear wave Elastography. Ultrasound Q. 2015, 31, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Kemp, W.; Roberts, S. FibroScan (R) and transient elastography. Aust. Fam. Physician 2013, 42, 468–471. [Google Scholar] [PubMed]
- Lucius, C.; Meier, J.; Gschmack, A.; Zervides, C.; Jenssen, C.; Dong, Y.; Graumann, O.; Petry, M.; Dietrich, C.F. Ultrasound of the spleen–an update on measurements, reference values, and influencing factors. A systematic review. Med. Ultrason. 2025, 27, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Gibiino, G.; Garcovich, M.; Ainora, M.E.; Zocco, M.A. Spleen ultrasound elastography: State of the art and future directions—A systematic review. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 4418–4428. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.F.; Wang, Y.; He, F.L.; Fan, Z.H.; Liu, H.; Yang, Y.P.; Jia, J.D.; Liu, F.Q.; Ding, H.G. Evaluation of esophageal varices in non-cirrhotic portal hypertension using Baveno VI and Expanded-Baveno VI criteria, LSPS, and PSR. Zhonghua Gan Zang Bing Za Zhi 2022, 30, 1092–1099. [Google Scholar]
- Ferreira-Silva, J.; Gaspar, R.; Liberal, R.; Cardoso, H.; Macedo, G. Splenic-hepatic elastography index is useful in differentiating between porto-sinusoidal vascular disease and cirrhosis in patients with portal hypertension. Dig. Liver Dis. 2023, 55, 75–80. [Google Scholar] [CrossRef]
- Nababan, S.H.H.; Aprilicia, G.; Akbar, P.; Kalista, K.F.; Jasirwan, C.O.M.; Kurniawan, J.; Lesmana, C.R.A.; Sulaiman, A.S.; Hasan, I.; Gani, R.A. Validation of Spleen Stiffness Measurement for Screening of High-risk Esophageal Varices Among Cirrhotic Patients in Indonesia: A Single-Center Cross-sectional Study. Acta Med. Indones. 2024, 56, 276–281. [Google Scholar] [PubMed]
- Zhang, F.; Zhou, Y.; Li, X.; Wang, C.; Liu, J.; Li, S.; Zhang, S.; Luo, W.; Zhao, L.; Li, J. Spleen Thickness Plus Platelets Can Effectively and Safely Screen for High-Risk Varices in Cirrhosis Patients. Diagnostics 2023, 13, 3164. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.W.; Fang, Y.; Xue, L.Y.; Zhang, Y.; Xie, X.Y.; Qiao, X.H.; Li, X.Q.; Guo, J.; Ding, H. Nomogram based on liver stiffness and spleen area with ultrasound for posthepatectomy liver failure: A multicenter study. World J. Gastroenterol. 2024, 30, 3314–3325. [Google Scholar] [CrossRef]
- Lantinga, M.A.; van Kleef, L.A.; den Hoed, C.M.; De Knegt, R.J. Spleen Stiffness Measurement Across the Spectrum of Liver Disease Patients in Real-World Practice. J. Clin. Exp. Hepatol. 2023, 13, 414–427. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benedetti, E.; Tavarozzi, R.; Morganti, R.; Bruno, B.; Bramanti, E.; Baratè, C.; Balducci, S.; Iovino, L.; Ricci, F.; Ricchiuto, V.; et al. Organ Stiffness in the Work-Up of Myelofibrosis and Philadelphia-Negative Chronic Myeloproliferative Neoplasms. J. Clin. Med. 2020, 9, 2149. [Google Scholar] [CrossRef]
- Sansone, V.; Auteri, G.; Tovoli, F.; Mazzoni, C.; Paglia, S.; Di Pietro, C.; Vianelli, N.; Cavo, M.; Palandri, F.; Piscaglia, F. Liver and spleen shear-wave elastography in the diagnosis and severity staging of myeloproliferative diseases and myelofibrosis. J. Ultrasound 2024, 27, 715–722. [Google Scholar] [CrossRef]
- Ekinci, O.; Ozgokce, M.; Turko, E.; Merter, M. Spleen Stiffness Measurement by Using Shear-Wave Elastography as a Predictor of Progression to Secondary Myelofibrosis. Ultrasound Q. 2021, 37, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Rigamonti, C.; Cittone, M.G.; Manfredi, G.F.; Sorge, A.; Moia, R.; Patriarca, A.; Donato, M.F.; Gaidano, G.; Pirisi, M.; Fraquelli, M. High reproducibility of spleen stiffness measurement by vibration-controlled transient elastography with a spleen-dedicated module. Hepatol. Commun. 2022, 6, 3006–3014. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.K.; Atzori, S.; Maurice, J.; Taylor-Robinson, S.D.; Lim, A.K. Non-invasive splenic parameters of portal hypertension: Assessment and utility. World J. Hepatol. 2020, 12, 1055–1066. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.; Dixit, R.; Harish, C.S.; Prakash, A.; Puri, A.S. Our experience with liver and spleen elastography in the prediction of oesophageal varices. S. Afr. J. Radiol. 2024, 28, 2724. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.S.; Lim, S.; Kim, Y.; Lee, M.H.; Choi, S.Y.; Lee, J.E. Spleen stiffness-spleen size-to-platelet ratio risk score as noninvasive predictors of esophageal varices in patients with hepatitis B virus-related cirrhosis. Medicine 2022, 101, e29389. [Google Scholar] [CrossRef]
- Cho, Y.S.; Kim, Y.; Sohn, J.H. Application of Supersonic Shear Imaging to the Baveno VI Criteria and a Combination Model with Spleen Stiffness Measurement to Rule Out High-Risk Varices in Compensated Advanced Chronic Liver Disease. Ultraschall Med. 2022, 43, e13–e23. [Google Scholar] [CrossRef]
- Dajti, E.; Ravaioli, F.; Paiola, G.; Volpi, S.; Colecchia, L.; Ferrarese, A.; Alemanni, L.V.; Cusumano, C.; Di Biase, A.R.; Marasco, G.; et al. The non-invasive evaluation of liver involvement in patients with cystic fibrosis: A prospective study. Liver Int. 2023, 43, 2492–2502. [Google Scholar] [CrossRef]
- Darweesh, S.K.; Yosry, A.; Salah, M.; Zayed, N.; Khairy, A.; Awad, A.; Mabrouk, M.; Albuhairi, A. Acoustic radiation forced impulse-based splenic prediction model using data mining for the noninvasive prediction of esophageal varices in hepatitis C virus advanced fibrosis. Eur. J. Gastroenterol. Hepatol. 2019, 31, 1533–1539. [Google Scholar] [CrossRef]
- Dogan, F.; Celik, M.; Cosandal, B.A.; Turac, B.; Ceylan, M.R.; Dincer, N.G. Evaluation of liver and spleen stiffness measurement with shear wave elastography in brucellosis. Ir. J. Med. Sci. 2024, 193, 1521–1526. [Google Scholar] [CrossRef]
- Dong, B.T.; Huang, S.; Lyu, G.R.; Qin, R.; Gu, J.H. Assessment of liver fibrosis with liver and spleen stiffness measured by sound touch elastography, serum fibrosis markers in patients with chronic hepatitis B. J. Dig. Dis. 2021, 22, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Fofiu, R.; Bende, F.; Popescu, A.; Şirli, R.; Lupușoru, R.; Ghiuchici, A.M.; Sporea, I. Spleen and Liver Stiffness for Predicting High-Risk Varices in Patients with Compensated Liver Cirrhosis. Ultrasound Med. Biol. 2021, 47, 76–83. [Google Scholar] [CrossRef]
- Fofiu, R.; Bende, F.; Lupuşoru, R.; Şirli, R.; Popescu, A.; Sporea, I. Spleen Stiffness for Predicting Varices Needing Treatment: Comparison between Two Different Elastography Techniques (Point vs. 2D-SWE). Can. J. Gastroenterol. Hepatol. 2021, 28, 6622726. [Google Scholar] [CrossRef]
- Gaspar, R.; Silva, M.; Cardoso, P.; Goncalves, R.; Andrade, P.; Macedo, G. Spleen stiffness: A new tool to predict high-risk varices in cirrhotic patients. J. Gastroenterol. Hepatol. 2023, 38, 1840–1846. [Google Scholar] [CrossRef]
- Giuffrè, M.; Macor, D.; Masutti, F.; Abazia, C.; Tinè, F.; Bedogni, G.; Tiribelli, C.; Crocè, L.S. Spleen Stiffness Probability Index (SSPI): A simple and accurate method to detect esophageal varices in patients with compensated liver cirrhosis. Ann. Hepatol. 2020, 19, 53–61. [Google Scholar] [CrossRef]
- Giunta, M.; La Mura, V.; Conti, C.B.; Casazza, G.; Tosetti, G.; Gridavilla, D.; Segato, S.; Nicolini, A.; Primignani, M.; Lampertico, P.; et al. The Role of Spleen and Liver Elastography and Color-Doppler Ultrasound in the Assessment of Transjugular Intrahepatic Portosystemic Shunt Function. Ultrasound Med. Biol. 2020, 46, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhao, L.; He, R.; Li, S.; Liu, C.; Qi, X.; Li, J. A strategy for varices screening based on acoustic radiation force impulse combined with platelet (CHESS2001): An alternative of Baveno VI criteria. Hepatol. Commun. 2022, 6, 3154–3162. [Google Scholar] [CrossRef] [PubMed]
- Jachs, M.; Odriozola, A.; Turon, F.; Moga, L.; Téllez, L.; Fischer, P.; Saltini, D.; Kwanten, W.J.; Grasso, M.; Llop, E.; et al. Spleen stiffness measurement by vibration-controlled transient elastography at 100 Hz for non-invasive predicted diagnosis of clinically significant portal hypertension in patients with compensated advanced chronic liver disease: A modelling study. Lancet Gastroenterol. Hepatol. 2024, 9, 1111–1120. [Google Scholar] [CrossRef]
- Jain, A.K.; Bundiwal, A.K.; Jain, S.; Agrawal, P.; Jain, D.; Sircar, S. Evaluation of liver and splenic stiffness by acoustic radiation force impulse for assessment of esophageal varices. Indian J. Gastroenterol. 2025, 44, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Karagiannakis, D.S.; Voulgaris, T.; Markakis, G.; Lakiotaki, D.; Michailidou, E.; Cholongitas, E.; Papatheodoridis, G. Spleen stiffness can predict liver decompensation and survival in patients with cirrhosis. J. Gastroenterol. Hepatol. 2022, 38, 283–289. [Google Scholar] [CrossRef]
- Kurniawan, J.; Siahaan, B.S.P. Performance of spleen stiffness measurement by 100-Hz vibration-controlled transient elastography, liver stiffness, APRI score and their combination for predicting oesophageal varices in liver cirrhosis. Clin. Res. Hepatol. Gastroenterol. 2024, 48, 102456. [Google Scholar] [CrossRef]
- Kuroda, H.; Abe, T.; Kamiyama, N.; Oguri, T.; Ito, A.; Nakaya, I.; Watanabe, T.; Abe, H.; Yusa, K.; Fujiwara, Y.; et al. Novel subharmonic-aided pressure estimation for identifying high-risk esophagogastric varices. J. Gastroenterol. 2024, 60, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Codoceo, C.; Amo, M.; Martín, A.; Martín-Arriscado Arroba, C.; Cuevas Del Campo, L.; Manzano, M.L.; Muñoz, R.; Castellano, G.; Fernández, I. Diagnostic accuracy of liver and spleen stiffness measured by fibroscan® in the prediction of esophageal varices in HCV-related cirrhosis patients treated with oral antivirals. Gastroenterol. Hepatol. 2021, 44, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Mnif, L.; Hachicha, S.; Abid, F.; Gdoura, H.; Chtourou, L.; Amouri, A.; Boudabbous, M.; Tahri, N. Role of splenic and hepatic stiffness in predicting esophageal varices. Tunis. Med. 2021, 99, 544–551. [Google Scholar] [PubMed] [PubMed Central]
- Odriozola, A.; Puente, Á.; Cuadrado, A.; Iruzubieta, P.; Arias-Loste, M.T.; Redondo, C.; Rivas, C.; Fábrega, E.; Crespo, J.; Fortea, J.I. High accuracy of spleen stiffness measurement in diagnosing clinically significant portal hypertension in metabolic-associated fatty liver disease. Liver Int. 2023, 43, 1446–1457. [Google Scholar] [CrossRef] [PubMed]
- Peagu, R.; Săraru, R.; Necula, A.; Moldoveanu, A.; Petrişor, A.; Fierbinţeanu-Braticevici, C. The role of spleen stiffness using ARFI in predicting esophageal varices in patients with Hepatitis B and C virus-related cirrhosis. Rom. J. Intern. Med. 2019, 57, 334–340. [Google Scholar] [CrossRef]
- Petrisor, A.; Stanescu, A.M.A.; Papacocea, I.R.; Panaitescu, E.; Peagu, R.; Moldoveanu, A.C.; Fierbinteanu-Braticevici, C. Non-invasive laboratory, imaging and elastography markers in predicting varices with high risk of bleeding in cirrhotic patients. Rom. J. Intern. Med. 2021, 59, 194–200. [Google Scholar] [CrossRef]
- Takuma, Y.; Morimoto, Y.; Takabatake, H.; Tomokuni, J.; Sahara, A.; Matsueda, K.; Yamamoto, H. Changes in Liver and Spleen Stiffness by Virtual Touch Quantification Technique after Balloon-Occluded Retrograde Transvenous Obliteration of Gastric Varices and Exacerbation of Esophageal Varices: A Preliminary Study. Ultraschall Med. 2020, 41, 157–166. [Google Scholar] [CrossRef]
- Tanaka, T.; Hirooka, M.; Koizumi, Y.; Watanabe, T.; Yoshida, O.; Tokumoto, Y.; Nakamura, Y.; Sunago, K.; Yukimoto, A.; Abe, M.; et al. Development of a method for measuring spleen stiffness by transient elastography using a new device and ultrasound-fusion method. PLoS ONE 2021, 16, e0246315. [Google Scholar] [CrossRef]
- Vanderschueren, E.; Armandi, A.; Kwanten, W.; Cassiman, D.; Francque, S.; Schattenberg, J.M.; Laleman, W. Spleen Stiffness-Based Algorithms Are Superior to Baveno VI Criteria to Rule Out Varices Needing Treatment in Patients With Advanced Chronic Liver Disease. Am. J. Gastroenterol. 2024, 119, 1515–1524. [Google Scholar] [CrossRef]
- Wang, P.; Hu, X.; Xie, F. Predictive value of liver and spleen stiffness measurement based on two-dimensional shear wave elastography for the portal vein pressure in patients with compensatory viral cirrhosis. PeerJ 2023, 11, e15956. [Google Scholar] [CrossRef]
- Williams, E.E.; Mladenovic, A.; Ranginani, D.; Weber, R.; Samala, N.; Gawrieh, S.; Vilar-Gomez, E.; Chalasani, N.; Vuppalanchi, R. Role of Spleen Stiffness Measurement in the Evaluation of Metabolic Dysfunction-Associated Steatotic Liver Disease. Dig. Dis. Sci. 2024, 69, 1444–1453. [Google Scholar] [CrossRef]
- Xu, X.; Jin, Y.; Lin, Y.; Hu, D.; Zhou, Y.; Li, D.; Wang, H.; Jin, C. Multimodal Ultrasound Model Based on the Left Gastric Vein in B-Viral Cirrhosis: Noninvasive Prediction of Esophageal Varices. Clin. Transl. Gastroenterol. 2020, 11, e00262. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Linghu, R.; Chen, X.; Dong, C.; Zhang, S.; Han, H.; Ren, X.; Zou, X.; Ding, J.; et al. Comparison between spleen and liver stiffness measurements by sound touch elastography for diagnosing cirrhosis at different aminotransferase levels: A prospective multicenter study. Eur. Radiol. 2022, 32, 4980–4990. [Google Scholar] [CrossRef]
- Zhang, X.; Song, J.; Zhang, Y.; Wen, B.; Dai, L.; Xi, R.; Wu, Q.; Li, Y.; Luo, X.; Lan, X.; et al. Baveno VII algorithm outperformed other models in ruling out high-risk varices in individuals with HBV-related cirrhosis. J. Hepatol. 2023, 78, 574–583. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, H.; Duan, K.; Chen, F.; Zhang, J.; Sang, L.; Zhu, X.; Yu, M. Combining Spleen Diameter and the Baveno VI Criteria Assessed by 2-Dimensional Shear Wave Elastography to Rule Out High-Risk Varices. Ultrasound Q. 2024, 40, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhang, Z.; Zhang, J.; Sang, L.; Liu, L.; Lv, Y.; Gong, X.; Yin, Z.; Sun, Y.; Han, G.; et al. Spleen Stiffness Performance in the Noninvasive Assessment of Gastroesophageal Varices after Transjugular Intrahepatic Portosystemic Shunts. BioMed Res. Int. 2021, 2021, 5530004. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, H.; Zhang, Z.; Zhang, J.; Sang, L.; Liu, L.; Gong, X.; Sun, Y.; Zheng, Y.; Yu, M. Performance of spleen stiffness measurement by 2D-shear wave elastography in evaluating the presence of high-risk varices: Comparative analysis of idiopathic portal hypertension versus hepatitis B virus. BMC Med. Imaging. 2023, 23, 30. [Google Scholar] [CrossRef]
- Zhu, H.; Guo, H.; Yin, X.; Yang, J.; Yin, Q.; Xiao, J.; Wang, Y.; Zhang, M.; Han, H.; Zhuge, Y.; et al. Spleen Stiffness Predicts Survival after Transjugular Intrahepatic Portosystemic Shunt in Cirrhotic Patients. BioMed Res. Int. 2020, 2020, 3860390. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.L.; Ding, H.; Fu, T.T.; Xu, Z.T.; Xue, L.Y.; Chen, S.Y.; Wang, W.P. Diagnostic accuracy of liver and spleen stiffness by two dimensional shear wave elastography for portal hypertension in hepatitis B-related cirrhosis. Zhonghua Yi Xue Za Zhi 2020, 100, 1654–1657. [Google Scholar] [CrossRef] [PubMed]
- Yalçın, K.; Demir, B.Ç. Spleen stiffness measurement by shear wave elastography using acoustic radiation force impulse in predicting the etiology of splenomegaly. Abdom. Radiol. 2021, 46, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Grgurevic, I.; Madir, A.; Trkulja, V.; Bozin, T.; Aralica, G.; Podrug, K.; Mikolaševic, I.; Tsochatzis, E.; O’Beirne, J.; Pinzani, M. Assessment of clinically significant portal hypertension by two-dimensional shear wave elastography. Eur. J. Clin. Investig. 2022, 52, e13750. [Google Scholar] [CrossRef]
- Nardelli, M.J.; Veiga, Z.D.S.T.; Faria, L.C.; Pereira, G.H.S.; da Silva, C.F.; Barbosa, F.A.; Fernandes, F.F.; Perez, R.M.; Villela-Nogueira, C.A.; Couto, C.A. Noninvasive predictors of esophageal varices in patients with hepatosplenic schistosomiasis mansoni. Acta Trop. 2022, 226, 106283. [Google Scholar] [CrossRef]
- Stefanescu, H.; Marasco, G.; Calès, P.; Fraquelli, M.; Rosselli, M.; Ganne-Carriè, N.; de Ledinghen, V.; Ravaioli, F.; Colecchia, A.; Rusu, C.; et al. A novel spleen-dedicated stiffness measurement by FibroScan® improves the screening of high-risk oesophageal varices. Liver Int. 2020, 40, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Robles-Medranda, C.; Oleas, R.; Puga-Tejada, M.; Valero, M.; Valle, R.D.; Ospina, J.; Pitanga-Lukashok, H. Results of liver and spleen endoscopic ultrasonographic elastography predict portal hypertension secondary to chronic liver disease. Endosc. Int. Open 2020, 8, E1623–E1632. [Google Scholar] [CrossRef] [PubMed]
Elastographic Method (Equipment/Approach) | No. of Sources | Reference IDs |
---|---|---|
Transient elastography | ||
(FibroScan®, Echosens, Paris, France, VCTE, 50 Hz or 100 Hz spleen probe) | 7 | [29,35,39,44,53,61,68] |
Point shear wave elastography (pSWE), including ARFI-based single-ROI measurements | 9 | [25,26,30,31,34,37,38,40,65] |
Two-dimensional shear wave elastography (2D-SWE) | ||
(incl. SuperSonic Imagine SSI®, STE, etc., Aix-en-Provence, France) | 6 | [28,32,33,34,66,68] |
Endoscopic ultrasound strain elastography | 1 | [52] |
[53] | VCTE | CLD | Overall | ICC: 0.90 (0.88–0.92) |
[53] | VCTE | CLD | CLD with splenomegaly | 0.91 |
[53] | VCTE | CLD | CLD without splenomegaly | ICC: 0.87 |
[53] | VCTE | CLD | CLD with cirrhosis | ICC: 0.90 |
[53] | VCTE | CLD | CLD without cirrhosis | ICC: 0.84 |
[53] | VCTE | Philadelphia-negative MNs | Overall | ICC: 0.90 (0.83–0.94) |
[85] | VCTE | CHB cirrhosis | 50 Hz vs. 100 Hz | ICC: 0.66 (95% CI, 0.58–0.73) |
[66] | p-SWE | CLD | TIPS dysfunction | ICC: 0.90 (95% CI, 0.81–0.94) |
[84] | 2D-SWE-STE | CHB | Overall | ICC: 0.964 |
[84] | 2D-SWE-STE | CHB | CHB without splenomegaly | ICC: 0.980 |
[84] | 2D-SWE-STE | CHB | CHB with splenomegaly | ICC: 0.940 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilski, M.; Sobas, M.; Zimny, A. Ultrasonographic Elastography of the Spleen for Diagnosing Neoplastic Myeloproliferation: Identifying the Most Promising Methods—A Systematic Review. J. Clin. Med. 2025, 14, 5400. https://doi.org/10.3390/jcm14155400
Bilski M, Sobas M, Zimny A. Ultrasonographic Elastography of the Spleen for Diagnosing Neoplastic Myeloproliferation: Identifying the Most Promising Methods—A Systematic Review. Journal of Clinical Medicine. 2025; 14(15):5400. https://doi.org/10.3390/jcm14155400
Chicago/Turabian StyleBilski, Mateusz, Marta Sobas, and Anna Zimny. 2025. "Ultrasonographic Elastography of the Spleen for Diagnosing Neoplastic Myeloproliferation: Identifying the Most Promising Methods—A Systematic Review" Journal of Clinical Medicine 14, no. 15: 5400. https://doi.org/10.3390/jcm14155400
APA StyleBilski, M., Sobas, M., & Zimny, A. (2025). Ultrasonographic Elastography of the Spleen for Diagnosing Neoplastic Myeloproliferation: Identifying the Most Promising Methods—A Systematic Review. Journal of Clinical Medicine, 14(15), 5400. https://doi.org/10.3390/jcm14155400