Electrical Connector Assembly Based on Compliant Tactile Finger with Fingernail
Abstract
1. Introduction
- A rigid-soft-hybrid tactile finger with a nail is designed to provide compliance, tactile perception, and enhanced manipulation force in robotic assembly.
- An angular alignment strategy is proposed, consisting of rough and fine search periods purely relying on the multi-channel tactile signals.
- A series of manipulation and assembly experiments are conducted to demonstrate the performance of our design and alignment strategy in U-disk insertion and three electrical connectors assembly.
2. Design and Fabrication
2.1. Design of the Tactile Finger
2.2. Sensing Elements and Layouts
2.3. Fabrication of the Humanoid Finger and Tactile Gripper
3. Angular Alignment Strategy
3.1. U-Disk Insertion Problem
3.2. Tactile-Based Alignment Algorithm
- Rough Search: The algorithm first identifies the time instant where the static force deviation is minimal. This is achieved by calculating the absolute difference between the current SG1 signal value and its initial value at the start of the sweeping process and then finding the time that minimizes this difference. This instant indicates the approximate moment of best alignment where the static pressure is closest to the non-contact state.
- Fine Search: A search window is established, where is the maximal expected time delay. Within this window, the algorithm locates the dynamic event markers by finding the time instants that correspond to the maximum absolute values of the PVDF1 and PVDF2 signals ( and ). The instants and represent the moments of most significant dynamic change.
4. Experimental Design
4.1. Experimental Setup
4.2. Comparative Experiment of Insertion Force
4.3. Compliance Verification of U-Disk Insertion
4.4. Angular Alignment in U-Disk Insertion and Electrical Connectors Assembly
5. Results
5.1. Insertion Force
5.2. Compliance Result in U-Disk Insertion
5.3. Angular Alignment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Tactile-Based Alignment Algorithm
Algorithm A1: The Tactile-based Alignment Algorithm |
References
- Van Wyk, K.; Culleton, M.; Falco, J.; Kelly, K. Comparative peg-in-hole testing of a force-based manipulation controlled robotic hand. IEEE Trans. Robot. 2018, 34, 542–549. [Google Scholar] [CrossRef]
- Waltersson, G.A.; Laezza, R.; Karayiannidis, Y. Planning and control for cable-routing with dual-arm robot. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; IEEE: New York, NY, USA, 2022; pp. 1046–1052. [Google Scholar]
- Tang, T.; Lin, H.C.; Zhao, Y.; Fan, Y.; Chen, W.; Tomizuka, M. Teach industrial robots peg-hole-insertion by human demonstration. In Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, Canada, 12–15 July 2016; IEEE: New York, NY, USA, 2016; pp. 488–494. [Google Scholar]
- Liu, J.; Liu, J.; Zhang, Z.; Xu, J.; Lin, H. Anytime RRT based cable automatic routing under three-dimensional environment. Jixie Gongcheng Xuebao/Chin. J. Mech. Eng. 2016, 52, 156–165. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, Z.; Yang, B.; Yang, W. A review of robotic assembly strategies for the full operation procedure: Planning, execution and evaluation. Robot. Comput.-Integr. Manuf. 2022, 78, 102366. [Google Scholar] [CrossRef]
- Yumbla, F.; Yi, J.S.; Abayebas, M.; Shafiyev, M.; Moon, H. Tolerance dataset: Mating process of plug-in cable connectors for wire harness assembly tasks. Intell. Serv. Robot. 2020, 13, 159–168. [Google Scholar] [CrossRef]
- Song, H.C.; Kim, Y.L.; Lee, D.H.; Song, J.B. Electric connector assembly based on vision and impedance control using cable connector-feeding system. J. Mech. Sci. Technol. 2017, 31, 5997–6003. [Google Scholar] [CrossRef]
- Spector, O.; Di Castro, D. Insertionnet-a scalable solution for insertion. IEEE Robot. Autom. Lett. 2021, 6, 5509–5516. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, C.; Chen, H.; Pan, J.; Wang, M.Y.; Zhang, W. Vision-based six-dimensional peg-in-hole for practical connector insertion. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; IEEE: New York, NY, USA, 2023; pp. 1771–1777. [Google Scholar]
- Nair, A.; Zhu, B.; Narayanan, G.; Solowjow, E.; Levine, S. Learning on the job: Self-rewarding offline-to-online finetuning for industrial insertion of novel connectors from vision. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; IEEE: New York, NY, USA, 2023; pp. 7154–7161. [Google Scholar]
- Wang, Z.; Li, X.; Zhao, H.; Shao, L.; Ma, X.; Zou, H.; Ding, H. Geometry and Force Guided Robotic Assembly With Large Initial Deviations for Electrical Connectors. IEEE Trans. Autom. Sci. Eng. 2024, 22, 8095–8107. [Google Scholar] [CrossRef]
- Yun, J.W.; Na, M.; Hwang, Y.; Song, J.B. Similar assembly state discriminator for reinforcement learning-based robotic connector assembly. Robot. Comput.-Integr. Manuf. 2025, 91, 102842. [Google Scholar] [CrossRef]
- Shintake, J.; Cacucciolo, V.; Floreano, D.; Shea, H. Soft robotic grippers. Adv. Mater. 2018, 30, 1707035. [Google Scholar] [CrossRef]
- Hartisch, R.M.; Haninger, K. Compliant finray-effect gripper for high-speed robotic assembly of electrical components. In Proceedings of the 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Seattle, WA, USA, 27 June–1 July 2023; IEEE: New York, NY, USA, 2023; pp. 375–380. [Google Scholar]
- Li, R.; Qiao, H. A survey of methods and strategies for high-precision robotic grasping and assembly tasks—Some new trends. IEEE/ASME Trans. Mechatronics 2019, 24, 2718–2732. [Google Scholar] [CrossRef]
- Yumbla, F.; Abayebas, M.; Yi, J.S.; Jeon, J.; Moon, H. Reposition and alignment of cable connectors using a vibration plate manipulator for wire harness assembly tasks. Int. J. Precis. Eng. Manuf. 2021, 22, 649–657. [Google Scholar] [CrossRef]
- Controzzi, M.; D’ Alonzo, M.; Peccia, C.; Oddo, C.M.; Carrozza, M.C.; Cipriani, C. Bioinspired fingertip for anthropomorphic robotic hands. Appl. Bionics Biomech. 2014, 11, 25–38. [Google Scholar] [CrossRef]
- Kumagai, A.; Obata, Y.; Yabuki, Y.; Jiang, Y.; Yokoi, H.; Togo, S. Improvement of precision grasping performance by interaction between soft finger pulp and hard nail. Soft Robot. 2023, 10, 345–353. [Google Scholar] [CrossRef]
- Jain, S.; Stalin, T.; Subramaniam, V.; Agarwal, J.; Valdivia y Alvarado, P. A soft gripper with retractable nails for advanced grasping and manipulation. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; IEEE: New York, NY, USA, 2020; pp. 6928–6934. [Google Scholar]
- Sundaralingam, B.; Hermans, T. In-hand object-dynamics inference using tactile fingertips. IEEE Trans. Robot. 2021, 37, 1115–1126. [Google Scholar] [CrossRef]
- Qin, L.; Shi, X.; Wang, Y.; Zhou, Z. Perception of static and dynamic forces with a bio-inspired tactile fingertip. J. Bionic Eng. 2023, 20, 1544–1554. [Google Scholar] [CrossRef]
- Shi, X.; Wang, Y.; Qin, L. Surface Recognition with a Bio-inspired Tactile Fingertip. IEEE Sens. J. 2023, 23, 18842–18855. [Google Scholar] [CrossRef]
- Ades, C.; Abd, M.A.; Hutchinson, D.T.; Tognoli, E.; Du, E.; Wei, J.; Engeberg, E.D. Biohybrid Robotic Hand to Investigate Tactile Encoding and Sensorimotor Integration. Biomimetics 2024, 9, 78. [Google Scholar] [CrossRef]
- Ishige, M.; Umedachi, T.; Ijiri, Y.; Taniguchi, T.; Kawahara, Y. Blind bin picking of small screws through in-finger manipulation with compliant robotic fingers. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; IEEE: New York, NY, USA, 2020; pp. 9337–9344. [Google Scholar]
- Caccavale, R.; Finzi, A.; Laudante, G.; Natale, C.; Pirozzi, S.; Villani, L. Manipulation of Boltlike Fasteners Through Fingertip Tactile Perception in Robotic Assembly. IEEE/ASME Trans. Mechatronics 2023, 29, 820–831. [Google Scholar] [CrossRef]
- Li, R.; Platt, R.; Yuan, W.; Ten Pas, A.; Roscup, N.; Srinivasan, M.A.; Adelson, E. Localization and manipulation of small parts using gelsight tactile sensing. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; IEEE: New York, NY, USA, 2014; pp. 3988–3993. [Google Scholar]
- Okumura, R.; Nishio, N.; Taniguchi, T. Tactile-sensitive newtonianvae for high-accuracy industrial connector insertion. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; IEEE: New York, NY, USA, 2022; pp. 4625–4631. [Google Scholar]
- Qin, L.; Shi, X.; Yang, W.; Qin, Z.; Yi, Z.; Shen, H. Surface Recognition with a Tactile Finger based on Automatic Features Transferred from Deep Learning. IEEE Trans. Instrum. Meas. 2024, 73, 3534710. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, X.; Zhang, J.; Xu, D.; Zhang, D.; Wu, W. Robotic grasping and alignment for small size components assembly based on visual servoing. Int. J. Adv. Manuf. Technol. 2020, 106, 4827–4843. [Google Scholar] [CrossRef]
- Xu, R.; Zhao, X.; Liu, F.; Tao, B. High-precision monocular vision guided robotic assembly based on local pose invariance. IEEE Trans. Instrum. Meas. 2023, 72, 5031312. [Google Scholar] [CrossRef]
- Wang, H.; Salunkhe, O.; Quadrini, W.; Lämkull, D.; Ore, F.; Despeisse, M.; Fumagalli, L.; Stahre, J.; Johansson, B. A systematic literature review of computer vision applications in robotized wire harness assembly. Adv. Eng. Inform. 2024, 62, 102596. [Google Scholar] [CrossRef]
0∘ | 3∘ | 4∘ | 5∘ | ||||
success rate | 0/10 | 10/10 | 10/10 | 10/10 | 10/10 | 10/10 | 0/10 |
0∘ | 3∘ | 4∘ | 5∘ | 6∘ | |||||
success rate | 1/10 | 10/10 | 10/10 | 10/10 | 10/10 | 10/10 | 10/10 | 9/10 | 0/10 |
U-disk | success rate | HDMI | success rate | ||
10/10 | 10/10 | ||||
DP | success rate | Type-C | success rate | ||
10/10 | 10/10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Zhao, H.; He, C.; Qin, L. Electrical Connector Assembly Based on Compliant Tactile Finger with Fingernail. Biomimetics 2025, 10, 512. https://doi.org/10.3390/biomimetics10080512
Yang W, Zhao H, He C, Qin L. Electrical Connector Assembly Based on Compliant Tactile Finger with Fingernail. Biomimetics. 2025; 10(8):512. https://doi.org/10.3390/biomimetics10080512
Chicago/Turabian StyleYang, Wenhui, Hongliang Zhao, Chengxiao He, and Longhui Qin. 2025. "Electrical Connector Assembly Based on Compliant Tactile Finger with Fingernail" Biomimetics 10, no. 8: 512. https://doi.org/10.3390/biomimetics10080512
APA StyleYang, W., Zhao, H., He, C., & Qin, L. (2025). Electrical Connector Assembly Based on Compliant Tactile Finger with Fingernail. Biomimetics, 10(8), 512. https://doi.org/10.3390/biomimetics10080512