Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = oocyst output

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4090 KB  
Article
Influence of High Eimeria tenella Immunization Dosages on Total Oocyst Output and Specific Antibodies Recognition Response in Hybrid Pullets (Gallus gallus)—A Pilot Study
by Marco A. Juarez-Estrada, Guillermo Tellez-Isaias, Víctor M. Petrone-Garcia, Amanda Gayosso-Vazquez, Xochitl Hernandez-Velasco and Rogelio A. Alonso-Morales
Antibodies 2025, 14(1), 9; https://doi.org/10.3390/antib14010009 - 26 Jan 2025
Viewed by 1141
Abstract
Background: Two high primary-immunization doses of a wild-type E. tenella strain were assessed in healthy pullets (5K versus 10K sporulated oocysts/bird) to understand the effects of coccidia infection. Methods: Acquired immunity was evaluated following primary immunization and two booster doses with the homologous [...] Read more.
Background: Two high primary-immunization doses of a wild-type E. tenella strain were assessed in healthy pullets (5K versus 10K sporulated oocysts/bird) to understand the effects of coccidia infection. Methods: Acquired immunity was evaluated following primary immunization and two booster doses with the homologous strain. Total oocyst shedding, clinical signs, and viability of every bird/group after each immunization/booster were recorded. Indirect ELISA measured the time course of humoral responses from each immunization group against sporozoite and second-generation merozoite of E. tenella. Antigen pattern recognition on these two asexual zoite stages of E. tenella was analyzed using Western blotting with antibodies from each immunization program. Afterwards, antigen recognition of specific life-cycle stages was performed using individual pullet serums from the best immunization program. Results: A primary-immunization dose of 1 × 104 oocysts/bird reduced the oocyst output; however, all pullets exhibited severe clinical signs and low specific antibodies titers, with decreased polypeptide recognition on both E. tenella asexual zoite stages. In contrast, immunization with 5 × 103 oocysts/bird yielded the best outcomes regarding increased oocyst collection and early development of sterilizing immunity. After the first booster dosage, this group’s antisera revealed a strong pattern of specific antigen recognition on the two assayed E. tenella life-cycle stages. Conclusions: The E. tenella-specific antibodies from the 5 × 103 oocysts/bird immunization program can aid in passive immunization trials and further research to identify B-cell immunoprotective antigens, which could help in the development of a genetically modified anticoccidial vaccine. Full article
Show Figures

Figure 1

13 pages, 6818 KB  
Article
Holothuria polii Extract as a Potential Anticoccidial Agent: Evidence of Its MUC2 Regulatory Impact in Murine Jejunum
by Youssef A. El-Sayed, Ahmed E. Abdel-Moneim, Rania G. Taha, Mona F. Khalil, Rewaida Abdel-Gaber, Felwa A. Thagfan, Esam S. Al-Malki and Mohamed A. Dkhil
Vet. Sci. 2024, 11(10), 490; https://doi.org/10.3390/vetsci11100490 - 10 Oct 2024
Cited by 4 | Viewed by 1640
Abstract
Eimeria is a parasite that causes coccidiosis in a variety of animals, leading to nutritional imbalances, issues with food digestion and absorption, low weight, and intestinal inflammation of varying degrees in its hosts. Anticoccidial medication resistance has become a significant obstacle to disease [...] Read more.
Eimeria is a parasite that causes coccidiosis in a variety of animals, leading to nutritional imbalances, issues with food digestion and absorption, low weight, and intestinal inflammation of varying degrees in its hosts. Anticoccidial medication resistance has become a significant obstacle to disease control efforts, leading to a renewed focus on discovering novel chemicals for alternative therapeutic approaches. The purpose of this study was to determine the efficacy of Holothuria polii extract (HpE) in treating eimeriosis in mice. Five groups of mice were studied, with E. papillata sporulated oocysts (1 × 103) used to infect three groups experimentally. The first group was treated with 200 mg/kg of HpE, the second group with Amprolium (120 mg/kg), and the third group was left untreated as a control. The fourth and fifth groups were uninfected, with one of them treated with 200 mg/kg of HpE and the other used as a negative control. The results revealed that HpE has 10 phytochemical compounds according to GC-MS analysis. Treatment with HpE resulted in a substantial decrease in oocyst output in feces. Also, the parasitic stages showed morphometric alterations, with reductions in the measurements compared with the infected, untreated mice. Moreover, expression of the mucin gene (MUC2) was higher in treated mice compared to infected ones, with significant increases in goblet cell numbers, which provided additional evidence for the activity of HpE as an anticoccidial product. In conclusion, there are a wide variety of natural products and many have been employed in folk medicine for treating a range of parasitic diseases. Full article
Show Figures

Graphical abstract

14 pages, 5584 KB  
Article
Anticoccidial and Antioxidant Activities of an Ethanolic Extract of Teucrium polium Leaves on Eimeria papillate-Infected Mice
by Saleh Maodaa, Esam M. Al-Shaebi, Rewaida Abdel-Gaber, Afaf Alatawi, Sarah Alawwad, Dalal Alhomoud and Saleh Al-Quraishy
Vet. Sci. 2024, 11(7), 314; https://doi.org/10.3390/vetsci11070314 - 14 Jul 2024
Cited by 4 | Viewed by 1923
Abstract
Eimeria spp. are responsible for the economic loss of both domestic and wild animals due to coccidiosis, the most common parasitic disease. The resistance to currently available drugs used to treat coccidiosis has been proven. Medicinal plants that contain physiologically active phytochemicals have [...] Read more.
Eimeria spp. are responsible for the economic loss of both domestic and wild animals due to coccidiosis, the most common parasitic disease. The resistance to currently available drugs used to treat coccidiosis has been proven. Medicinal plants that contain physiologically active phytochemicals have been widely used in traditional medicine. Teucrium polium leaf extract (TPLE) has been shown to exhibit pharmacological, antioxidant, and anticoccidial properties in different experiments. Here, our investigation focused on how T. polium leaf extract affected the way that Eimeria papillate caused intestinal injury in mice. Thirty-five male Swiss albino mice were divided into seven groups, as follows: group I: untreated and uninfected (negative control); group II: uninfected, treated group with TPLE (150 mg/kg b.w); and group III: infected untreated (positive control). Groups III–VII were orally administered 103 sporulated E. papillata oocysts. A total of 60 min after infection, groups IV–VI were treated for five successive days with 50, 150, and 250 mg/kg b.w TPLE, respectively, while group VII was treated with amprolium (120 mg/kg b.w.). The mice had been euthanized on the fifth day post-infection, and the jejunum tissues were prepared for histology and oxidative stress studies. A total of 150 mg/kg of TPLE was the most effective dosage, significantly decreasing oocyst output by about 80.5%, accompanied by a significant reduction in the number of developmental parasitic phases in jejunal sections. In addition, the decrease in the number of goblet cells in the jejuna of mice raised after treatment. Also, TPLE greatly diminished the body weight loss of infected mice. Moreover, our research proved that TPLE reduced oxidative damage due to E. papillata infection via decreasing intestinal malondialdehyde (MDA) and nitric oxide (NO) levels and increasing reduced superoxide dismutase (SOD) and glutathione (GSH) levels. These results demonstrated that TPLE had potent anticoccidial properties. TPE’s efficacy as a natural antioxidant has also been demonstrated in reducing oxidative stress and enhancing antioxidant systems to mitigate biochemical and histological changes in the jejunum caused by E. papillata. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

16 pages, 3665 KB  
Article
Effects of Six Natural Compounds and Their Derivatives on the Control of Coccidiosis in Chickens
by Yue Hou, Bo Han, Zehua Lin, Qizheng Liu, Zhenhe Liu, Hongbin Si and Dandan Hu
Microorganisms 2024, 12(3), 601; https://doi.org/10.3390/microorganisms12030601 - 17 Mar 2024
Cited by 4 | Viewed by 2591
Abstract
Chicken coccidiosis costs the poultry industry over GBP 10 billion per year. The main method of preventing and controlling coccidiosis in chickens continues to be the use of drugs. Unfortunately, the prevalence of drug resistance in the field reduces or even eliminates the [...] Read more.
Chicken coccidiosis costs the poultry industry over GBP 10 billion per year. The main method of preventing and controlling coccidiosis in chickens continues to be the use of drugs. Unfortunately, the prevalence of drug resistance in the field reduces or even eliminates the effectiveness of drugs, and drug residues in the food supply chain can also can be harmful to humans. Therefore, safe and effective anticoccidial drugs are urgently needed. Natural products have many advantages such as being safe, effective and inexpensive and are a sustainable way to control coccidiosis. In this study, the anticoccidial effects of six natural compounds were tested by Eimeria tenella infection. Oocyst production, cecum lesion, body weight gain, feed conversion ratio, and intestinal microbiota were measured. The results showed that nerolidol had a moderate effect on maintaining both body weight gain and feed conversion ratio. Silymarin and dihydroartemisinin showed significant anticoccidial effects by reducing total oocyst output. Dihydroartemisinin also significantly reduced the cecum lesion caused by Eimeria infection, but this compound may be toxic to the host at such informed doses because it decreases growth and survival rates. In addition, both silymarin and dihydroartemisinin partly restored the microbiota after challenge. This indicates that silymarin, dihydroartemisinin, and nerolidol are effective in the control of chicken coccidiosis. Our data provide basic knowledge about the anticoccidial effects of such natural compounds/derivates. Full article
Show Figures

Figure 1

6 pages, 439 KB  
Communication
A Study of Cross-Protection between Eimeria maxima Immunovariants
by Mark C. Jenkins, Celia N. O'Brien, Carolyn C. Parker and Matthew S. Tucker
Pathogens 2024, 13(1), 66; https://doi.org/10.3390/pathogens13010066 - 9 Jan 2024
Cited by 2 | Viewed by 2200
Abstract
For reasons unknown, Eimeria maxima is unique among Eimeria species infecting chickens in the immunovariability it displays among isolates from different geographical areas. Eimeria maxima oocysts (named EmaxAPU3) were isolated late in grow-out (6 weeks) from litter in a commercial broiler operation that [...] Read more.
For reasons unknown, Eimeria maxima is unique among Eimeria species infecting chickens in the immunovariability it displays among isolates from different geographical areas. Eimeria maxima oocysts (named EmaxAPU3) were isolated late in grow-out (6 weeks) from litter in a commercial broiler operation that was using Eimeria vaccination as the coccidiosis control program. Cross-protection studies (n = 4) were conducted in immunologically naïve chickens between EmaxAPU3 and two E. maxima lab strains (EmaxAPU1, EmaxAPU2) by immunizing with one E. maxima strain and challenging with either the homologous or heterologous E. maxima. As measured by oocyst output, immunization with EmaxAPU1 protected against homologous challenge (EmaxAPU1) and against heterologous challenge with EmaxAPU3, but not against EmaxAPU2. Similarly, immunization with EmaxAPU3 protected against homologous challenge (EmaxAPU3) and against heterologous challenge with EmaxAPU1, but not against EmaxAPU2. Immunization of chickens with EmaxAPU2 elicited a protective response against homologous challenge (EmaxAPU2), but not against EmaxAPU1 nor EmaxAPU3. The most plausible explanation for the appearance of this immunovariant late in grow-out is that E. maxima APU3 escaped immunity directed to E. maxima antigenic types in the commercial vaccine. Full article
(This article belongs to the Special Issue Research on Coccidian Parasites in Livestock)
Show Figures

Figure 1

18 pages, 2513 KB  
Article
Protective Efficacy Induced by the Common Eimeria Antigen Elongation Factor 2 against Challenge with Three Eimeria Species in Chickens
by Yuxuan Mi, Wenxi Ding, Lixin Xu, Mingmin Lu, Ruofeng Yan, Xiangrui Li and Xiaokai Song
Vaccines 2024, 12(1), 18; https://doi.org/10.3390/vaccines12010018 - 22 Dec 2023
Cited by 2 | Viewed by 2104
Abstract
Avian coccidiosis arises from co-infection involving multiple Eimeria species, which could give rise to substantial economic losses in the global poultry industry. As a result, multivalent anticoccidial vaccines containing common Eimeria antigens offer considerable promise for controlling co-infection in clinical practice. In our [...] Read more.
Avian coccidiosis arises from co-infection involving multiple Eimeria species, which could give rise to substantial economic losses in the global poultry industry. As a result, multivalent anticoccidial vaccines containing common Eimeria antigens offer considerable promise for controlling co-infection in clinical practice. In our previous study, Elongation factor 2 (EF2) was deemed as an immunogenic common antigen across various Eimeria species. This current investigation aimed to further assess the immunogenicity and protective efficacy of EF2 in recombinant subunit vaccine format against three Eimeria species. The EF2 gene cloned from Eimeria maxima (E. maxima) cDNA was designated as EF2 of E. maxima (EmEF2). The immunogenicity of the recombinant protein EmEF2 (rEmEF2) was assessed through Western blot analysis. The evaluation of the vaccine-induced immune response encompassed the determination of T lymphocyte subset proportions, cytokine mRNA transcription levels, and specific IgY concentrations in rEmEF2-vaccinated chickens using flow cytometry, quantitative real-time PCR (qPCR), and indirect enzyme-linked immunosorbent assay (ELISA). Subsequently, the protective efficacy of rEmEF2 was evaluated through vaccination and challenge experiments. The findings demonstrated that rEmEF2 was effectively recognized by the His-tag monoclonal antibody and E. maxima chicken antiserum. Vaccination with rEmEF2 increased the proportions of CD4+ and CD8+ T lymphocytes, elevated IL-4 and IFN-γ mRNA transcription levels, and enhanced IgY antibody levels compared to the control groups. Moreover, compared to the control groups, vaccination with rEmEF2 led to decreased weight loss, reduced oocyst outputs, and alleviated enteric lesions. Furthermore, in the rEmEF2-immunized groups, challenges with E. maxima and E. acervulina resulted in anticoccidial index (ACI) scores of 166.35 and 185.08, showing moderate-to-excellent protective efficacy. Nevertheless, challenges with E. tenella and mixed Eimeria resulted in ACI scores of 144.01 and 127.94, showing low protective efficacy. In conclusion, EmEF2, a common antigen across Eimeria species, demonstrated the capacity to induce a significant cellular and humoral immune response, as well as partial protection against E. maxima, E. acervulina, and E. tenella. These results highlight EmEF2 as a promising candidate antigen for the development of multivalent vaccines targeting mixed infections by Eimeria species. Full article
(This article belongs to the Special Issue Vaccines and Animal Health)
Show Figures

Figure 1

18 pages, 3405 KB  
Article
Administration of Ethanolic Extract of Spinacia oleracea Rich in Omega-3 Improves Oxidative Stress and Goblet Cells in Broiler Chickens Infected with Eimeria tenella
by Osama Ewais, Heba Abdel-Tawab, Huda El-Fayoumi, Shawky M Aboelhadid, Saleh Al-Quraishy, Piotr Falkowski and Abdel-Azeem S. Abdel-Baki
Molecules 2023, 28(18), 6621; https://doi.org/10.3390/molecules28186621 - 14 Sep 2023
Cited by 3 | Viewed by 2001
Abstract
This study investigated the anticoccidial activity of spinach (Spinacia oleracea) whole-plant extract against Eimeria tenella, both in vitro and in vivo. For this purpose, one hundred 8-day-old broiler chicks of both sexes were divided into four groups (n = [...] Read more.
This study investigated the anticoccidial activity of spinach (Spinacia oleracea) whole-plant extract against Eimeria tenella, both in vitro and in vivo. For this purpose, one hundred 8-day-old broiler chicks of both sexes were divided into four groups (n = 25 in each group). Chicks in the first group served as the negative control (non-treated–non-infected). Chicks in the second group were challenged at 18 days old with 5 × 104 E. tenella sporulated oocysts. The third group was challenged with 5 × 104 sporulated E. tenella oocysts at 18 days old after receiving spinach extract at a dose of 50 mg/kg at 8 days old. The fourth group received 0.2 mg/kg diclazuril (Coxiril® 0.2%) in their diet two days before being orally infected with 5 × 104 sporulated E. tenella oocysts and this continued till day 10 post-infection (PI). The growth performance, clinical symptoms, oocyst shedding, histological findings, and biochemical parameters were used to evaluate the efficacy on day 8 PI when the infection was at its peak. A gas chromatography examination revealed that omega-3 fatty acids were the main constituents of the spinach extract, followed by oleic acid, palmitic acid, and phytol, with amounts of 23.37%, 17.53%, 11.26%, and 7.97%, respectively. The in vitro investigation revealed that the spinach extract at concentrations of 10% and 5% inhibited the oocyst sporulation by 52.1% and 45.1%, respectively. The 5% concentration was selected for the in vivo trial based on the results of the in vitro study. The infected–untreated group showed high levels of OPG; lower body weight; a greater number of parasite stages; few goblet cells; decreased SOD, CAT, and GPX levels; and increased MDA and NO levels. The spinach-treated group, on the other hand, showed a significant decrease in oocyst output per gram of feces (OPG), increased body weight, decreased parasitic stages, and a nearly normal number of goblet cells. Additionally, it reduced malondialdehyde (MDA) and nitric oxide (NO), while increasing superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX). In conclusion, spinach produced significant antioxidant effects, increased body weight, reduced the number of oocysts and parasite stages in the caecum, and restored the number of goblet cells relative to those of an uninfected control. Furthermore, spinach extract inhibits the sporulation percentage of E. tenella oocysts. The ethanolic extract of S. oleracea (whole plant) contained high concentrations of fatty acids, palmitic acid, Phytol, betulin, and ursolic aldehyde, all of which are known to regulate the antioxidant pathway and modulate inflammatory processes and may be the main reason for its anticoccidial activity. Full article
Show Figures

Figure 1

13 pages, 2475 KB  
Article
The Anticoccidial Effect of Alcoholic Vitis vinifera Leaf Extracts on Eimeria papillate Oocysts Isolated in Mice In Vitro and In Vivo
by Mutee Murshed, Saleh Al-Quraishy, Jawahir Alghamdi, Hossam M. A. Aljawdah and Mohammed M. Mares
Vet. Sci. 2023, 10(2), 97; https://doi.org/10.3390/vetsci10020097 - 29 Jan 2023
Cited by 7 | Viewed by 2557
Abstract
Eimeria spp. causes eimeriosis in the guts of numerous domestic mammals and poultry, and the employment of medication and the effects of certain aspects of synthetic anticoccidials in the treatment of eimeriosis have given rise to the appearance of resistant parasites that require [...] Read more.
Eimeria spp. causes eimeriosis in the guts of numerous domestic mammals and poultry, and the employment of medication and the effects of certain aspects of synthetic anticoccidials in the treatment of eimeriosis have given rise to the appearance of resistant parasites that require the search for alternate remedies. Natural products, which are safe and have no negative impact on the environment, may be utilized in the therapy of an enormous range of parasitic infections. This research aimed to assess the effectiveness of VVLE on the oocyst sporulation of an E. papillate infection in the mouse jejunum. In addition, obtaining the ideal concentration will interrupt the parasite’s life cycle and limit infection. In vitro: Collected unsporulated oocysts (1 × 103) of E. papillata were given six different concentrations (w/v) of Vitis vinifera leaf extract (10, 25, 50, 100, 150, and 200 mg/mL) and toltrazuril (25 mg/mL), three replicates per group, whereas the control group received 2.5% potassium dichromate solution. In vivo: The mice were separated into six groups; the first and second groups did not receive infection, whilst the third, fourth, fifth, and sixth groups were each given 1 × 103 sporulated oocysts of E. papillate in the experiment. In addition, an oral dosage of 100 and 200 mg/kg VVLE were given to the fourth and fifth groups, while the sixth group was given toltrazuril at 25 mg/kg. On the fifth day, unpopulated oocysts were collected from each mouse separately. The incubation period and treatments had considerable impacts on the rate of sporulation. The infrared spectroscopy of V. vinifera extract revealed many expected active classes of chemical compounds. Further, the infection of mice with E. papillata caused an oocyst output of nearly 2 × 104 oocysts/g of faeces. VVLE significantly decreased the oocyst output to nearly 88%. In addition, we detected an inhibitory effect on the sporulation (%) and harm (%) of E. papillata oocysts in a dosage-dependent modality compared with the control group. Furthermore, they destroyed the oocyst morphology in terms of the shape, size, and quantity of sporocysts. The results indicate that grape vines have powerful activity as anticoccidials. Full article
(This article belongs to the Special Issue The Effects of Microbiota on Animal Health)
Show Figures

Figure 1

9 pages, 779 KB  
Article
Pathogenic Effects of Single or Mixed Infections of Eimeria mitis, Eimeria necatrix, and Eimeria tenella in Chickens
by Lixin Xu, Quanjia Xiang, Mongqi Li, Xiaoting Sun, Mingmin Lu, Ruofeng Yan, Xiaokai Song and Xiangrui Li
Vet. Sci. 2022, 9(12), 657; https://doi.org/10.3390/vetsci9120657 - 24 Nov 2022
Cited by 13 | Viewed by 3851
Abstract
Avian Eimeria species vary in their replication location, fecundity, and pathogenicity. They are required to complete the development within the limited space of host intestines, and some synergistic or antagonistic effects occur among different Eimeria species. This study evaluated the impact of Eimeria [...] Read more.
Avian Eimeria species vary in their replication location, fecundity, and pathogenicity. They are required to complete the development within the limited space of host intestines, and some synergistic or antagonistic effects occur among different Eimeria species. This study evaluated the impact of Eimeria mitis on the outcome of Eimeria necatrix or Eimeria tenella challenge infection. The severity of E. mitis/E. necatrix and E. mitis/E. tenella mixed infections were quantified by growth performance evaluation, survival rate analysis, lesion scoring, blood stool scoring, and oocyst output counting. The presence of E. mitis exacerbated the outcome of co-infection with E. tenella, causing high mortality, intestinal lesion score, and oocyst production. However, E. mitis/E. tenella co-infection had little impact on the body weight gain compared to individual E. tenella infection. In addition, the presence of E. mitis appeared not to enhance the pathogenicity of E. necatrix, although it tends to inhibit the growth of challenged birds and facilitate oocyst output and mortality in an E. mitis/E. necatrix co-infection model. Collectively, the results suggested a synergistic relationship between E. mitis and E. tenella/E. necatrix when sharing the same host. The presence of E. mitis contributed to disease pathology induced by E. tenella and might also advance the impact of E. necatrix in co-infections. These observations indicate the importance of accounting for differences in the relationships among different Eimeria species when using mixed infection models. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

17 pages, 2235 KB  
Article
Protective Effect of Litchi chinensis Peel Extract-Prepared Nanoparticles on Rabbits Experimentally Infected with Eimeria stiedae
by Dina M. Metwally, Afrah F. Alkhuriji, Ibrahim A. H. Barakat, Hanadi B. Baghdadi, Manal F. El-Khadragy, Wafa Abdullah I. Al-Megrin, Abdullah D. Alanazi and Fatemah E. Alajmi
Animals 2022, 12(22), 3098; https://doi.org/10.3390/ani12223098 - 10 Nov 2022
Cited by 5 | Viewed by 3367
Abstract
The present study used Litchi chinensis peel extract to synthesize silver nanoparticles (AgNPs). This technique is eco-friendly and can be performed in a single step; thus, it has attracted great attention for NPs biosynthesis. Herein, we biosynthesized AgNPs with L. chinensis peel extract [...] Read more.
The present study used Litchi chinensis peel extract to synthesize silver nanoparticles (AgNPs). This technique is eco-friendly and can be performed in a single step; thus, it has attracted great attention for NPs biosynthesis. Herein, we biosynthesized AgNPs with L. chinensis peel extract and examined their anticoccidial activity in rabbit hepatic coccidiosis induced by E. stiedae infection. Thirty-five rabbits were allocated into seven groups: a healthy group (G1), an infected control group (G2), four groups infected before treatment with 10 mg/kg L. chinensis peel extract-biosynthesized AgNPs (G3, G5) or 50 mg/kg amprolium (G4, G6), and rabbits infected after two weeks of pretreatment with 10 mg/kg L. chinensis eel extract-biosynthesized AgNPs (G7). In this study, both pre-and post-treatment with AgNPs produced a substantial reduction in fecal oocyst output, liver enzyme levels, and histopathological hepatic lesions relative to the infected group. In conclusion, L. chinensis peel extract-prepared AgNPs should be considered harmless and efficient in the cure of hepatic coccidiosis in rabbits. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

15 pages, 3423 KB  
Article
Prokaryotic Expression of Eimeria magna SAG10 and SAG11 Genes and the Preliminary Evaluation of the Effect of the Recombinant Protein on Immune Protection in Rabbits
by Jiayan Pu, Jie Xiao, Xin Bai, Hao Chen, Ruoyu Zheng, Xiaobin Gu, Yue Xie, Ran He, Jing Xu, Bo Jing, Xuerong Peng and Guangyou Yang
Int. J. Mol. Sci. 2022, 23(18), 10942; https://doi.org/10.3390/ijms231810942 - 19 Sep 2022
Cited by 8 | Viewed by 2268
Abstract
Eimeria magna is a common coccidia in the intestines of rabbits, causing anorexia, weight loss, diarrhea, and bloody stools. This study cloned and determined the expression levels of four Eimeria surface antigens (EmSAGs) at different developmental stages and showed that EmSAG10 and EmSAG11 [...] Read more.
Eimeria magna is a common coccidia in the intestines of rabbits, causing anorexia, weight loss, diarrhea, and bloody stools. This study cloned and determined the expression levels of four Eimeria surface antigens (EmSAGs) at different developmental stages and showed that EmSAG10 and EmSAG11 are highly expressed at the merozoite stage. Rabbits were immunized with rEmSAG10 and rEmSAG11, and then challenged with E. magna after 2 weeks. Serum-specific antibodies and cytokine levels were detected using ELISA. Immune protection was evaluated based on the rate of the oocysts decrease, the output of oocysts (p < 0.05), the average weight gain, and the feed: meat ratio. Our results showed that rabbits immunized with rEmSAG10 and rEmSAG11 had a higher average weight gain (62.7%, 61.1%), feed; meat ratio (3.8:1, 4.5:1), and the oocysts decrease rate (70.8%, 81.2%) than those in the control group, and also significantly reduced intestinal lesions. The specific IgG level increased one week after the first rEmSAG10 and rEmSAG11 immunization and was maintained until two weeks after the challenge (p < 0.05). The TGF-β, IL-4, and IL-10 levels in the serum increased significantly after the secondary immunization with rEmSAG10 and rEmSAG11, while the IL-2 levels increased significantly after the secondary immunization with rEmSAG11 (both p < 0.05), suggesting that rEmSAG10 can induce a humoral and cellular immunity, while rEmSAG11 can only induce a humoral immunity. Therefore, rEmSAG10 is a candidate antigen for E. magna recombinant subunit vaccines. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

21 pages, 8405 KB  
Article
Preparation of DNC Solid Dispersion by a Mechanochemical Method with Glycyrrhizic Acid and Polyvinylpyrrolidone to Enhance Bioavailability and Activity
by Min Lu, Wei Wei, Wenhao Xu, Nikolay E. Polyakov, Alexandr V. Dushkin and Weike Su
Polymers 2022, 14(10), 2037; https://doi.org/10.3390/polym14102037 - 16 May 2022
Cited by 5 | Viewed by 2778
Abstract
To exploit aqueous-soluble formulation and improve the anticoccidial activity of 4,4′-dinitrocarbanilide (DNC, active component of nicarbazin), this paper prepared DNC/GA/PVP K30 solid dispersion (SD) with glycyrrhizic acid (GA) and polyvinylpyrrolidone (PVP) K30 by a mechanical ball milling method without using any organic solvent. [...] Read more.
To exploit aqueous-soluble formulation and improve the anticoccidial activity of 4,4′-dinitrocarbanilide (DNC, active component of nicarbazin), this paper prepared DNC/GA/PVP K30 solid dispersion (SD) with glycyrrhizic acid (GA) and polyvinylpyrrolidone (PVP) K30 by a mechanical ball milling method without using any organic solvent. Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy were used for the solid state characterization. High performance liquid chromatography, critical micelle concentration, particle characterization, and transmission electron microscopy were used to evaluate the behavior in aqueous solution. In addition, the oral bioavailability, tissue distribution, and anticoccidial activity of DNC/GA/PVP K30 SD were investigated as well. Compared with free drug, the novel formulation not only improved the solubility and dissolution rate of DNC, but also inhibited the fecal output of oocysts and enhanced the therapeutic effect of coccidiosis. According to the experiment results, the DNC/GA/PVP K30 SD increased 4.64-fold in oral bioavailability and dramatically enhanced the concentration in liver which provided a basis for further research in schistosomiasis. In summary, our findings suggested that DNC/GA/PVP K30 SD may have promising applications in the treatment of coccidiosis. Full article
(This article belongs to the Special Issue Drug-Loaded Colloidal Systems in Nanomedicine II)
Show Figures

Figure 1

9 pages, 1641 KB  
Article
Identification and Protective Efficacy of Eimeria tenella Rhoptry Kinase Family Protein 17
by Xiaoxin Liu, Bingjin Mu, Wenbin Zheng, Yijing Meng, Linmei Yu, Wenwei Gao, Xingquan Zhu and Qing Liu
Animals 2022, 12(5), 556; https://doi.org/10.3390/ani12050556 - 23 Feb 2022
Cited by 12 | Viewed by 2350
Abstract
Eimeria tenella encodes a genome of approximately 8000 genes. To date, however, very few data are available regarding E. tenella rhoptry kinase family proteins. In the present study, the gene fragment encoding the mature peptide of the rhoptry kinase family protein 17 of [...] Read more.
Eimeria tenella encodes a genome of approximately 8000 genes. To date, however, very few data are available regarding E. tenella rhoptry kinase family proteins. In the present study, the gene fragment encoding the mature peptide of the rhoptry kinase family protein 17 of E. tenella (EtROP17) was amplified by PCR and expressed in E. coli. Then, we generated polyclonal antibodies that recognize EtROP17 and investigated the expression of EtROP17 in the merozoite stage of E. tenella by immunofluorescent staining and Western blot analysis. Meanwhile, the protective efficacy of rEtROP17 against E. tenella was evaluated in chickens. Sequencing analysis showed that a single base difference at sequence position 1901 was observed between the SD-01 strain and the Houghton strain. EtROP17 was expressed in the merozoite stage of E. tenella. The results of the animal challenge experiments demonstrated that vaccination with rEtROP17 significantly reduced cecal lesions and oocyst outputs compared with the challenged control group. Our findings indicate that EtROP17 could serve as a potential candidate for developing a new vaccine against E. tenella. Full article
(This article belongs to the Special Issue Parasites and Parasitic Diseases)
Show Figures

Figure 1

17 pages, 1826 KB  
Article
Anti-Coccidial Effect of Rumex Nervosus Leaf Powder on Broiler Chickens Infected with Eimeria Tenella Oocyst
by Mohammed M. Qaid, Saud I. Al-Mufarrej, Mahmoud M. Azzam, Maged A. Al-Garadi, Hani H. Albaadani, Ibrahim A. Alhidary and Riyadh S. Aljumaah
Animals 2021, 11(1), 167; https://doi.org/10.3390/ani11010167 - 12 Jan 2021
Cited by 16 | Viewed by 4186
Abstract
Coccidiosis a huge economic burden in poultry farms where the pathogen Eimeria harms animal well-being and survival. Besides synthetic anti-coccidial drugs, natural herbs appear to be an alternative way to prevent avian coccidiosis. Rumex nervosus (RN), a phytogenic shrub, has received considerable attention [...] Read more.
Coccidiosis a huge economic burden in poultry farms where the pathogen Eimeria harms animal well-being and survival. Besides synthetic anti-coccidial drugs, natural herbs appear to be an alternative way to prevent avian coccidiosis. Rumex nervosus (RN), a phytogenic shrub, has received considerable attention in recent years due to its significant anti-microbial effects; however, limited knowledge exists about its potential anti-coccidial functions. This study was conducted to evaluate the prophylactic and therapeutic activities of RN leaf powder in broilers infected with Eimeria tenella. Infected chickens received a commercial diet containing 1, 3, or 5 g RN powder/kg diet compared to infected broilers that treated with Sacox (PC) or compared to uninfected broilers that received a commercial diet alone (NC). Results showed that RN powder significantly (p < 0.05) reduced the lesion scores and suppressed the output of oocysts per gram (OPG) in chickens’ feces. Although RN was unable to minimize the weight gain loss due to emeriosis, RN at level 1 g improved the feed conversion ratio. Therefore, RN powder, at 5 g, possesses moderate anti-coccidial effects and hence could be used to treat avian coccidiosis in field conditions; however, further studies are required to investigate, in vitro or in vivo, the anti-coccidial potential of active ingredients. Full article
(This article belongs to the Special Issue Advances in Avian Diseases Research)
Show Figures

Figure 1

14 pages, 1898 KB  
Article
Risk Factors and Severity of Gastrointestinal Parasites in Selected Small Ruminants from Malaysia
by Bura Thlama Paul, Faez Firdaus Abdullah Jesse, Eric Lim Teik Chung, Azlan Che’Amat and Mohd Azmi Mohd Lila
Vet. Sci. 2020, 7(4), 208; https://doi.org/10.3390/vetsci7040208 - 18 Dec 2020
Cited by 27 | Viewed by 6411
Abstract
The productivity of smallholder sheep and goat flocks is constrained by high morbidity and mortality of young stock due to helminthosis and coccidiosis. We hypothesized that gastrointestinal parasites are prevalent and may cause severe infections amongst small ruminants in Malaysia. A cross-sectional survey [...] Read more.
The productivity of smallholder sheep and goat flocks is constrained by high morbidity and mortality of young stock due to helminthosis and coccidiosis. We hypothesized that gastrointestinal parasites are prevalent and may cause severe infections amongst small ruminants in Malaysia. A cross-sectional survey was conducted between March and December 2019 to investigate the prevalence, risk factors, and levels of infection with gastrointestinal strongyle and coccidia in selected smallholder goat flocks in Negeri Sembilan, Malaysia. A total of 257 blood and fecal samples and management data were collected from four farms in Negeri Sembilan. Gastrointestinal parasites were detected by routine sodium chloride floatation, and the McMaster technique was used to quantify the fecal eggs/oocysts per gram outputs (EPG/OPG). The severity of infection was classified as mild (50–799), moderate (800–1200), or severe (>1200). The packed cell volume (PCV) was determined by microhematocrit centrifugation and classified as anemic or non-anemic. Coprological examination revealed an overall prevalence of 78.6% (CI = 72.74–83.44) and 100% flock level prevalence of strongyle and coccidia infection among goats from Negeri Sembilan with a higher infection in flock A-Lenggeng (95.6%) than B-Senawang (87.3%), D-Mendom (80.6%), or C-Seremban (60.0%). The co-infections of strongyle + Eimeria (50.6; CI = 44.50 to 56.64) were more common than single infections of either strongyle (16.7%; CI = 12.66 to 21.78) or Eimeria (4.3%; CI = 2.41 to 7.50). Quantitative analysis has revealed different (p < 0.05) patterns of EPG/OPG in various categories of goats. In total, there were 49.8% mild, 8.6% moderate, and 13.6% severe infections of strongyle and 40.1% mild, 6.6% moderate, and 19.8% severe infections of coccidia among goats. The mean PCV of goats with severe strongyle infection (24.60 ± 0.85) was significantly (p < 0.05) lower than the moderate (26.90 ± 1.15), or mild (28.23 ± 0.50) infections and the uninfected (30.4 ± 0.71). There were increased odds of infection with strongyle and coccidia among female (OR = 3.2) and adult (OR = 11.0) goats from smallholder flocks in Negeri Sembilan. In conclusion, gastrointestinal strongyles and coccidia occur at high frequency among smallholder goats, and there is a higher risk of infection amongst the adult and female stock. Full article
(This article belongs to the Special Issue Trends in Tickborne Diseases)
Show Figures

Figure 1

Back to TopTop