Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (913)

Search Parameters:
Keywords = one-step preparation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3346 KiB  
Article
DES-Mediated Mild Synthesis of Synergistically Engineered 3D FeOOH-Co2(OH)3Cl/NF for Enhanced Oxygen Evolution Reaction
by Bingxian Zhu, Yachao Liu, Yue Yan, Hui Wang, Yu Zhang, Ying Xin, Weijuan Xu and Qingshan Zhao
Catalysts 2025, 15(8), 725; https://doi.org/10.3390/catal15080725 (registering DOI) - 30 Jul 2025
Viewed by 125
Abstract
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of [...] Read more.
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of precious metal catalysts impede large-scale commercialization. In this study, we develop a FeCo-based bimetallic deep eutectic solvent (FeCo-DES) as a multifunctional reaction medium for engineering a three-dimensional (3D) coral-like FeOOH-Co2(OH)3Cl/NF composite via a mild one-step impregnation approach (70 °C, ambient pressure). The FeCo-DES simultaneously serves as the solvent, metal source, and redox agent, driving the controlled in situ assembly of FeOOH-Co2(OH)3Cl hybrids on Ni(OH)2/NiOOH-coated nickel foam (NF). This hierarchical architecture induces synergistic enhancement through geometric structural effects combined with multi-component electronic interactions. Consequently, the FeOOH-Co2(OH)3Cl/NF catalyst achieves a remarkably low overpotential of 197 mV at 100 mA cm−2 and a Tafel slope of 65.9 mV dec−1, along with 98% current retention over 24 h chronopotentiometry. This study pioneers a DES-mediated strategy for designing robust composite catalysts, establishing a scalable blueprint for high-performance and low-cost OER systems. Full article
Show Figures

Graphical abstract

22 pages, 3141 KiB  
Article
Oligosaccharide Lactate Nanoparticles Enhance Tissue Targeting: A Case Study of the Controlled Delivery of Bedaquiline to Cardiac Tissue in TB Pericarditis
by Simisola Ayodele, Pradeep Kumar, Armorel van Eyk, Pieter van der Bijl and Yahya E. Choonara
Molecules 2025, 30(13), 2845; https://doi.org/10.3390/molecules30132845 - 3 Jul 2025
Viewed by 341
Abstract
Bedaquiline is known to shorten the duration of therapy of tuberculosis but has limitations, e.g., poor solubility and adverse effects such as prolongation of the QT interval. In this study, bedaquiline was incorporated into an inherently targeted nanosystem for improved permeation of the [...] Read more.
Bedaquiline is known to shorten the duration of therapy of tuberculosis but has limitations, e.g., poor solubility and adverse effects such as prolongation of the QT interval. In this study, bedaquiline was incorporated into an inherently targeted nanosystem for improved permeation of the drug, with ex vivo diffusion studies performed to investigate its penetration. The bedaquiline-loaded mannan–chitosan oligosaccharide lactate nanoparticles were prepared by a one-step ionic gelation probe sonication method. A PermeGear 7-in-line flow-through diffusion system was used for the ex vivo diffusion studies across porcine and human pericardia. Bedaquiline-loaded nanoparticles with a particle size and potential of 192.4 nm and 40.5 mV, respectively, were obtained. The drug-loaded mannan–chitosan nanoparticles had an encapsulation efficacy of 98.7% and drug loading of 0.6%. Diffusion data indicated a steady-state flux of 2.889 and 2.346 µg.cm−2.min−1 for porcine and human pericardia, respectively. The apparent permeability coefficients were calculated to be 2.66 × 10−4 cm.min−1 and 2.16 × 10−4 cm.min−1 for porcine and human pericardia, respectively. The lag phases were 52.72 min and 0 min for porcine and human pericardia, respectively. The drug permeation indicated a consistent and linear diffusion pattern across both porcine and human pericardia, additionally approving the porcine pericardium as a great comparable tissue to human tissue for pericardial studies. This study is the first to demonstrate ex vivo diffusion of bedaquiline-loaded, macrophage-targeted chitosan–mannan nanoparticles across both human and porcine pericardia, representing a novel platform for disease-targeted, localized treatment of TB pericarditis. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Biomedical Applications, 2nd Edition)
Show Figures

Figure 1

18 pages, 1859 KiB  
Article
PET and SPECT Tracer Development via Copper-Mediated Radiohalogenation of Divergent and Stable Aryl-Boronic Esters
by Austin Craig, Frederik J. Sachse, Markus Laube, Florian Brandt, Klaus Kopka and Sven Stadlbauer
Pharmaceutics 2025, 17(7), 837; https://doi.org/10.3390/pharmaceutics17070837 - 26 Jun 2025
Viewed by 526
Abstract
Background/Objectives: Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are highly sensitive clinical imaging modalities, frequently employed in conjunction with magnetic resonance imaging (MRI) or computed tomography (CT) for diagnosing a wide range of disorders. Efficient and robust radiolabeling methods [...] Read more.
Background/Objectives: Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are highly sensitive clinical imaging modalities, frequently employed in conjunction with magnetic resonance imaging (MRI) or computed tomography (CT) for diagnosing a wide range of disorders. Efficient and robust radiolabeling methods are needed to accommodate the increasing demand for PET and SPECT tracer development. Copper-mediated radiohalogenation (CMRH) reactions enable rapid late-stage preparation of radiolabeled arenes, yet synthetic challenges and radiolabeling precursors’ instability can limit the applications of CMRH approaches. Methods: A series of aryl-boronic acids were converted into their corresponding aryl-boronic acid 1,1,2,2-tetraethylethylene glycol esters [ArB(Epin)s] and aryl-boronic acid 1,1,2,2-tetrapropylethylene glycol esters [ArB(Ppin)s] as stable and versatile precursor building blocks for radiolabeling via CMRH. General protocols for the preparation of 18F-labeled and 123I-labeled arenes utilizing CMRH of these substrates were developed and applied. The radiochemical conversions (RCC) were determined by radio-(U)HPLC. Results: Both ArB(Epin)s and ArB(Ppin)s-based radiolabeling precursors were prepared in a one-step synthesis with chemical yields of 49–99%. Radiolabeling of the aryl-boronic esters with fluorine-18 or iodine-123 via CMRH furnished the corresponding radiolabeled arenes with RCC of 7–99% and 10–99%, respectively. Notably, a radiohalogenated prosthetic group containing a vinyl sulfone motif was obtained with an activity yield (AY) of 18 ± 3%, and applied towards the preparation of two clinically relevant PET tracers. Conclusions: This approach enables the synthesis of stable radiolabeling precursors and thus provides increased versatility in the application of CMRH, thereby supporting the development of novel PET and SPECT radiotracers. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Figure 1

50 pages, 22023 KiB  
Review
Research Advancements of Wear-Resistant Coatings Fabricated on Aluminum and Its Alloys
by Bohao Jia, Ruoqi Ren, Hongliang Zhang, Tiannan Man, Xue Cui, Teng Liu, Tianzhang Zhao, Yurii Luhovskyi and Zhisheng Nong
Coatings 2025, 15(7), 750; https://doi.org/10.3390/coatings15070750 - 25 Jun 2025
Viewed by 543
Abstract
The low hardness and insufficient wear resistance of aluminum and its alloys restrict their broader application in various fields. The application of surface protective coatings can effectively enhance the hardness and wear resistance of aluminum and its alloys. This article provides a comprehensive [...] Read more.
The low hardness and insufficient wear resistance of aluminum and its alloys restrict their broader application in various fields. The application of surface protective coatings can effectively enhance the hardness and wear resistance of aluminum and its alloys. This article provides a comprehensive review of the recent research progress of wear-resistant coatings fabricated on aluminum and its alloys. The relevant achievements in the recent research works of preparing wear-resistant coatings by one-step methods (such as anodic oxidation, micro-arc oxidation, cold spraying, plasma spraying, and electrodeposition) and two-step methods (anodic oxidation and physical vapor deposition, micro-arc oxidation and sealing, magnetron sputtering, and plasma nitriding) are mainly introduced. The working principles of each coating preparation method, along with their impacts on the microstructure and tribological performance of the coatings, were systematically examined. Additionally, a comparative analysis was conducted to evaluate the advantages and disadvantages of each coating preparation method. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

27 pages, 4541 KiB  
Review
From Molecular Design to Scenario Adaptation: Cutting-Edge Exploration of Silicone-Modified Polyurethane in Smart Sports Fields
by Guobao Yan, Guoyuan Huang, Huibin Wu, Yang Chen, Jiaxun Wu and Yangxian Hu
Coatings 2025, 15(7), 737; https://doi.org/10.3390/coatings15070737 - 20 Jun 2025
Viewed by 768
Abstract
To overcome the shortcomings of traditional polyurethane, such as poor weather resistance and susceptibility to hydrolysis, this study systematically explores the preparation techniques of organic silicon-modified polyurethane and its application in intelligent sports fields. By introducing siloxane into the polyurethane matrix through copolymerization, [...] Read more.
To overcome the shortcomings of traditional polyurethane, such as poor weather resistance and susceptibility to hydrolysis, this study systematically explores the preparation techniques of organic silicon-modified polyurethane and its application in intelligent sports fields. By introducing siloxane into the polyurethane matrix through copolymerization, physical blending, and grafting techniques, the microphase separation structure and interfacial properties of the material are effectively optimized. In terms of synthesis processes, the one-step method achieves efficient preparation by controlling the isocyanate/hydroxyl molar ratio (1.05–1.15), while the prepolymer chain extension method optimizes the crosslinked network through dual reactions. The modified material exhibits significant performance improvements: tensile strength reaches 60 MPa, tear resistance reaches 80 kN/m, and the elastic recovery rate ranges from 85% to 92%, demonstrating outstanding weather resistance. In sports field applications, the 48% impact absorption rate meets the requirements for athletic tracks, wear resistance of <15 mg suits gym floors, and the impact resistance for skate parks reaches 55%–65%. Its environmental benefits are notable, with volatile organic compounds (VOC) <50 g/L and a recycling rate >85%, complying with green building material standards. However, its development is still constrained by multiple factors: insufficient material interface compatibility, a comprehensive cost of 435 RMB/m2, and the lack of a quality evaluation system. Future research priorities include constructing dynamic covalent crosslinked networks (e.g., self-healing systems), adopting bio-based raw materials to reduce carbon footprint by 30%–50%, and integrating flexible sensing technologies for intelligent responsiveness. Through multidimensional innovation, this material is expected to evolve toward multifunctionality and environmental friendliness, providing core material support for the intelligent upgrading of sports fields. Full article
(This article belongs to the Special Issue Synthesis and Application of Functional Polymer Coatings)
Show Figures

Graphical abstract

30 pages, 3428 KiB  
Review
Lipid-Polymer Hybrid Nanoparticles as a Smart Drug Delivery System for Peptide/Protein Delivery
by Alharith A. A. Hassan, Eslam Ramadan, Katalin Kristó, Géza Regdon and Tamás Sovány
Pharmaceutics 2025, 17(6), 797; https://doi.org/10.3390/pharmaceutics17060797 - 19 Jun 2025
Viewed by 1428
Abstract
The efficient oral delivery of therapeutic proteins and peptides poses a tremendous challenge due to their inherent instability, large molecular size, and susceptibility to enzymatic degradation. Several nanocarrier systems, such as liposomes, solid lipid nanoparticles, and polymeric nanoparticles, have been explored to overcome [...] Read more.
The efficient oral delivery of therapeutic proteins and peptides poses a tremendous challenge due to their inherent instability, large molecular size, and susceptibility to enzymatic degradation. Several nanocarrier systems, such as liposomes, solid lipid nanoparticles, and polymeric nanoparticles, have been explored to overcome these problems. Liposomes and other lipid-based nanocarriers show excellent biocompatibility and the ability to encapsulate hydrophobic and hydrophilic drugs; however, they often suffer from poor structural stability, premature leakage of the loaded drugs, and poor encapsulation efficiency for macromolecular peptides and proteins. On the other hand, polymeric nanoparticles are more stable and allow better control over drug release; nevertheless, they usually lack the necessary biocompatibility and cellular uptake efficiency. Recently, lipid-polymer hybrid nanoparticles (LPHNs) have emerged as an advanced solution combining the structural stability of polymers and the biocompatibility and surface functionalities of lipids to enhance the controlled release, stability, and bioavailability of protein and peptide drugs. In this review, an attempt was made to set a clear definition of the LPHNs and extend the concept and area, so to our knowledge, this is the first review that highlights six categories of the LPHNs based on their anatomy. Moreover, this review offers a detailed analysis of LPHN preparation methods, including conventional and nonconventional one-step and two-step processes, nanoprecipitation, microfluidic mixing, and emulsification methods. Moreover, the material attributes and critical process parameters affecting the output of the preparation methods were illustrated with supporting examples to enable researchers to select the suitable preparation method, excipients, and parameters to be manipulated to get the LPHNs with the predetermined quality. The number of reviews focusing on the formulation of peptide/protein pharmaceutics usually focus on a specific drug like insulin. To our knowledge, this is the first review that generally discusses LPHN-based delivery of biopharmaceuticals. by discussing representative examples of previous reports comparing them to a variety of nanocarrier systems to show the potentiality of the LPHNs to deliver peptides and proteins. Moreover, some ideas and suggestions were proposed by the authors to tackle some of the shortcomings highlighted in these studies. By presenting this comprehensive overview of LPHN preparation strategies and critically analyzing literature studies on this topic and pointing out their strong and weak points, this review has shown the gaps and enlightened avenues for future research. Full article
Show Figures

Graphical abstract

10 pages, 2314 KiB  
Article
One-Step Hydrothermal Synthesis and Characterization of Highly Dispersed Sb-Doped SnO2 Nanoparticles for Supercapacitor Applications
by Viet-Hung Hoang, Duc-Long Nguyen, Nguyen Tu, Van-Dang Tran, Van-Nang Lam and Thanh-Tung Duong
Electrochem 2025, 6(2), 22; https://doi.org/10.3390/electrochem6020022 - 16 Jun 2025
Cited by 1 | Viewed by 628
Abstract
Highly dispersion antimony-doped tin oxide (ATO) nanoparticles were synthesized using a (220 °C, 2 L autoclave, medium scale) one-step hydrothermal method with Na2SnO3 and KSb(OH)6 as precursors without a post-sintering process. The particle size reduces to a few nanometers [...] Read more.
Highly dispersion antimony-doped tin oxide (ATO) nanoparticles were synthesized using a (220 °C, 2 L autoclave, medium scale) one-step hydrothermal method with Na2SnO3 and KSb(OH)6 as precursors without a post-sintering process. The particle size reduces to a few nanometers with the increase in Sb content. The resulting various Sb-doping content ATO nanoparticles were coated onto a Ti foil substrate as an electrode for further electrochemical evaluation. The findings demonstrate that the prepared 30% Sb-doped ATO nanoparticles serve as a high-conductivity electrode material with excellent reversibility, substantial specific capacitance, and superior capacitance retention. The 30% ATO electrode exhibits the highest specific capacitance of 343.2 F g−1 at a current density of 1 A g−1 and maintains 93% of its capacitance after the first 10 charge/discharge cycles. The results indicate that ATO materials prepared by the hydrothermal method are promising candidates for supercapacitor electrodes. Full article
Show Figures

Figure 1

20 pages, 10830 KiB  
Article
An Experimental Study of Glycerol Carbonate Synthesis over g-C3N4 Catalysts
by Mirna Lea Charif, Dragoș Mihael Ciuparu, Ioana Lavinia Lixandru Matei, Gabriel Vasilievici, Ionuț Banu, Marian Băjan, Dorin Bomboș, Cristina Dușescu-Vasile, Iuliana Veronica Ghețiu, Cașen Panaitescu and Rami Doukeh
Appl. Sci. 2025, 15(11), 6236; https://doi.org/10.3390/app15116236 - 1 Jun 2025
Viewed by 2361
Abstract
This study examines a catalyst based on graphitic carbon nitride (g-C3N4) for synthesizing glycerol carbonate through the coupling reaction of glycerol and CO2. In this research, we focus on simultaneously improving CO2 emission reduction and glycerol [...] Read more.
This study examines a catalyst based on graphitic carbon nitride (g-C3N4) for synthesizing glycerol carbonate through the coupling reaction of glycerol and CO2. In this research, we focus on simultaneously improving CO2 emission reduction and glycerol valorization by co-doping g-C3N4 with phosphorus (P), sulfur (S), magnesium (Mg), and lithium (Li) for a better catalytic performance. The catalysts were prepared through a one-step thermal condensation process and characterized using XRD, SEM, TGA, FTIR, and nitrogen adsorption–desorption techniques. The co-doping further enhanced the surface chemical properties, Lewis acidity, basicity, and thermal stability, evidenced by the lower crystallinity, wider pore, and better catalytic performance as assessed through glycerol carbonylation reaction, optimized using a Box–Behnken design. The MgPSCN catalyst exhibited the highest glycerol conversion (68.72%) and glycerol carbonate yield (44.90%) at 250 °C, using 50 mg catalyst and 10 bar pressure. The model accuracy was validated by ANOVA (R2 > 0.99; p values < 0.0001). The results indicated that doping significantly enhanced the catalytic performance, most likely due to improved electron charge transfer and structural distortions within the g-C3N4 framework. Such a process highlights the potential of co-doped g-C3N4 catalysts for the sustainable glycerol utilization and valorization of CO2 through a scalable pathway toward green chemical synthesis—an approach that comes in line with worldwide decarbonization goals. Full article
Show Figures

Figure 1

14 pages, 4016 KiB  
Article
Green Fabrication of Phosphorus-Containing Chitosan Derivatives via One-Step Protonation for Multifunctional Flame-Retardant, Anti-Dripping, and Antibacterial Coatings on Polyester Fabrics
by Zhen-Guo Zhao, Yuan-Yuan Huang, Xin-Yu Tian and Yan-Peng Ni
Polymers 2025, 17(11), 1531; https://doi.org/10.3390/polym17111531 - 30 May 2025
Viewed by 461
Abstract
With the increasing urgency of petroleum resource scarcity and environmental challenges, the development of degradable bio-based flame retardants has become crucial for enhancing the fire safety of organic materials. In this work, a phosphorus-containing chitosan derivative (CS-PPOA) was synthesized via a one-step protonation [...] Read more.
With the increasing urgency of petroleum resource scarcity and environmental challenges, the development of degradable bio-based flame retardants has become crucial for enhancing the fire safety of organic materials. In this work, a phosphorus-containing chitosan derivative (CS-PPOA) was synthesized via a one-step protonation reaction between chitosan (CS) and phenylphosphinic acid (PPOA) under mild conditions. The resulting multifunctional flame-retardant coating was applied to polyester (PET) fabrics. Comprehensive characterization using FT-IR, XPS, and NMR confirmed the successful protonation of chitosan amino groups through electrostatic interactions, forming a stable ionic complex. The CS-PPOA solution exhibited excellent rheological properties and film-forming ability, producing films with over 80% optical transmittance and flexibility. Thermogravimetric analysis (TGA) revealed that CS-PPOA achieved char residue yields of 76.8% and 40.2% under nitrogen and air atmospheres, respectively, significantly surpassing those of acetic acid-protonated chitosan (CS-HAc). The limiting oxygen index (LOI) of CS-PPOA increased to 48.3%, and vertical burning tests demonstrated rapid self-extinguishing behavior. When applied to PET fabrics at a 15% loading, the LOI value improved from 20.3% (untreated fabric) to 27.8%, forming a dense char layer during combustion while completely suppressing melt dripping. Additionally, the coated fabric exhibited broad-spectrum antibacterial activity, achieving a 99.99% inhibition rate against Escherichia coli and Staphylococcus aureus. This study provides a novel strategy for the green and efficient preparation of multifunctional bio-based flame-retardant coatings. Full article
(This article belongs to the Special Issue Polymer-Based Coatings: Principles, Development and Applications)
Show Figures

Figure 1

24 pages, 4825 KiB  
Article
Optimized Construction of Highly Efficient P-Bi2MoO6/g-C3N4 Photocatalytic Bactericide: Based on Source Material and Synthesis Process
by Leilei Xue, Jie Zhang, Mengmeng Sun, Hui Zhang, Ke Wang, Debao Wang and Ruiyong Zhang
Nanomaterials 2025, 15(11), 834; https://doi.org/10.3390/nano15110834 - 30 May 2025
Cited by 1 | Viewed by 386
Abstract
In this study, Bi2MoO6 nanoflowers with different molybdenum sources were in situ grown on the surface of g-C3N4 nanosheets (OCN) by a simple one-step solvothermal method. The effects of doping and different molybdenum sources on the photocatalytic [...] Read more.
In this study, Bi2MoO6 nanoflowers with different molybdenum sources were in situ grown on the surface of g-C3N4 nanosheets (OCN) by a simple one-step solvothermal method. The effects of doping and different molybdenum sources on the photocatalytic degradation and bactericidal activity of Bi2MoO6/OCN were discussed. Among them, the solvothermal preparation of P-Bi2MoO6/OCN using phosphomolybdic acid as molybdenum source can make up for the shortcomings caused by the destruction of OCN structure by generating more lattice defects to promote charge separation and constructing Lewis acid/base sites to effectively improve the photocatalytic performance. In addition, by adding phosphoric acid to increase the P-doped content, more exposed alkaline active sites are induced on the surface of P-Bi2MoO6/OCN, as well as larger specific surface area and charge transfer efficiency, which further improve the photocatalytic performance. Finally, the optimized 16P-Bi2MoO6/OCN showed a degradation rate of 99.7% for 20 mg/L rhodamine B (RhB) within 80 min under visible light, and the antibacterial rates against E. coli, S. aureus and P. aeruginosa within 300 min were 99.58%, 98.20% and 97.48%, respectively. This study provides a reference for optimizing the synthesis of environmentally friendly, solar-responsive, photocatalytic sterilization materials from the perspective of preparation, raw materials and structure. Full article
(This article belongs to the Special Issue Heterogeneous Photocatalysts Based on Nanocomposites)
Show Figures

Graphical abstract

15 pages, 3353 KiB  
Article
N-S Co-Doped WC Nanoparticles Show High Catalytic Activity in Hydrogen Evolution Reaction
by Zhaobin Lu, Baoxin Wang, Shengtao Li, Feiyan Pan, Xuewei Zhu and Xiaofeng Wei
Coatings 2025, 15(6), 630; https://doi.org/10.3390/coatings15060630 - 24 May 2025
Viewed by 343
Abstract
In the “dual carbon” objective, the preparation of non-precious metal catalysts with low cost and high activity is essential for the study of hydrogen evolution reactions (HERs). This study employed biomass pomelo peel powder as the carbon source and ammonium metatungstate (AMT) as [...] Read more.
In the “dual carbon” objective, the preparation of non-precious metal catalysts with low cost and high activity is essential for the study of hydrogen evolution reactions (HERs). This study employed biomass pomelo peel powder as the carbon source and ammonium metatungstate (AMT) as the tungsten source and, through a facile one-step method in molten salt, fabricated a biomass carbon-based nanocatalyst featuring carbon flakes adorned with tungsten carbide (WC) nanoparticles. Dicyandiamide and cysteine were introduced as nitrogen and sulfur sources, respectively, to explore the impacts of N-S elemental doping on the structure, composition, and HER performance of the WC/C catalyst. The experimental results showed that N-S doping changed the electronic structure of WC and increased the electrochemically active surface area, resulting in a significant increase in the HER activity of WC/C@N-S catalysts. The WC/C@N-S catalyst was evaluated with hydrogen evolution performance in a 0.5 mol/L H2SO4 solution. When the cathodic current density reached 10 mA/cm2, the overpotential was 158 mV, and the Tafel slope was 68 mV/dec, underscoring its excellent HER performance. The outcomes offer novel insights into the high-value utilization of agricultural biomass resources, and pave the way for the development of cost-effective, innovative hydrogen evolution catalysts. Full article
Show Figures

Figure 1

17 pages, 7596 KiB  
Article
Graphene Oxide-Modulated Nanocellulose/Polyacrylamide/Sodium Alginate Hierarchical Network Hydrogel for Flexible Sensing
by Yanan Wang, Yanan Lu, Jiaming Wang, Chensen Huang, Minghui Guo and Xing Gao
Gels 2025, 11(6), 379; https://doi.org/10.3390/gels11060379 - 22 May 2025
Viewed by 413
Abstract
The application of hydrogels in flexible sensing has received increasing attention, but the simultaneous preparation of hydrogels with good structural stability, strain sensing sensitivity, freezing resistance, and drying resistance remains a challenge. Based on this, a GG-nanocellulose/sodium alginate/polyacrylamide composite hydrogel with a hierarchical [...] Read more.
The application of hydrogels in flexible sensing has received increasing attention, but the simultaneous preparation of hydrogels with good structural stability, strain sensing sensitivity, freezing resistance, and drying resistance remains a challenge. Based on this, a GG-nanocellulose/sodium alginate/polyacrylamide composite hydrogel with a hierarchical network structure was constructed by one-step synthesis by incorporating graphene oxide (GO) and glycerol into the hydrogel. The hydrogel remained structurally intact after 100 compression cycles. In addition, the hydrogel was dried at 30 °C for 24 h. The mass retention rate was 48%, the melting peak was as low as −13.87 °C, and the hydrogel remained flexible and stable at low temperatures. GO modulated the network structure arrangement of the hydrogel through various mechanisms, thereby conferring to the hydrogel an excellent sensing performance, with a sensitivity (GF) of 2.21. In conclusion, this hierarchical network hydrogel has good drying, freezing, and sensing properties, which provides a new viable strategy for monitoring motion signals. Moreover, the hydrogel is predicted to function as a dressing, thereby facilitating the absorption of heat from the skin’s surface, with the aim of alleviating the discomfort associated with joint and muscle injuries caused by strenuous exercise. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption (3rd Edition))
Show Figures

Figure 1

10 pages, 1488 KiB  
Article
Influence of Lithography Process Parameters on Continuous Surface Diffractive Optical Elements for Laser Beam Shaping
by Wenjing Liu, Axiu Cao, Junbo Liu, Hui Pang, Qiling Deng, Jian Wang and Song Hu
Micromachines 2025, 16(5), 601; https://doi.org/10.3390/mi16050601 - 21 May 2025
Viewed by 443
Abstract
To address the demand for laser beam-shaping techniques, we developed a one-step exposure process based on moving-mask lithography for the fabrication of a continuous-surface diffractive optical element (DOE) for laser beam shaping. The fabrication process is described in detail, and the influence of [...] Read more.
To address the demand for laser beam-shaping techniques, we developed a one-step exposure process based on moving-mask lithography for the fabrication of a continuous-surface diffractive optical element (DOE) for laser beam shaping. The fabrication process is described in detail, and the influence of key parameters, such as pre-baking conditions, exposure gaps, development conditions, and post-baking conditions, of the lithography process on the microstructure profile of the DOE is analyzed. The reliability of the preparation method was verified through optical performance experiments. The speckle contrast, uniformity, and diffraction efficiency of the prepared linear beam-shaping element are 4.2%, 97.3%, and 87%. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

23 pages, 6553 KiB  
Article
Adsorption Application of Choline Chloride Modified MIL-101 (Cr) in Carbon Capture and Storage
by Entian Li, Zuquan Zhang, Minghe Zhou and Pei Yao
Materials 2025, 18(10), 2370; https://doi.org/10.3390/ma18102370 - 20 May 2025
Viewed by 414
Abstract
This study developed a new way of designing choline chloride-modified MOF-based materials with advanced gas adsorption properties. To design better carbon capture materials, MIL-101 (Cr) was prepared using the hydrothermal method, and then was modified with different concentrations of choline chloride in a [...] Read more.
This study developed a new way of designing choline chloride-modified MOF-based materials with advanced gas adsorption properties. To design better carbon capture materials, MIL-101 (Cr) was prepared using the hydrothermal method, and then was modified with different concentrations of choline chloride in a one-step method to enhance its CO2 adsorption capacity. The characterization and experimental results indicated that the modified ChCl-MIL-101(Cr) significantly enhanced the adsorption capacity for CO2. Specifically, the 0.075-ChCl-MIL-101(Cr) showed a 61.191% increase in adsorption capacity compared to that of the raw material. Moreover, the regenerated adsorption loss rate of the modified material was below 4%, proving the permanence of the material synthesis. Simulating isotherms using Langmuir and Freundlich equations revealed the non-uniformity of surface bonding. Full article
Show Figures

Graphical abstract

15 pages, 2205 KiB  
Article
Highly Stretchable, Low Hysteresis, and Transparent Ionogels as Conductors for Dielectric Elastomer Actuators
by Limei Zhang, Hong Li, Zhiquan Li, Weimin Pan, Yi Men, Niankun Zhang, Jing Xu and Xuewei Liu
Gels 2025, 11(5), 369; https://doi.org/10.3390/gels11050369 - 17 May 2025
Viewed by 636
Abstract
As conductive materials, ionogels have attracted significant attention for their potential applications in flexible wearable electronics. However, preparing an ionogel with mechanical properties akin to human skin while also achieving transparency, adhesion, and low hysteresis through simple processes remains challenging. Here, we introduce [...] Read more.
As conductive materials, ionogels have attracted significant attention for their potential applications in flexible wearable electronics. However, preparing an ionogel with mechanical properties akin to human skin while also achieving transparency, adhesion, and low hysteresis through simple processes remains challenging. Here, we introduce a multifunctional ionogel synthesized via a one-step photopolymerization method. By leveraging the good compatibility between the ionic liquid and the polymer network, as well as the hydrogen bonding and chemical crosslinking within the gel network, we achieved an ionogel with high transparency (>98%), stretchability (fracture strain of 19), low hysteresis (<5.83%), strong adhesion, robust mechanical stability, excellent electrical properties, a wide operating temperature range, and a tunable modulus (1–103 kPa) that matches human skin. When used as a conductor in soft actuators, the ionogel enabled a large area strain of 36% and a fast electromechanical conversion time of less than 1 s. The actuator demonstrated good actuation performance with voltage and frequency dependence, electrochemical stability, and outstanding durability over millions of cycles. This study provides a simple and effective method to produce multifunctional ionogels with tailored mechanical properties that match those of human skin, paving the way for their application in flexible wearable electronics. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Graphical abstract

Back to TopTop