Oligosaccharide Lactate Nanoparticles Enhance Tissue Targeting: A Case Study of the Controlled Delivery of Bedaquiline to Cardiac Tissue in TB Pericarditis
Abstract
1. Introduction
2. Results and Discussion
2.1. Assessment of BDQ-Loaded COS-MN NPs Regarding Particle Size, Zeta Potential, and Morphology
2.2. Assessment of Functional Transformation of the BDQ-Loaded COS-MN NPs
2.3. Determination of Powder Diffraction of BDQ-Loaded COS-MN NPs in Comparison to Individual Compounds
2.4. Thermo-Behavioral Analysis of BDQ-Loaded COS-MN NPs
2.5. Syringeability and Rheological Properties of BDQ-Loaded MN-COS NPs
2.6. Evaluation of Mannan Content, BDQ-Loading Capacity, and Drug Entrapment Efficacy of BDQ-Loaded COS-MN NPs
2.7. Evaluation of In Vitro Release Kinetics of BDQ from the BDQ-Loaded COS-MN NPs
2.8. Evaluation of Ex Vivo Diffusion Study of the BDQ-Loaded MN-COS NPs Across Porcine and Human Pericardia
2.9. Tissue Integrity Study
3. Materials and Methods
3.1. Materials
3.2. Synthesis of the BDQ-Loaded COS-MN NPs
3.3. Physicochemical and Physicomechanical Characterizations
3.3.1. Determination of Particle Size, Zeta Potential, and Morphology
3.3.2. Fourier Transform Infrared (FTIR) Spectroscopy: Physicochemical and Physicomechanical Characterizations
3.3.3. X-Ray Diffraction (XRD) Analysis
3.3.4. Thermogravimetric Analysis (TGA)
3.3.5. Gelling Properties and Texture Analysis of BDQ-Loaded COS-MN NPs
3.3.6. Evaluation of Mannan Loading Content, BDQ-Loading Capacity, and Drug Entrapment Efficacy of BDQ-Loaded COS-MN NPs
3.3.7. In Vitro Drug Release Studies
3.4. Collection and Treatment of Porcine and Human Pericardial Tissues
3.4.1. Porcine Pericardial Tissue
3.4.2. Human Pericardial Tissue
3.5. Ex Vivo Diffusion Studies
3.6. Tissue Integrity Studies
3.6.1. Transepithelial Electrical Resistance
3.6.2. Fourier Transform Infrared (FTIR) Spectroscopy: Tissue Integrity Studies
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
M.tb | Mycobacterium tuberculosis |
EPTB | Extrapulmonary Tuberculosis |
MDR-TB | Multidrug-resistant Tuberculosis |
TBP | TB Pericarditis |
BDQ | Bedaquiline |
COS | Chitosan Oligosaccharide Lactate |
NF-Κb | Nuclear Factor Kappa B |
MAPK | Mitogen-Activated Protein Kinases |
AMPK | Adenosine Monophosphate-Activated Protein Kinase |
XDR-TB | Extensively Drug-Resistant Tuberculosis |
MN | Mannan Oligosaccharide |
IL | Interleukin |
IFN | Interferon |
TNF | Tumor Necrosis Factor |
PBS | Phosphate-Buffered Saline |
SLS | Sodium Lauryl Sulphate |
HPLC | High-Performance Liquid Chromatography |
DCM | Dichloromethane |
sTPP | Sodium Tripolyphosphate |
MWCO | Molecular Weight Cut-Off |
PDI | Polydispersity Index |
SEM | Scanning Electron Microscopy |
FTIR | Fourier Transform Infrared |
XRD | X-ray Diffraction |
TGA | Thermogravimetric Analysis |
MIC | Minimum Inhibitory Concentration |
ATT | Anti-Tuberculosis Treatment |
RP-HPLC | Reverse-Phase High-Performance Liquid Chromatography |
SD | Standard Deviation |
References
- Baykan, A.H.; Sayiner, H.S.; Aydin, E.; Koc, M.; Inan, I.; Erturk, S.M. Extrapulmonary Tuberculosıs: An Old but Resurgent Problem. Insights Imaging 2022, 13, 39. [Google Scholar] [CrossRef]
- Nacarapa, E.; Munyangaju, I.; Osório, D.; Zindoga, P.; Mutaquiha, C.; Jose, B.; Macuacua, A.; Chongo, B.; de-Almeida, M.; Verdu, M.-E. Extrapulmonary Tuberculosis Mortality According to Clinical and Point of Care Ultrasound Features in Mozambique. Sci. Rep. 2022, 12, 16675. [Google Scholar] [CrossRef] [PubMed]
- Desai, U.; Joshi, J.M. Extrapulmonary Drug-Resistant Tuberculosis at a Drug-Resistant Tuberculosis Center, Mumbai: Our Experience–Hope in the Midst of Despair! Lung India 2019, 36, 3–7. [Google Scholar]
- Kant, S.; Maurya, A.K.; Nag, V.L.; Bajpai, J. Rising Trend of Drug Resistance among Extra Pulmonary TB in Northern India. Eur. Respir. J. 2018, 52, PA3681. [Google Scholar]
- Prakasha, S.R.; Suresh, G.; D’sa, I.P.; Shetty, S.S.; Kumar, S.G. Mapping the Pattern and Trends of Extrapulmonary Tuberculosis. J. Glob. Infect. Dis. 2013, 5, 54–59. [Google Scholar] [CrossRef]
- Gopalaswamy, R.; Dusthackeer, V.N.A.; Kannayan, S.; Subbian, S. Extrapulmonary Tuberculosis—An Update on the Diagnosis, Treatment and Drug Resistance. J. Respir. 2021, 1, 141–164. [Google Scholar] [CrossRef]
- Isiguzo, G.; Du Bruyn, E.; Howlett, P.; Ntsekhe, M. Diagnosis and Management of Tuberculous Pericarditis: What Is New? Curr. Cardiol. Rep. 2020, 22, 1–8. [Google Scholar] [CrossRef]
- Shenje, J.; Adimora-Nweke, F.I.; Ross, I.L.; Ntsekhe, M.; Wiesner, L.; Deffur, A.; McIlleron, H.M.; Pasipanodya, J.; Gumbo, T.; Mayosi, B.M. Poor Penetration of Antibiotics into Pericardium in Pericardial Tuberculosis. EBioMedicine 2015, 2, 1640–1649. [Google Scholar] [CrossRef]
- Yu, G.; Zhong, F.; Zhao, W.; Ye, B.; Xu, K.; Chen, G. Head-to-Head Comparison of the Diagnostic Value of Five Tests for Constrictive Tuberculous Pericarditis: Five Tests for Constrictive TBP. Int. J. Infect. Dis. 2022, 120, 25–32. [Google Scholar] [CrossRef]
- Baranyai, Z.; Soria-Carrera, H.; Alleva, M.; Millán-Placer, A.C.; Lucía, A.; Martín-Rapún, R.; Aínsa, J.A.; de la Fuente, J.M. Nanotechnology-based Targeted Drug Delivery: An Emerging Tool to Overcome Tuberculosis. Adv. Ther. 2021, 4, 2000113. [Google Scholar] [CrossRef]
- Mir, M.; Ishtiaq, S.; Rabia, S.; Khatoon, M.; Zeb, A.; Khan, G.M.; ur Rehman, A.; ud Din, F. Nanotechnology: From in Vivo Imaging System to Controlled Drug Delivery. Nanoscale Res. Lett. 2017, 12, 500. [Google Scholar] [CrossRef]
- Jiménez-Gómez, C.P.; Cecilia, J.A. Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules 2020, 25, 3981. [Google Scholar] [CrossRef]
- Nesalin, J.; MS, M.K. Preparation and Evaluation of Bedaquiline Loaded Microspheres by Solvent Evaporation Technique. Int. J. Pharma Res. 2022, 13, 2. [Google Scholar]
- Gulati, N.; Dua, K.; Dureja, H. Role of Chitosan Based Nanomedicines in the Treatment of Chronic Respiratory Diseases. Int. J. Biol. Macromol. 2021, 185, 20–30. [Google Scholar] [CrossRef]
- Ignjatović, N.L.; Sakač, M.; Kuzminac, I.; Kojić, V.; Marković, S.; Vasiljević-Radović, D.; Wu, V.M.; Uskoković, V.; Uskoković, D.P. Chitosan Oligosaccharide Lactate Coated Hydroxyapatite Nanoparticles as a Vehicle for the Delivery of Steroid Drugs and the Targeting of Breast Cancer Cells. J. Mater. Chem. B 2018, 6, 6957–6968. [Google Scholar] [CrossRef] [PubMed]
- Pepić, I.; Lovrić, J.; Filipović-Grčić, J. How Do Polymeric Micelles Cross Epithelial Barriers? Eur. J. Pharm. Sci. 2013, 50, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Lemmer, H.J.R.; Hamman, J.H. Paracellular Drug Absorption Enhancement through Tight Junction Modulation. Expert Opin. Drug Deliv. 2013, 10, 103–114. [Google Scholar] [CrossRef]
- Lua, I.; Asahina, K. The Role of Mesothelial Cells in Liver Development, Injury, and Regeneration. Gut Liver 2016, 10, 166. [Google Scholar] [CrossRef]
- Ye, Y.; Xu, Y.; Liang, W.; Leung, G.P.H.; Cheung, K.-H.; Zheng, C.; Chen, F.; Lam, J.K.W. DNA-Loaded Chitosan Oligosaccharide Nanoparticles with Enhanced Permeability across Calu-3 Cells. J. Drug Target. 2013, 21, 474–486. [Google Scholar] [CrossRef]
- Ramasamy, V.; Mayosi, B.M.; Sturrock, E.D.; Ntsekhe, M. Established and Novel Pathophysiological Mechanisms of Pericardial Injury and Constrictive Pericarditis. World J. Cardiol. 2018, 10, 87. [Google Scholar] [CrossRef]
- Ganchua, S.K.C.; Cadena, A.M.; Maiello, P.; Gideon, H.P.; Myers, A.J.; Junecko, B.F.; Klein, E.C.; Lin, P.L.; Mattila, J.T.; Flynn, J.L. Lymph Nodes Are Sites of Prolonged Bacterial Persistence during Mycobacterium Tuberculosis Infection in Macaques. PLoS Pathog 2018, 14, e1007337. [Google Scholar] [CrossRef] [PubMed]
- Andrade, R.G.D.; Reis, B.; Costas, B.; Lima, S.A.C.; Reis, S. Modulation of Macrophages M1/M2 Polarization Using Carbohydrate-Functionalized Polymeric Nanoparticles. Polymers 2020, 13, 88. [Google Scholar] [CrossRef] [PubMed]
- Faustino, M.; Durão, J.; Pereira, C.F.; Pintado, M.E.; Carvalho, A.P. Mannans and Mannan Oligosaccharides (MOS) from Saccharomyces Cerevisiae–A Sustainable Source of Functional Ingredients. Carbohydr. Polym. 2021, 272, 118467. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, G.; Arya, S.K. Mannans: An Overview of Properties and Application in Food Products. Int. J. Biol. Macromol. 2018, 119, 79–95. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, G.; Lv, M. Extraction, Characterization and Antioxidant Activities of Mannan from Yeast Cell Wall. Int. J. Biol. Macromol. 2018, 118, 952–956. [Google Scholar] [CrossRef]
- Smith, H.; Grant, S.; Parker, J.; Murphy, R. Yeast Cell Wall Mannan Rich Fraction Modulates Bacterial Cellular Respiration Potentiating Antibiotic Efficacy. Sci. Rep. 2020, 10, 21880. [Google Scholar] [CrossRef]
- Tang, J.; Liu, J.; Yan, Q.; Gu, Z.; August, A.; Huang, W.; Jiang, Z. Konjac Glucomannan Oligosaccharides Prevent Intestinal Inflammation through SIGNR1-mediated Regulation of Alternatively Activated Macrophages. Mol. Nutr. Food Res. 2021, 65, 2001010. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, H.; Gong, L.; Wang, J.; Fu, J.; Lv, Z.; Zhou, L.; Li, X.; Liu, Q.; Xia, P. Mannanase Improves the Growth Performance of Broilers by Alleviating Inflammation of the Intestinal Epithelium and Improving Intestinal Microbiota. Anim. Nutr. 2024, 16, 376–394. [Google Scholar] [CrossRef]
- Gupta, A.; Gupta, G.S. Applications of Mannose-Binding Lectins and Mannan Glycoconjugates in Nanomedicine. J. Nanoparticle Res. 2022, 24, 228. [Google Scholar] [CrossRef]
- Deniset, J.F.; Belke, D.; Lee, W.-Y.; Jorch, S.K.; Deppermann, C.; Hassanabad, A.F.; Turnbull, J.D.; Teng, G.; Rozich, I.; Hudspeth, K. Gata6+ Pericardial Cavity Macrophages Relocate to the Injured Heart and Prevent Cardiac Fibrosis. Immunity 2019, 51, 131–140. [Google Scholar] [CrossRef]
- Sharma, M.; Sharma, R.; Jain, D.K.; Saraf, A. Enhancement of Oral Bioavailability of Poorly Water Soluble Carvedilol by Chitosan Nanoparticles: Optimization and Pharmacokinetic Study. Int. J. Biol. Macromol. 2019, 135, 246–260. [Google Scholar] [CrossRef] [PubMed]
- Rawal, T.; Patel, S.; Butani, S. Chitosan Nanoparticles as a Promising Approach for Pulmonary Delivery of Bedaquiline. Eur. J. Pharm. Sci. 2018, 124, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Qin, J.; Han, L.; Zhao, W.; Liang, J.; Xie, Z.; Yang, P.; Wang, J. Exploiting Macrophages as Targeted Carrier to Guide Nanoparticles into Glioma. Oncotarget 2016, 7, 37081. [Google Scholar] [CrossRef] [PubMed]
- Cummings, R.D. The Mannose Receptor Ligands and the Macrophage Glycome. Curr. Opin. Struct. Biol. 2022, 75, 102394. [Google Scholar] [CrossRef]
- Smitha, B.; Sridhar, S.; Khan, A.A. Chitosan–Sodium Alginate Polyion Complexes as Fuel Cell Membranes. Eur. Polym. J. 2005, 41, 1859–1866. [Google Scholar] [CrossRef]
- Mndlovu, H.; du Toit, L.C.; Kumar, P.; Marimuthu, T.; Kondiah, P.P.D.; Choonara, Y.E.; Pillay, V. Development of a Fluid-Absorptive Alginate-Chitosan Bioplatform for Potential Application as a Wound Dressing. Carbohydr. Polym. 2019, 222, 114988. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.; Fu, Q.; Zhang, H.; Liang, J.; Xue, W.; Zhao, G.; Oda, H. Characterization and Antioxidant Activity of Mannans from Saccharomyces Cerevisiae with Different Molecular Weight. Molecules 2022, 27, 4439. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, Z.; He, Y.; Li, C.; Wang, J.; Ma, X. Study on the Structure Characterization and Moisturizing Effect of Tremella Polysaccharide Fermented from GCMCC5. 39. Food Sci. Hum. Wellness 2021, 10, 471–479. [Google Scholar] [CrossRef]
- Lan, J.; Wang, K.; Chen, G.; Cao, G.; Yang, C. Effects of Inulin and Isomalto-Oligosaccharide on Diphenoxylate-Induced Constipation, Gastrointestinal Motility-Related Hormones, Short-Chain Fatty Acids, and the Intestinal Flora in Rats. Food Funct. 2020, 11, 9216–9225. [Google Scholar] [CrossRef]
- Ellerbrock, R.H.; Gerke, H.H. FTIR Spectral Band Shifts Explained by OM–Cation Interactions. J. Plant Nutr. Soil Sci. 2021, 184, 388–397. [Google Scholar] [CrossRef]
- Parvathaneni, V.; Elbatanony, R.S.; Goyal, M.; Chavan, T.; Vega, N.; Kolluru, S.; Muth, A.; Gupta, V.; Kunda, N.K. Repurposing Bedaquiline for Effective Non-Small Cell Lung Cancer (NSCLC) Therapy as Inhalable Cyclodextrin-Based Molecular Inclusion Complexes. Int. J. Mol. Sci. 2021, 22, 4783. [Google Scholar] [CrossRef] [PubMed]
- Siafaka, P.I.; Zisi, A.P.; Exindari, M.K.; Karantas, I.D.; Bikiaris, D.N. Porous Dressings of Modified Chitosan with Poly (2-Hydroxyethyl Acrylate) for Topical Wound Delivery of Levofloxacin. Carbohydr. Polym. 2016, 143, 90–99. [Google Scholar] [CrossRef]
- Badhe, R.V.; Bijukumar, D.; Chejara, D.R.; Mabrouk, M.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Kondiah, P.P.D.; Pillay, V. A Composite Chitosan-Gelatin Bi-Layered, Biomimetic Macroporous Scaffold for Blood Vessel Tissue Engineering. Carbohydr. Polym. 2017, 157, 1215–1225. [Google Scholar] [CrossRef]
- Imazio, M. Pericardial Diseases. Evid.-Based Cardiol. Consult. 2014, 79–89. [Google Scholar]
- Vo, A.; Doumit, M.; Rockwell, G. The Biomechanics and Optimization of the Needle-Syringe System for Injecting Triamcinolone Acetonide into Keloids. J. Med. Eng. 2016, 2016, 5162394. [Google Scholar] [CrossRef] [PubMed]
- Rodponthukwaji, K.; Saengruengrit, C.; Tummamunkong, P.; Leelahavanichakul, A.; Ritprajak, P.; Insin, N. Facile Synthesis of Magnetic Silica-Mannan Nanocomposites for Enhancement in Internalization and Immune Response of Dendritic Cells. Mater. Today Chem. 2021, 20, 100417. [Google Scholar] [CrossRef]
- Lopez, B.; Siqueira de Oliveira, R.; Pinhata, J.M.W.; Chimara, E.; Pacheco Ascencio, E.; Puyén Guerra, Z.M.; Wainmayer, I.; Simboli, N.; Del Granado, M.; Palomino, J.C. Bedaquiline and Linezolid MIC Distributions and Epidemiological Cut-off Values for Mycobacterium Tuberculosis in the Latin American Region. J. Antimicrob. Chemother. 2019, 74, 373–379. [Google Scholar] [CrossRef]
- Schmitt, W. General Approach for the Calculation of Tissue to Plasma Partition Coefficients. Toxicol. Vitr. 2008, 22, 457–467. [Google Scholar] [CrossRef]
- Muanprasat, C.; Chatsudthipong, V. Chitosan Oligosaccharide: Biological Activities and Potential Therapeutic Applications. Pharmacol. Ther. 2017, 170, 80–97. [Google Scholar] [CrossRef]
- Liang, J.; Yan, H.; Puligundla, P.; Gao, X.; Zhou, Y.; Wan, X. Applications of Chitosan Nanoparticles to Enhance Absorption and Bioavailability of Tea Polyphenols: A Review. Food Hydrocoll. 2017, 69, 286–292. [Google Scholar] [CrossRef]
- Lu, X.-Y.; Wu, D.-C.; Li, Z.-J.; Chen, G.-Q. Polymer Nanoparticles. Prog. Mol. Biol. Transl. Sci. 2011, 104, 299–323. [Google Scholar] [PubMed]
- Qiao, S.; Peijie, T.; Nan, J. Crosslinking Strategies of Decellularized Extracellular Matrix in Tissue Regeneration. J. Biomed. Mater. Res. Part A 2024, 112, 640–671. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shi, J.; Ye, X.; Ku, Z.; Zhang, C.; Liu, Q.; Huang, Z. Coxsackievirus A16 Utilizes Cell Surface Heparan Sulfate Glycosaminoglycans as Its Attachment Receptor. Emerg. Microbes Infect. 2017, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Carrión-Prieto, P.; Martín-Ramos, P.; Hernández-Navarro, S.; Sánchez-Sastre, L.F.; Marcos-Robles, J.L.; Martín-Gil, J. Furfural, 5-HMF, Acid-Soluble Lignin and Sugar Contents in C. Ladanifer and E. Arborea Lignocellulosic Biomass Hydrolysates Obtained from Microwave-Assisted Treatments in Different Solvents. Biomass Bioenergy 2018, 119, 135–143. [Google Scholar] [CrossRef]
- da Silva Milhorini, S.; Zavadinack, M.; Dos Santos, J.F.; de Lara, E.L.; Smiderle, F.R.; Iacomini, M. Structural Variety of Glucans from Ganoderma Lucidum Fruiting Bodies. Carbohydr. Res. 2024, 538, 109099. [Google Scholar] [CrossRef]
Mean Electrical Resistance Ohm (SD) | Human Pericardium (n = 3) | Porcine Pericardium (n = 3) | ||||
---|---|---|---|---|---|---|
(i) | (ii) | (iii) | (i) | (ii) | (iii) | |
Before diffusion study | 150.67 (±4.64) | 166.33 (±5.43) | 153.00 (±5.10) | 147.33 (±4.99) | 151.00 (±2.16) | 138.33 (±5.25) |
After diffusion study | 147.67 (±6.24) | 163.00 (±2.16) | 146.33 (±4.50) | 152.00 (±2.83) | 159.00 (±2.16) | 131.67 (±5.25) |
Difference (%) Mean % difference | 1.99 (±1.06) | 2.00 (±1.97) | 4.36 (±0.39) | 3.17 (±1.47) | 5.30 (±0.00) | 4.82 (±0.00) |
2.78 (±1.14) | 4.43 (±0.49) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayodele, S.; Kumar, P.; van Eyk, A.; van der Bijl, P.; Choonara, Y.E. Oligosaccharide Lactate Nanoparticles Enhance Tissue Targeting: A Case Study of the Controlled Delivery of Bedaquiline to Cardiac Tissue in TB Pericarditis. Molecules 2025, 30, 2845. https://doi.org/10.3390/molecules30132845
Ayodele S, Kumar P, van Eyk A, van der Bijl P, Choonara YE. Oligosaccharide Lactate Nanoparticles Enhance Tissue Targeting: A Case Study of the Controlled Delivery of Bedaquiline to Cardiac Tissue in TB Pericarditis. Molecules. 2025; 30(13):2845. https://doi.org/10.3390/molecules30132845
Chicago/Turabian StyleAyodele, Simisola, Pradeep Kumar, Armorel van Eyk, Pieter van der Bijl, and Yahya E. Choonara. 2025. "Oligosaccharide Lactate Nanoparticles Enhance Tissue Targeting: A Case Study of the Controlled Delivery of Bedaquiline to Cardiac Tissue in TB Pericarditis" Molecules 30, no. 13: 2845. https://doi.org/10.3390/molecules30132845
APA StyleAyodele, S., Kumar, P., van Eyk, A., van der Bijl, P., & Choonara, Y. E. (2025). Oligosaccharide Lactate Nanoparticles Enhance Tissue Targeting: A Case Study of the Controlled Delivery of Bedaquiline to Cardiac Tissue in TB Pericarditis. Molecules, 30(13), 2845. https://doi.org/10.3390/molecules30132845