Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (336)

Search Parameters:
Keywords = old wood

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1186 KiB  
Article
The Genotoxic Potential of Organic Emissions from Domestic Boilers Combusting Biomass and Fossil Fuels
by Jitka Sikorova, Frantisek Hopan, Lenka Kubonova, Jiri Horak, Alena Milcova, Pavel Rossner, Antonin Ambroz, Kamil Krpec, Oleksandr Molchanov and Tana Zavodna
Toxics 2025, 13(8), 619; https://doi.org/10.3390/toxics13080619 - 25 Jul 2025
Viewed by 180
Abstract
Solid fuels are still widely used in household heating in Europe and North America. Emissions from boilers are released in proximity to people. Therefore, there is a need to minimise the toxicity of emissions affecting human health to the greatest extent possible. This [...] Read more.
Solid fuels are still widely used in household heating in Europe and North America. Emissions from boilers are released in proximity to people. Therefore, there is a need to minimise the toxicity of emissions affecting human health to the greatest extent possible. This study compares the genotoxic potential of the emissions of four boilers of modern and old design (automatic, gasification, down-draft, over-fire) operating at reduced output to simulate the real-life combustion fed by various fossil and renewable solid fuels (hard coal, brown coal, brown coal briquettes, wood pellets, wet and dry spruce). Organic emissions were tested for genotoxic potential by analysing bulky DNA adducts and 8-oxo-dG adduct induction. There was no consistent genotoxic pattern among the fuels used within the boilers. Genotoxicity was strongly correlated with polycyclic aromatic hydrocarbon (PAH) content, and even stronger correlation was observed with particulate matter (PM). In all measured variables (PM, PAHs, genotoxicity), the technology of the boilers was a more important factor in determining the genotoxic potential than the fuels burned. The highest levels of both bulky and 8-oxo-dG DNA adducts were induced by organics originating from the over-fire boiler, while the automatic boiler exhibited genotoxic potential that was ~1000- and 100-fold lower, respectively. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Graphical abstract

21 pages, 3109 KiB  
Article
Effects of Forest Age and Invasive Shrubs on Mycophilous Coleoptera Communities in a Temperate Deciduous Woodland
by Jeffrey M. Brown and John O. Stireman
Insects 2025, 16(7), 735; https://doi.org/10.3390/insects16070735 - 18 Jul 2025
Viewed by 420
Abstract
Forests in the Eastern and Midwestern U.S. have been profoundly affected by human use over the last 150 years, with few old growth forests remaining. Such mature forests may harbor distinct communities and high biodiversity, particularly detritivores and their associated food webs. These [...] Read more.
Forests in the Eastern and Midwestern U.S. have been profoundly affected by human use over the last 150 years, with few old growth forests remaining. Such mature forests may harbor distinct communities and high biodiversity, particularly detritivores and their associated food webs. These communities, however, have been surveyed only rarely in comparisons of diversity and community composition between old and young forests. Here, we compare the mycophilous beetle communities of young and old deciduous forest stands in Southwestern Ohio (U.S.A.). We assess how the abundance and diversity of beetles associated with fungal sporocarps varies with forest age, downed woody debris, and invasive honeysuckle density. We surveyed fungus-associated beetles with baited traps at eight wooded parklands centered around Dayton, Ohio, conducting sampling three times over a growing season. In contrast to expectation, we found no clear effect of forest age on mycophilous beetle communities, but infestation by invasive honeysuckle (Lonicera maackii) negatively affected beetle abundance and diversity. Beetle abundance, richness, and community composition also strongly varied across seasonal sampling periods. Our surveys of mycophilous beetles in a Midwestern U.S. forest represent an initial step toward understanding how these communities are shaped by forest age and invasive species. Such information is crucial in managing forests to preserve biodiversity and ecosystem services. Full article
(This article belongs to the Special Issue The Richness of the Forest Microcosmos)
Show Figures

Figure 1

25 pages, 2032 KiB  
Article
Pedunculate Oak (Quercus robur L.) Crown Defoliation as an Indicator of Timber Value
by Branko Ursić and Dinko Vusić
Forests 2025, 16(7), 1111; https://doi.org/10.3390/f16071111 - 4 Jul 2025
Viewed by 197
Abstract
Pedunculate oak (Quercus robur L.), an ecologically and economically important tree species has been significantly affected by oak dieback in recent years. Since one of the symptoms of oak dieback is crown defoliation, this research aimed to determine the quantity, quality, average [...] Read more.
Pedunculate oak (Quercus robur L.), an ecologically and economically important tree species has been significantly affected by oak dieback in recent years. Since one of the symptoms of oak dieback is crown defoliation, this research aimed to determine the quantity, quality, average tree value, and wood defects that influence grading in different stages of oak dieback indicated by tree crown defoliation degree. The research was conducted in a 62- and 116-year-old stand of the lowland Croatian forest. In total, 115 pedunculate oak trees were sampled and processed in 983 logs that were analyzed. The prescribed single-entry volume tables underestimate harvesting volume by 5.45% on site A and 6.16% on site B, while the calculation of net harvesting volume underestimates net volume by 0.26% on site A and overestimates net volume on site B by 4.59%. The analysis of wood defect presence showed that insect holes, rot, and covered knots were the main reasons for the degradation of quality class. Dead trees showed a decreased average tree value in DBH classes 32.5–42.5 cm compared to the healthy trees. Based on the findings of this research, tree crown defoliation degree could be used as a timber quality and average tree value indicator. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

11 pages, 2494 KiB  
Case Report
Exploring Chromogranin A (CgA) as a Diagnostic Marker in Hypothermia-Related Deaths: Two Case Studies and a Literature Review
by Luca Tomassini, Erika Buratti, Giulia Ricchezze and Roberto Scendoni
Diagnostics 2025, 15(13), 1673; https://doi.org/10.3390/diagnostics15131673 - 30 Jun 2025
Viewed by 273
Abstract
Background: Hypothermia, occurring when core temperature drops below 35 °C, can lead to death when the body’s heat loss exceeds its heat production. This study investigates two hypothermia-related deaths, exploring the utility of immunohistochemistry, specifically focusing on chromogranin A (CgA) as a potential [...] Read more.
Background: Hypothermia, occurring when core temperature drops below 35 °C, can lead to death when the body’s heat loss exceeds its heat production. This study investigates two hypothermia-related deaths, exploring the utility of immunohistochemistry, specifically focusing on chromogranin A (CgA) as a potential diagnostic tool. The aim is to assess whether CgA expression in neuroendocrine tissues can be considered a reliable indicator of premortem stress response in fatal hypothermia cases. Case Presentation: In the first case, a 67-year-old man was found on a snowy road 24 h after his disappearance. The autopsy revealed cold-induced skin lesions, gastric hemorrhages, and cerebral and pulmonary edema. Positive CgA immunostaining was observed in the pancreatic islets and adrenal medulla. In the second case, a 49-year-old man was found dead in a wooded area with indications of suicide. Both cases were examined with attention to macroscopic findings and histological samples from major neuroendocrine organs. As in previous cases, CgA immunostaining was positive in the pancreatic islets and adrenal medulla. Staining intensity was moderate to strong, consistent with heightened neuroendocrine activity, supporting the hypothesis of systemic stress prior to death. Conclusions: Although CgA is a potentially valuable adjunct in hypothermia diagnosis, careful consideration of cadaveric preservation is emphasized, particularly when bodies are preserved before autopsy. Further studies with larger sample sizes are needed to confirm its diagnostic specificity and to distinguish true pathological patterns from postmortem artifacts. Full article
(This article belongs to the Special Issue New Perspectives in Forensic Diagnosis)
Show Figures

Figure 1

17 pages, 3134 KiB  
Article
Validation of Fiber-Dominant Expressing Gene Promoters in Populus trichocarpa
by Mengjie Guo, Ruxia Wang, Bo Wang, Wenjing Xu, Hui Hou, Hao Cheng, Yun Zhang, Chong Wang and Yuxiang Cheng
Plants 2025, 14(13), 1948; https://doi.org/10.3390/plants14131948 - 25 Jun 2025
Viewed by 557
Abstract
Wood is an important raw material for industrial applications. Its fiber-specific genetic modification provides an effective strategy to alter wood characteristics in tree breeding. Here, we performed a cross-analysis of previously reported single-cell RNA sequencing and the AspWood database during wood formation to [...] Read more.
Wood is an important raw material for industrial applications. Its fiber-specific genetic modification provides an effective strategy to alter wood characteristics in tree breeding. Here, we performed a cross-analysis of previously reported single-cell RNA sequencing and the AspWood database during wood formation to identify potential xylem fiber-dominant expressing genes in poplar. As a result, 32 candidate genes were obtained, and subsequently, we further examined the expression of these genes in fibers and/or vessels of stem secondary xylem using the laser capture microdissection technique and RT-qPCR. Analysis identified nine candidate genes, including PtrFLA12-2, PtrIRX12, PtrFLA12-6, PtrMYB52, PtrMYB103, PtrMAP70, PtrLRR-1, PtrKIFC2-3, and PtrNAC12. Next, we cloned the promoter regions of the nine candidate genes and created promoter::GUS transgenic poplars. Histochemical GUS staining was used to investigate the tissue expression activities of these gene promoters in transgenic poplars. In one month, transgenic plantlets grown in medium showed intensive GUS staining signals that were visible in the leaves and apical buds, suggesting substantial expression activities of these gene promoters in plantlets predominantly undergoing primary growth. In contrast, for three-month-old transgenic poplars in the greenhouse with predominantly developed secondary stem tissues, the promoters of seven of nine candidate genes, including PtrMYB103, PtrIRX12, and PtrMAP70, showed secondary xylem fiber-dominant GUS signals with considerable spatial specificity. Overall, this study presents xylem fiber-dominant promoters that are well-suited for specifically expressing genes of interest in wood fibers for forest tree breeding. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

24 pages, 1593 KiB  
Article
Determination of Strength Improvements in the Acacia Hybrid Through the Combination of Age Groups at the Air-Dry Conditioning Stage
by Fanthy Moola Malek, Gaddafi Ismaili, Noor Azland Jainudin, Meekiong Kalu, Mohd Effendi Wasli, Ahmad Fadzil Jobli, Mohamad Zain Hashim, Ahmad Nurfaidhi Rizalman, Nur Syahina Yahya and Semilan Ripot
Forests 2025, 16(7), 1048; https://doi.org/10.3390/f16071048 - 23 Jun 2025
Viewed by 402
Abstract
Acacia hybrid is an important plantation species in Malaysia, but its use in structural applications is still limited due to the lack of comprehensive data on its engineering properties. This study evaluated the physical and mechanical properties of laminated or glulam Acacia hybrid [...] Read more.
Acacia hybrid is an important plantation species in Malaysia, but its use in structural applications is still limited due to the lack of comprehensive data on its engineering properties. This study evaluated the physical and mechanical properties of laminated or glulam Acacia hybrid timber in an air-dried condition for three age group combinations (7//10, 10//13, and 7//13 years old) to determine the optimal combination for structural applications. The results showed that the 10//13-year-old combination had the best mechanical performance, along with the highest basis density (0.7099 g/cm3), highest modulus of elasticity (MOE) (16,335.6 N/mm2), and highest parallel compressive strength (56.998 N/mm2), while the 7//10-year-old combination showed the highest moisture content (14.94%) and highest perpendicular compressive strength (8.9256 N/mm2). This study demonstrated that the combination of juvenile wood (7 years old) with mature wood (10 or 13 years old) increased strength by up to 43.06%, thus optimising the potential of Acacia hybrid in the construction industry. All combinations meet SG5 standards, with the 10//13-year-old combination recommended as the best choice for high-performance applications of glulam products. Full article
(This article belongs to the Special Issue Wood Quality and Mechanical Properties: 2nd Edition)
Show Figures

Figure 1

22 pages, 7260 KiB  
Article
Genetic Analyses of a Mixed Oak Stand at the Xeric Limit of Forest Climate and Its General Consequences for In Situ Conservation Management
by Beáta Pintér, Klára Cseke, Márta Ladányi, Botond Boldizsár Lados and Sándor Bordács
Forests 2025, 16(6), 939; https://doi.org/10.3390/f16060939 - 3 Jun 2025
Viewed by 357
Abstract
Forests in the Tolna region (Hungary) are distributed at the xeric limit of broadleaved forest zones and adapted to the arid ecological conditions of the wood-steppe climate. An 85-year-old in situ gene conservation stand of Quercus virgiliana mixed with other taxa of section [...] Read more.
Forests in the Tolna region (Hungary) are distributed at the xeric limit of broadleaved forest zones and adapted to the arid ecological conditions of the wood-steppe climate. An 85-year-old in situ gene conservation stand of Quercus virgiliana mixed with other taxa of section Quercus was studied, which was regenerated naturally by both seedlings and coppicing. To analyze the phenotypes growing within the stand and the genetic structure of the population, a total of 138 trees were sampled. For taxonomic classification, a complex of morphological traits of oak taxa growing naturally in the region was used. Out of the 12 morphotype groups, only a few trees were classified as Q. virgiliana (eight individuals) or Q. robur (nine individuals), and the majority of the trees (121 individuals) were hybrid or introgressed phenotypes of Q. virgiliana adapted to xeric conditions by its xeromorphic traits. Despite the high number of coppiced trees (89 pcs vegetatively regenerated), the genetic variation was relatively high based on 16 nSSR markers used for analyses. Some of the trees were classified as non-autochthonous with Slavonian oak origin, both by morphological traits and SSR structure. Despite some alleles being lost, the allelic diversity of the seedling trees’ group was similar to that of the group of parent generation (coppiced trees). The spatial structure of trees supported the results of morphologic classification, and Q. virgiliana and hybrid phenotypes were growing on xeric microhabitats of the stand, mostly on southeast-facing slopes or ridges of hills. Consequently, the stand might fulfill all the in situ gene conservation requirements based on the high genetic diversity measured and the high number of xeromorphic phenotypes in the context of climate change as well. Full article
(This article belongs to the Special Issue Genetic Variation and Conservation of Forest Species)
Show Figures

Figure 1

17 pages, 2679 KiB  
Article
First Report of Trametes hirsuta, Causal Agent White Rot in Avocado Trees Grown in the State of Michoacán, México
by Juan Mendoza-Churape, Ma. Blanca Nieves Lara-Chávez, Rosario Ramírez-Mendoza, César Ramiro Martínez-González, Hexon Angel Contreras-Cornejo, Yurixhi Atenea Raya-Montaño, Teresita del Carmen Ávila-Val and Margarita Vargas-Sandoval
Pathogens 2025, 14(6), 532; https://doi.org/10.3390/pathogens14060532 - 26 May 2025
Viewed by 605
Abstract
México is the world’s leading producer of avocado, with 2,540,715 tons in the last year. Trametes spp. are macromycete fungi that rot wood. In 2022, in the state of Michoacán, México, sporomas of Trametes sp. were found in the trunks of avocado trees [...] Read more.
México is the world’s leading producer of avocado, with 2,540,715 tons in the last year. Trametes spp. are macromycete fungi that rot wood. In 2022, in the state of Michoacán, México, sporomas of Trametes sp. were found in the trunks of avocado trees (Persea americana var. Hass) of 10 years old and older. The trees showed disease symptoms including yellowing of leaves, widespread defoliation, and wilting. It was observed that 10% of the infected trees were felled after heavy rains. In the place where the fungus settled, abundant cream-colored and cottony mycelium developed, causing “white rot”. The incidence of the disease in the sampled orchards was 60% in the tree population per hectare with 350 trees. The symptomatic trees studied were randomly selected from seven orchards. The collected fungal samples show typical structures corresponding to Trametes sp., including large sporomas, a pileus with a surface of concentric zones of various ocher tones, and a porous hymenium. The samples showed a 99% match with the species Trametes hirsuta. Laboratory bioassays of inoculation in fresh wood segments of avocado formed typical sporomas of the pathogen. Finally, the fungus was recovered and reisolated in vitro in PDA, and its identity was confirmed through the morphological characteristics and molecular tests. To the best of our knowledge, this article reports for the first time that P. americana cv. Hass and Mendez are new hosts for T. hirsuta. Therefore, the environmental and horticultural management conditions that favor the proliferation of T. hirsuta must be investigated. Full article
(This article belongs to the Special Issue An Update on Fungal Infections)
Show Figures

Graphical abstract

12 pages, 6068 KiB  
Article
Variation in Functional Traits of Woody Plants Across Successional Stages in Subtropical Forests
by Cheng Sun, Jie Yao, Yongtao Huang and Runguo Zang
Forests 2025, 16(5), 868; https://doi.org/10.3390/f16050868 - 21 May 2025
Viewed by 458
Abstract
Variation patterns in plant functional traits and their interrelationships play a crucial role in understanding species coexistence mechanisms and ecological differentiation within local plant communities. However, the dynamic patterns of plant functional traits across different forest successional stages remain insufficiently understood. Here, we [...] Read more.
Variation patterns in plant functional traits and their interrelationships play a crucial role in understanding species coexistence mechanisms and ecological differentiation within local plant communities. However, the dynamic patterns of plant functional traits across different forest successional stages remain insufficiently understood. Here, we investigated the woody species composition of subtropical evergreen–deciduous broadleaved mixed forest across 75 plots, representing three successional stages (20-year-old secondary forest, 35-year-old secondary forest, and old-growth forest (>80 years)), in Xingdoushan and Mulinzi National Nature Reserves, Hubei Province, Central China. We measured four functional traits of woody plants: leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), and wood density (WD). For each different age plant community, we calculated (1) species abundance-weighted mean community trait values, and (2) species-level mean trait values. We applied trait gradient analysis to partition and assess correlations of four functional traits across communities of different successional stages, separating within-community (α components) and between-community (β components) variation. To quantify the extent to which environmental constraints influence trait expression, we used the ecological constraint index (Ci). The results revealed significant variation in the four functional traits across communities at different successional stages. Community-level mean LA and SLA decreased significantly with age, WD increased significantly with age, and there was no significant relationship between LDMC and age. The α trait components consistently varied more widely than β components at different successional stages, indicating that biological competition dominates the assembly of local forest communities across various successional stages. Correlations between the four functional traits were dynamically adjusted with the study scale (community-level and species-level) and forest age. The ecological constraints on the four functional traits varied significantly across forest successional stages, with SLA being subject to the strongest constraints. Our findings reveal that biotic competition predominantly shapes community assembly during the succession of subtropical evergreen–deciduous broadleaved mixed forests, while stronger ecological filtering in old-growth stands underscores their role in maintaining ecosystem stability. These insights support more effective conservation and restoration strategies. Full article
Show Figures

Figure 1

14 pages, 1705 KiB  
Article
The Influence of Pruning on the Growth and Wood Properties of Populus deltoides “Nanlin 3804”
by Weiqi Leng, Pei Cao, Chao Chen and Luozhong Tang
Forests 2025, 16(5), 848; https://doi.org/10.3390/f16050848 - 19 May 2025
Viewed by 351
Abstract
During the natural growth of trees, a large number of branches are formed, with a negative impact on timber quality. Therefore, pruning is an essential measure in forest cultivation. In this work, the effect of pruning on poplar timber quality was evaluated. This [...] Read more.
During the natural growth of trees, a large number of branches are formed, with a negative impact on timber quality. Therefore, pruning is an essential measure in forest cultivation. In this work, the effect of pruning on poplar timber quality was evaluated. This study used an artificial forest of Populus deltoides “Nanlin 3804”, established in 2014, as the research object. Pruning was carried out in March 2018 and March 2020 with a pruning intensity of one-third, and a control group was also set up. In December 2023, the growth of 11-year-old poplars under different treatments was investigated and analyzed, and sample trees were cut down for a wood property analysis. The results showed that pruning did not have a significant effect on the growth of the diameter at breast height, the tree height, or the volume. However, pruning could significantly facilitate the forming of higher-quality timber with smaller knots. Compared to unpruned wood, the ring width decreased 1–2 years after pruning, while it turned out to be greater than that of the control 3 years after pruning. Moreover, pruning can reduce the degree of trunk tapering. The fiber aspect ratio two years after pruning was greater than that of the control. The distribution frequency of fiber lengths of between 1500 μm and 1900 μm and that of fiber widths of between 32 μm and 38 μm were higher than that of the control. However, pruning had little effect on their density and oven-dried shrinkage. In addition, compared to the control, the bending strength and the modulus of elasticity increased by approximately 11%–14%, the impact toughness decreased by approximately 5%, and the compressive strength increased by approximately 6%. Pruning proved to be a successful method to improve the timber quality. Full article
(This article belongs to the Special Issue Uses, Structure and Properties of Wood and Wood Products)
Show Figures

Figure 1

18 pages, 2491 KiB  
Article
How the Scots Pine and Beech Aging Process Affects Wood
by Tomasz Jelonek, Katarzyna Klimek, Bartłomiej Naskrent, Arkadiusz Tomczak, Marcin Jakubowski, Robert Kuźmiński, Tomasz Szwed, Joanna Kopaczyk, Daniel Grabowski and Jarosław Szaban
Forests 2025, 16(5), 772; https://doi.org/10.3390/f16050772 - 30 Apr 2025
Viewed by 741
Abstract
This study investigates the effects of aging trees on wood properties, which are caused by climate change, the withdrawal of coniferous species from Central Europe, and the increased crown sweep in old beech stands. The research was carried out in old tree stands [...] Read more.
This study investigates the effects of aging trees on wood properties, which are caused by climate change, the withdrawal of coniferous species from Central Europe, and the increased crown sweep in old beech stands. The research was carried out in old tree stands with a high proportion of Scots pine (Pinus sylvestris L.) and beech (Fagus sylvatica L.) species. The collected material was from five tree pine stands aged between 151 and 182 and three beech stands between the ages of 165 and 184. The samples were subjected to an analysis of wood properties such as density and modulus of elasticity. The results and findings of this study indicate that the Scots pine currently reaches the optimal wood tissue quality at around 80 years of age, which is approximately 20 years earlier than the species’ anticipated cutting age. However, the beech, which reaches maturity at about 120–140 years, reaches the maximal quality of wood tissue already at the age of 80–90 years. Above the age of 110, the quality of beech wood (density and modulus of elasticity) decreases. Moreover, it is necessary to emphasize that the radial trend of wood density does not coincide with the trend of the modulus of elasticity. Additionally, it is found that wood density is not a perfect representation of its mechanical qualities; it can, however, be regarded as a measure of the technical quality of wood tissue. The results indicate that the pine and the beech that grow on the European Plain mature faster and reach technical quality earlier than just a couple of decades before. Full article
(This article belongs to the Special Issue Novelties in Wood Engineering and Forestry—2nd Edition)
Show Figures

Figure 1

29 pages, 3813 KiB  
Article
A Quaternary Sedimentary Ancient DNA (sedaDNA) Record of Fungal–Terrestrial Ecosystem Dynamics in a Tropical Biodiversity Hotspot (Lake Towuti, Sulawesi, Indonesia)
by Md Akhtar-E Ekram, Cornelia Wuchter, Satria Bijaksana, Kliti Grice, James Russell, Janelle Stevenson, Hendrik Vogel and Marco J. L. Coolen
Microorganisms 2025, 13(5), 1005; https://doi.org/10.3390/microorganisms13051005 - 27 Apr 2025
Cited by 1 | Viewed by 788
Abstract
Short-term observations suggest that environmental changes affect the diversity and composition of soil fungi, significantly influencing forest resilience, plant diversity, and soil processes. However, time-series experiments should be supplemented with geobiological archives to capture the long-term effects of environmental changes on fungi–soil–plant interactions, [...] Read more.
Short-term observations suggest that environmental changes affect the diversity and composition of soil fungi, significantly influencing forest resilience, plant diversity, and soil processes. However, time-series experiments should be supplemented with geobiological archives to capture the long-term effects of environmental changes on fungi–soil–plant interactions, particularly in undersampled, floristically diverse tropical forests. We recently conducted trnL-P6 amplicon sequencing to generate a sedimentary ancient DNA (sedaDNA) record of the regional catchment vegetation of the tropical waterbody Lake Towuti (Sulawesi, Indonesia), spanning over one million years (Myr) of the lake’s developmental history. In this study, we performed 18SV9 amplicon sequencing to create a parallel paleofungal record to (a) infer the composition, origins, and functional guilds of paleofungal community members and (b) determine the extent to which downcore changes in fungal community composition reflect the late Pleistocene evolution of the Lake Towuti catchment. We identified at least 52 members of Ascomycota (predominantly Dothiodeomycetes, Eurotiomycetes, and Leotiomycetes) and 12 members of Basidiomycota (primarily Agaricales and Polyporales). Spearman correlation analysis of the relative changes in fungal community composition, geochemical parameters, and paleovegetation assemblages revealed that the overwhelming majority consisted of soil organic matter and wood-decaying saprobes, except for a necrotrophic phytopathogenic association between Mycosphaerellaceae (Cadophora) and wetland herbs (Alocasia) in more-than-1-Myr-old silts and peats deposited in a pre-lake landscape, dominated by small rivers, wetlands, and peat swamps. During the lacustrine stage, vegetation that used to grow on ultramafic catchment soils during extended periods of inferred drying showed associations with dark septate endophytes (Ploettnerulaceae and Didymellaceae) that can produce large quantities of siderophores to solubilize mineral-bound ferrous iron, releasing bioavailable ferrous iron needed for several processes in plants, including photosynthesis. Our study showed that sedaDNA metabarcoding paired with the analysis of geochemical parameters yielded plausible insights into fungal-plant-soil interactions, and inferred changes in the paleohydrology and catchment evolution of tropical Lake Towuti, spanning more than one Myr of deposition. Full article
(This article belongs to the Special Issue Ancient Microbiomes in the Environment)
Show Figures

Figure 1

20 pages, 4918 KiB  
Article
Mapping Individual Tree- and Plot-Level Biomass Using Handheld Mobile Laser Scanning in Complex Subtropical Secondary and Old-Growth Forests
by Nelson Pak Lun Mak, Tin Yan Siu, Ying Ki Law, He Zhang, Shaoti Sui, Fung Ting Yip, Ying Sim Ng, Yuhao Ye, Tsz Chun Cheung, Ka Cheong Wa, Lap Hang Chan, Kwok Yin So, Billy Chi Hang Hau, Calvin Ka Fai Lee and Jin Wu
Remote Sens. 2025, 17(8), 1354; https://doi.org/10.3390/rs17081354 - 10 Apr 2025
Viewed by 1945
Abstract
Forests are invaluable natural resources that provide essential ecosystem services, and their carbon storage capacity is critical for climate mitigation efforts. Quantifying this capacity would require accurate estimation of forest structural attributes for deriving their aboveground biomass (AGB). Traditional field measurements, while precise, [...] Read more.
Forests are invaluable natural resources that provide essential ecosystem services, and their carbon storage capacity is critical for climate mitigation efforts. Quantifying this capacity would require accurate estimation of forest structural attributes for deriving their aboveground biomass (AGB). Traditional field measurements, while precise, are labor-intensive and often spatially limited. Handheld Mobile Laser Scanning (HMLS) offers a rapid alternative for building forest inventories; however, its effectiveness and accuracy in diverse subtropical forests with complex canopy structure remain under-investigated. In this study, we employed both HMLS and traditional surveys within structurally complex subtropical forest plots, including old-growth forests (Fung Shui Woods) and secondary forests. These forests are characterized by dense understories with abundant shrubs and lianas, as well as high stem density, which pose challenges in Light Detection and Ranging (LiDAR) point cloud data processing. We assessed tree detection rates and extracted tree attributes, including diameter at breast height (DBH) and canopy height. Additionally, we compared tree-level and plot-level AGB estimates using allometric equations. Our findings indicate that HMLS successfully detected over 90% of trees in both forest types and precisely measured DBH (R2 > 0.96), although tree height detection exhibited relatively higher uncertainty (R2 > 0.35). The AGB estimates derived from HMLS were comparable to those obtained from traditional field measurements. By producing highly accurate estimates of tree attributes, HMLS demonstrates its potential as an effective and non-destructive method for rapid forest inventory and AGB estimation in subtropical forests, making it a competitive option for aiding carbon storage estimations in complex forest environments. Full article
(This article belongs to the Special Issue Forest Biomass/Carbon Monitoring towards Carbon Neutrality)
Show Figures

Figure 1

16 pages, 10407 KiB  
Article
Understanding Structural Timber in Old Buildings in Lisbon, Portugal: From Knowledge of Construction Processes to Physical–Mechanical Properties
by Dulce Franco Henriques
Buildings 2025, 15(7), 1161; https://doi.org/10.3390/buildings15071161 - 2 Apr 2025
Viewed by 836
Abstract
This text provides a comprehensive overview of structural timber old buildings, from an in-depth analysis of construction processes to laboratory-based research aimed at establishing a pattern for estimating the density of wood in buildings. It is now widely recognised by society that historic [...] Read more.
This text provides a comprehensive overview of structural timber old buildings, from an in-depth analysis of construction processes to laboratory-based research aimed at establishing a pattern for estimating the density of wood in buildings. It is now widely recognised by society that historic buildings should be subject to conservation or rehabilitation. This article discusses the good technical knowledge that those involved in old buildings should have: the understanding of and respect for old construction techniques; rigorous inspections and diagnosis before a project; and the recognition of the properties of wooden structural elements, either visually or by means of non-destructive or semi-destructive testing methods (NDT/SDT). The final section of this article presents a laboratory study that correlates penetration resistance test results with wood density and verifies them in situ by direct analysis with wood core extraction. The aim of this study is to establish and verify a reliable pattern that allows the user to estimate the density of Scots pine in any structural member in service in an old building. The results obtained in the laboratory and of wood in service show that Equation (1) is a suitable pattern to obtain wood density through the wood penetration resistance test. Full article
Show Figures

Figure 1

16 pages, 2416 KiB  
Article
Volcanic Impact Patterns in Tree Rings from Historical Wood in Northern Fennoscandia’s Old Churches
by Oleg I. Shumilov, Elena A. Kasatkina, Mauri Timonen and Evgeniy O. Potorochin
Forests 2025, 16(4), 573; https://doi.org/10.3390/f16040573 - 26 Mar 2025
Viewed by 509
Abstract
This study revealed a significant reduction in tree growth across northern Fennoscandia following the 1600 AD eruption of Huaynaputina in Peru, the most powerful volcanic event in South America over the past two millennia. In the analysis, we utilized six tree-ring chronologies, which [...] Read more.
This study revealed a significant reduction in tree growth across northern Fennoscandia following the 1600 AD eruption of Huaynaputina in Peru, the most powerful volcanic event in South America over the past two millennia. In the analysis, we utilized six tree-ring chronologies, which included the Finnish super-long chronology (5634 BC–2004 AD), the Kola Peninsula chronology (1445–2004 AD), and historical chronologies derived from old wooden churches in Finnish Lapland and Karelia, Russia. Using a superposed epoch analysis across these chronologies revealed a significant 24% (p < 0.01) decline in tree-ring growth in 1601 compared to the previous six years. The northernmost records, the Finnish super-long chronology (72%, p < 0.001) and the Sodankylä Old Church chronology (67%, p < 0.001), showed the most pronounced decreases. Statistical analysis confirmed significant (p < 0.05) similarities in tree-ring responses across all chronologies from 1601 to 1608. These findings underscore the reliability of using the 1600 Huaynaputina eruption as a chronological marker for dating historic wooden churches in northern Fennoscandia that were likely built between the late 17th and early 18th centuries. Additionally, analyzing church wood may provide insights into past climate patterns and environmental conditions linked to the eruption. Full article
(This article belongs to the Special Issue Wood as Cultural Heritage Material: 2nd Edition)
Show Figures

Figure 1

Back to TopTop