The Genotoxic Potential of Organic Emissions from Domestic Boilers Combusting Biomass and Fossil Fuels
Abstract
1. Introduction
2. Materials and Methods
2.1. Combustion Tests
2.1.1. Measurement Techniques
2.1.2. Determination of Gaseous Compounds
2.1.3. Determination of Organic Compounds
2.1.4. Analysis of Particles
2.2. Chemical Composition of Fuels
2.3. Sample Preparation for an In Vitro Acellular Assay
2.4. In Vitro Acellular Assay with Bulky DNA Adducts and 8-oxo-dG Analyses
2.5. Statistical Analysis
3. Results
3.1. Particulate Matter and PAH Content
3.2. Genotoxic Potential
3.2.1. DNA Adducts
3.2.2. Oxidative DNA Damage
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EEA Air Pollutant Emissions Data Viewer. (Last Updated: 3 July 2015). Available online: http://www.eea.europa.eu/data-and-maps/data/data-viewers/air-emissions-viewer-lrtap (accessed on 15 September 2023).
- European Commission. European Commission Fit for 55 [WWW Document]; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Vicente, E.D.; Alves, C.A. An Overview of Particulate Emissions from Residential Biomass Combustion. Atmos. Res. 2018, 199, 159–185. [Google Scholar] [CrossRef]
- Świsłowski, P.; Wacławek, S.; Antos, V.; Zinicovscaia, I.; Rajfur, M. One Year of Active Moss Biomonitoring in the Identification of PAHs in an Urbanized Area—Prospects and Implications. Environ. Sci. Pollut. Res. 2024, 31, 38416–38427. [Google Scholar] [CrossRef]
- Shen, H.; Huang, Y.; Wang, R.; Zhu, D.; Li, W.; Shen, G.; Wang, B.; Zhang, Y.; Chen, Y.; Lu, Y.; et al. Global Atmospheric Emissions of Polycyclic Aromatic Hydrocarbons from 1960 to 2008 and Future Predictions. Environ. Sci. Technol. 2013, 47, 6415–6424. [Google Scholar] [CrossRef]
- Kasurinen, S.; Happo, M.S.; Rönkkö, T.J.; Orasche, J.; Jokiniemi, J.; Kortelainen, M.; Tissari, J.; Zimmermann, R.; Hirvonen, M.R.; Jalava, P.I. Differences between Co-Cultures and Monocultures in Testing the Toxicity of Particulate Matter Derived from Log Wood and Pellet Combustion. PLoS ONE 2018, 13, e0192453. [Google Scholar] [CrossRef] [PubMed]
- Tapanainen, M.; Jalava, P.I.; Mäki-Paakkanen, J.; Hakulinen, P.; Happo, M.S.; Lamberg, H.; Ruusunen, J.; Tissari, J.; Nuutinen, K.; Yli-Pirilä, P.; et al. In Vitro Immunotoxic and Genotoxic Activities of Particles Emitted from Two Different Small-Scale Wood Combustion Appliances. Atmos. Environ. 2011, 45, 7546–7554. [Google Scholar] [CrossRef]
- WHO. Residential Heating with Wood and Coal: Health Impacts and Policy Option in Europe and North America; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Chen, J.; Hoek, G. Long-Term Exposure to PM and All-Cause and Cause-Specific Mortality: A Systematic Review and Meta-Analysis. Environ. Int. 2020, 143, 105974. [Google Scholar] [CrossRef]
- Lu, F.; Xu, D.; Cheng, Y.; Dong, S.; Guo, C.; Jiang, X.; Zheng, X. Systematic Review and Meta-Analysis of the Adverse Health Effects of Ambient PM2.5 and PM10 Pollution in the Chinese Population. Environ. Res. 2015, 136, 196–204. [Google Scholar] [CrossRef]
- Jalava, P.I.; Happo, M.S.; Kelz, J.; Brunner, T.; Hakulinen, P.; Mäki-Paakkanen, J.; Hukkanen, A.; Jokiniemi, J.; Obernberger, I.; Hirvonen, M.R. Invitro Toxicological Characterization of Particulate Emissions from Residential Biomass Heating Systems Based on Old and New Technologies. Atmos. Environ. 2012, 50, 24–35. [Google Scholar] [CrossRef]
- Tapanainen, M.; Jalava, P.I.; Mäki-Paakkanen, J.; Hakulinen, P.; Lamberg, H.; Ruusunen, J.; Tissari, J.; Jokiniemi, J.; Hirvonen, M.R. Efficiency of Log Wood Combustion Affects the Toxicological and Chemical Properties of Emission Particles. Inhal. Toxicol. 2012, 24, 343–355. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.; Zeng, Y.; Niu, X.; Wang, J.; Cao, J.; Gong, X.; Xu, H.; Wang, T.; Liu, H.; et al. Characterization and Cytotoxicity of PAHs in PM2.5 Emitted from Residential Solid Fuel Burning in the Guanzhong Plain, China. Environ. Pollut. 2018, 241, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Canha, N.; Lopes, I.; Vicente, E.D.; Vicente, A.M.; Bandowe, B.A.M.; Almeida, S.M.; Alves, C.A. Mutagenicity Assessment of Aerosols in Emissions from Domestic Combustion Processes. Environ. Sci. Pollut. Res. 2016, 23, 10799–10807. [Google Scholar] [CrossRef] [PubMed]
- Happo, M.S.; Uski, O.; Jalava, P.I.; Kelz, J.; Brunner, T.; Hakulinen, P.; Mäki-Paakkanen, J.; Kosma, V.M.; Jokiniemi, J.; Obernberger, I.; et al. Pulmonary Inflammation and Tissue Damage in the Mouse Lung after Exposure to PM Samples from Biomass Heating Appliances of Old and Modern Technologies. Sci. Total Environ. 2013, 443, 256–266. [Google Scholar] [CrossRef]
- Leskinen, J.; Tissari, J.; Uski, O.; Virén, A.; Torvela, T.; Kaivosoja, T.; Lamberg, H.; Nuutinen, I.; Kettunen, T.; Joutsensaari, J.; et al. Fine Particle Emissions in Three Different Combustion Conditions of a Wood Chip-Fired Appliance—Particulate Physico-Chemical Properties and Induced Cell Death. Atmos. Environ. 2014, 86, 129–139. [Google Scholar] [CrossRef]
- Uski, O.; Jalava, P.I.; Happo, M.S.; Leskinen, J.; Sippula, O.; Tissari, J.; Mäki-Paakkanen, J.; Jokiniemi, J.; Hirvonen, M.R. Different Toxic Mechanisms Are Activated by Emission PM Depending on Combustion Efficiency. Atmos. Environ. 2014, 89, 623–632. [Google Scholar] [CrossRef]
- Jalava, P.I.; Salonen, R.O.; Nuutinen, K.; Pennanen, A.S.; Happo, M.S.; Tissari, J.; Frey, A.; Hillamo, R.; Jokiniemi, J.; Hirvonen, M.R. Effect of Combustion Condition on Cytotoxic and Inflammatory Activity of Residential Wood Combustion Particles. Atmos. Environ. 2010, 44, 1691–1698. [Google Scholar] [CrossRef]
- Vicente, E.D.; Figueiredo, D.; Alves, C. Toxicity of Particulate Emissions from Residential Biomass Combustion: An Overview of in Vitro Studies Using Cell Models. Sci. Total Environ. 2024, 927, 171999. [Google Scholar] [CrossRef]
- Vicente, E.D.; Calvo, A.I.; Sainnokhoi, T.A.; Kováts, N.; de la Campa, A.S.; de la Rosa, J.; Oduber, F.; Nunes, T.; Fraile, R.; Tomé, M.; et al. Indoor PM from Residential Coal Combustion: Levels, Chemical Composition, and Toxicity. Sci. Total Environ. 2024, 918, 170598. [Google Scholar] [CrossRef]
- Ihantola, T.; Hirvonen, M.; Ihalainen, M.; Hakkarainen, H.; Sippula, O.; Tissari, J.; Bauer, S.; Di, S.; Rastak, N.; Hartikainen, A.; et al. Genotoxic and Inflammatory Effects of Spruce and Brown Coal Briquettes Combustion Aerosols on Lung Cells at the Air-Liquid Interface. Sci. Total Environ. 2022, 806, 150489. [Google Scholar] [CrossRef] [PubMed]
- Křůmal, K.; Mikuška, P.; Horák, J.; Hopan, F.; Krpec, K. Comparison of Emissions of Gaseous and Particulate Pollutants from the Combustion of Biomass and Coal in Modern and Old-Type Boilers Used for Residential Heating in the Czech Republic, Central Europe. Chemosphere 2019, 229, 51–59. [Google Scholar] [CrossRef]
- Horák, J.; Hopan, F.; Kremer, J.; Kuboňová, L.; Polcar, L.; Molchanov, O.; Ryšavý, J.; Krpec, K.; Kubesa, P.; Dej, M.; et al. Real Measurement of Carbon Monoxide, Total Suspended Particulate, and Thermal Efficiency in Modern Biomass Household Boilers. Biomass Convers. Biorefin. 2022, 12, 4463–4472. [Google Scholar] [CrossRef]
- EN 303-5:1999; Heating Boilers—Part 5: Heating Boilers for Solid Fuels, Hand and Automatically Stocked, Nominal Heat Output of up to 500 kW—Terminology, Requirements, Testing and Marking. iTeh Inc.: San Francisco, CO, USA, 1999.
- EN 303-5:2021+A1; Heating Boilers—Part 5: Heating Boilers for Solid Fuels, Manually and Automatically Stoked, Nominal Heat Output of up to 500 KW—Terminology, Requirements, Testing and Marking. iTeh Inc.: San Francisco, CO, USA, 2022.
- ISO 17225-2; Solid Biofuels—Fuel Specifications and Classes Part 2: Graded Wood Pellets. ISO: Geneva, Switzerland, 2021; pp. 1–20.
- EN 1948:1–4; Stationary Source Emissions—Determination of the Mass Concentration of PCDDs/PCDFs and Dioxin-like PCBs. iTeh Inc.: San Francisco, CO, USA, 2006; Volume EN 1948:3, pp. 1–40.
- US EPA SW-846; Test Method 3500C: Organic Extraction and Sample Preparation. EPA: Washington, DC, USA, 2007.
- EPA/625/R-96/010b; Midwest Research Institute Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air.—Second Edition. EPA: Washington, DC, USA, 1999.
- Horák, J.; Laciok, V.; Krpec, K.; Hopan, F.; Dej, M.; Kubesa, P.; Ryšavý, J.; Molchanov, O.; Kuboňová, L. Influence of the Type and Output of Domestic Hot-Water Boilers and Wood Moisture on the Production of Fine and Ultrafine Particulate Matter. Atmos. Environ. 2020, 229, 117437. [Google Scholar] [CrossRef]
- ČSN 441377; Solid Mineral Fuels—Determination of Moisture. ČSN: Montreal, MTL, Canada, 2004.
- EN ISO 16948; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. ISO: Geneva, Switzerland, 2015.
- ISO 1171; Solid Mineral Fuels—Determination of Ash. ISO: Geneva, Switzerland, 2010.
- EN ISO 18122; Solid Biofuels—Determination of Ash Content. ISO: Geneva, Switzerland, 2015.
- ISO 29541; Solid Mineral Fuels—Determination of Total Carbon, Hydrogen and Nitrogen Content—Instrument Method. ISO: Geneva, Switzerland, 2010.
- ISO 19579; Solid Mineral Fuels—Determination of Sulfur by IR Spectrometry. ISO: Geneva, Switzerland, 2006.
- ISO 16994; Solid Biofuels—Determination of Total Content of Sulfur and Chlorine. ISO: Geneva, Switzerland, 2016.
- Topinka, J.; Hovorka, J.; Milcova, A.; Schmuczerova, J.; Krouzek, J.; Rossner, P.; Sram, R.J. An Acellular Assay to Assess the Genotoxicity of Complex Mixtures of Organic Pollutants Bound on Size Segregated Aerosol. Part I: DNA Adducts. Toxicol. Lett. 2010, 198, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.A.; Arif, J.M.; Gupta, R.C. Effect of Cancer Chemopreventive Agents on Microsome-Mediated DNA Adduction of the Breast Carcinogen Dibenzo[a,l]Pyrene. Mutat. Res.-Genet. Toxicol. Environ. Mutagen. 1998, 412, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.V.; Randerath, K. Nuclease P1-Mediated Enhancement of Sensitivity of 32 P-Postlabeling Test for Structurally Diverse DNA Adducts. Carcinogenesis 1986, 7, 1543–1551. [Google Scholar] [CrossRef]
- Phillips, D.H.; Castegnaro, M. Standardization and Validation of DNA Adduct Postlabelling Methods: Report of Interlaboratory Trials and Production of Recommended Protocols. Mutagenesis 1999, 14, 301–315. [Google Scholar] [CrossRef]
- Rossner, P.; Milcova, A.; Libalova, H.; Novakova, Z.; Topinka, J.; Balascak, I.; Sram, R.J. Biomarkers of Exposure to Tobacco Smoke and Environmental Pollutants in Mothers and Their Transplacental Transfer to the Foetus. Part II. Oxidative Damage. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2009, 669, 20–26. [Google Scholar] [CrossRef]
- CHMI Air Pollution Limit Values. Available online: https://www.chmi.cz/files/portal/docs/uoco/isko/info/limity_GB.html (accessed on 28 November 2024).
- Horak, J.; Kubonova, L.; Krpec, K.; Hopan, F.; Kubesa, P.; Motyka, O.; Laciok, V.; Dej, M.; Ochodek, T.; Placha, D. PAH Emissions from Old and New Types of Domestic Hot Water Boilers. Environ. Pollut. 2017, 225, 31–39. [Google Scholar] [CrossRef]
- Hinds, W.C. Aerosol Technology-Properties, Behavior, and Measurement of Airborne Particles, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1998; ISBN 978-1-118-59197-0. [Google Scholar]
- US EPA Particle Pollution Exposure. Available online: https://www.epa.gov/pmcourse/particle-pollution-exposure (accessed on 1 June 2023).
- Yang, M.; Guo, Y.M.; Bloom, M.S.; Dharmagee, S.C.; Morawska, L.; Heinrich, J.; Jalaludin, B.; Markevychd, I.; Knibbsf, L.D.; Lin, S.; et al. Is PM1 Similar to PM2.5? A New Insight into the Association of PM1 and PM2.5 with Children’s Lung Function. Environ. Int. 2020, 145, 106092. [Google Scholar] [CrossRef]
- Liu, R.-Q.; Guo, Y.; Bloom, M.S.; Yang, B.-Y.; Markevych, I.; Dharmage, S.; Jalava, P.; Knibbs, L.; Lin, S.; Morawska, L.; et al. Differential Patterns of Association between PM1 and PM2.5 with Symptoms of Attention Deficit Hyperactivity Disorder. Nat. Ment. Heal. 2023, 1, 402–409. [Google Scholar] [CrossRef]
- Hansson, A.; Rankin, G.; Uski, O.; Friberg, M.; Pourazar, J.; Lindgren, R.; López, N.G.; Boman, C.; Sandström, T.; Behndig, A.; et al. Reduced Bronchoalveolar Macrophage Phagocytosis and Cytotoxic Effects after Controlled Short—Term Exposure to Wood Smoke in Healthy Humans. Part. Fibre Toxicol. 2023, 20, 30. [Google Scholar] [CrossRef]
- Chun, H.K.; Leung, C.; Wen, S.W.; McDonald, J.; Shin, H.H. Maternal Exposure to Air Pollution and Risk of Autism in Children: A Systematic Review and Meta-Analysis. Environ. Pollut. 2020, 256, 113307. [Google Scholar] [CrossRef]
- Bo, Y.; Chang, L.Y.; Guo, C.; Lin, C.; Lau, A.K.H.; Tam, T.; Yeoh, E.K.; Lao, X.Q. Associations of Reduced Ambient PM2.5 Level with Lower Plasma Glucose Concentration and Decreased Risk of Type 2 Diabetes in Adults: A Longitudinal Cohort Study. Am. J. Epidemiol. 2021, 190, 2148–2157. [Google Scholar] [CrossRef]
- Shen, G. Mutagenicity of Particle Emissions from Solid Fuel Cookstoves: A Literature Review and Research Perspective. Environ. Res. 2017, 156, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Kasurinen, S.; Jalava, P.I.; Happo, M.S.; Sippula, O.; Uski, O.; Koponen, H.; Orasche, J.; Zimmermann, R.; Jokiniemi, J.; Hirvonen, M.-R. Particulate Emissions from the Combustion of Birch, Beech, and Spruce Logs Cause Different Cytotoxic Responses in A549 Cells. Environ. Toxicol. 2017, 32, 1487–1499. [Google Scholar] [CrossRef]
- Marabini, L.; Ozgen, S.; Turacchi, S.; Aminti, S.; Arnaboldi, F.; Lonati, G.; Fermo, P.; Corbella, L.; Valli, G.; Bernardoni, V.; et al. Ultrafine Particles (UFPs) from Domestic Wood Stoves: Genotoxicity in Human Lung Carcinoma A549 Cells. Mutat. Res.—Genet. Toxicol. Environ. Mutagen. 2017, 820, 39–46. [Google Scholar] [CrossRef]
- Arif, A.T.; Maschowski, C.; Garra, P.; Garcia-Käufer, M.; Petithory, T.; Trouvé, G.; Dieterlen, A.; Mersch-Sundermann, V.; Khanaqa, P.; Nazarenko, I.; et al. Cytotoxic and Genotoxic Responses of Human Lung Cells to Combustion Smoke Particles of Miscanthus Straw, Softwood and Beech Wood Chips. Atmos. Environ. 2017, 163, 138–154. [Google Scholar] [CrossRef]
- Dilger, M.; Orasche, J.; Zimmermann, R.; Paur, H.R.; Diabaté, S.; Weiss, C. Toxicity of Wood Smoke Particles in Human A549 Lung Epithelial Cells: The Role of PAHs, Soot and Zinc. Arch. Toxicol. 2016, 90, 3029–3044. [Google Scholar] [CrossRef]
- Huang, B.; Liu, M.; Bi, X.; Chaemfa, C.; Ren, Z.; Wang, X.; Sheng, G.; Fu, J. Phase Distribution, Sources and Risk Assessment of PAHs, NPAHs and OPAHs in a Rural Site of Pearl River Delta Region, China. Atmos. Pollut. Res. 2014, 5, 210–218. [Google Scholar] [CrossRef]
- Lammel, G.; Kitanovski, Z.; Kukučka, P.; Novák, J.; Arangio, A.M.; Codling, G.P.; Filippi, A.; Hovorka, J.; Kuta, J.; Leoni, C.; et al. Oxygenated and Nitrated Polycyclic Aromatic Hydrocarbons in Ambient Air—Levels, Phase Partitioning, Mass Size Distributions, and Inhalation Bioaccessibility. Environ. Sci. Technol. 2020, 54, 2615–2625. [Google Scholar] [CrossRef] [PubMed]
- Misaki, K.; Takamura-Enya, T.; Ogawa, H.; Takamori, K.; Yanagida, M. Tumour-Promoting Activity of Polycyclic Aromatic Hydrocarbons and Their Oxygenated or Nitrated Derivatives. Mutagenesis 2016, 31, 205–213. [Google Scholar] [CrossRef]
- Musa, B.A.; Meusel, H. Nitrated Polycyclic Aromatic Hydrocarbons (Nitro-PAHs) in the Environment—A Review. Sci. Total Environ. 2017, 581, 237–257. [Google Scholar] [CrossRef]
- Bolton, J.L.; Trush, M.A.; Penning, T.M.; Dryhurst, G.; Monks, T.J. Role of Quinones in Toxicology. Chem. Res. Toxicol. 2000, 13, 135–160. [Google Scholar] [CrossRef]
- Rossner, P.; Strapacova, S.; Stolcpartova, J.; Schmuczerova, J.; Milcova, A.; Neca, J.; Vlkova, V.; Brzicova, T.; Machala, M.; Topinka, J. Toxic Effects of the Major Components of Diesel Exhaust in Human Alveolar Basal Epithelial Cells (A549). Int. J. Mol. Sci. 2016, 17, 1393. [Google Scholar] [CrossRef] [PubMed]
- Monedero, E.; Collado, R.; Villanueva, F.; Borjabad, E.; Ramos, R.; Jos, J. Particulate-Bound PAHs, Nitro and Oxy-PAHs from Small Scale Boilers Fueled with Non-Woody Biomass. Atmos. Res. 2025, 316, 107954. [Google Scholar] [CrossRef]
- Libalova, H.; Zavodna, T.; Elzeinova, F.; Barosova, H.; Cervena, T.; Milcova, A.; Vankova, J.; Paradeisi, F.; Vojtisek-Lom, M.; Sikorova, J.; et al. The Genotoxicity of Organic Extracts from Particulate Emissions Produced by Neat Gasoline (E0) and a Gasoline–Ethanol Blend (E15) in BEAS-2B Cells. J. Xenobiotics 2024, 14, 1–14. [Google Scholar] [CrossRef]
- Venturini, E.; Vassura, I.; Zanetti, C.; Pizzi, A.; Toscano, G.; Passarini, F. Evaluation of Non-Steady State Condition Contribution to the Total Emissions of Residential Wood Pellet Stove. Energy 2015, 88, 650–657. [Google Scholar] [CrossRef]
- Křůmal, K.; Mikuška, P.; Horák, J.; Jaroch, M.; Hopan, F.; Kuboňová, L. Gaseous and Particulate Emissions from the Combustion of Hard and Soft Wood for Household Heating: Influence of Boiler Type and Heat Output. Atmos. Pollut. Res. 2023, 14, 101801. [Google Scholar] [CrossRef]
- Niu, X.; Liu, X.; Zhang, B.; Zhang, Q.; Xu, H.; Zhang, H.; Sun, J.; Ho, K. Health Benefits from Substituting Raw Biomass Fuels for Charcoal and Briquette Fuels: In Vitro Toxicity Analysis. Sci. Total Environ. 2023, 866, 161332. [Google Scholar] [CrossRef] [PubMed]
- Rajfur, M.; Zinicovscaia, I.; Yushin, N.; Świsłowski, P.; Wacławek, M. Moss-Bag Technique as an Approach to Monitor Elemental Concentration Indoors. Environ. Res. 2023, 238, 117137. [Google Scholar] [CrossRef]
- Shao, L.; Hou, C.; Geng, C.; Liu, J.; Hu, Y.; Wang, J.; Jones, T.; Zhao, C.; BéruBé, K. The Oxidative Potential of PM10 from Coal, Briquettes and Wood Charcoal Burnt in an Experimental Domestic Stove. Atmos. Environ. 2016, 127, 372–381. [Google Scholar] [CrossRef]
- Han, Y.; Chen, Y.; Feng, Y.; Song, W.; Cao, F.; Zhang, Y.; Li, Q.; Yang, X.; Chen, J. Different Formation Mechanisms of PAH during Wood and Coal Combustion under Different Temperatures. Atmos. Environ. 2020, 222, 117084. [Google Scholar] [CrossRef]
- CZSO Spotřeba Paliv A Energií V Domácnostech. Available online: https://csu.gov.cz/docs/107508/a4c376d2-6e77-df77-26cd-f9394bed3eca/15018922.pdf?version=1.0 (accessed on 1 July 2023).
Boiler | Over-Fire | Down-Draft | Gasification | Automatic |
---|---|---|---|---|
Boiler Type | Older, typical in Eastern Europe | Older, typical in Eastern Europe | Modern | Modern |
Fuel Transport | Manual | Manual | Manual | Automatic |
Reference fuel | Wood, Coke, Hard Coal | Brown Coal | Brown Coal, Wood | Brown Coal, Wood pellets |
Nominal heat output | 22.5 kW (wood), 30 kW (coke) | 32 kW | 20 kW | 25 kW |
Primary air | Primary air is directed through the grate to the fuel layer. | Primary air flows through the grate to the fuel. | Primary air is directed into the fuel chamber to initiate the gasification process. | Combustion air is introduced into the combustion zone through the cast-iron burner, partly flowing directly through the fuel layer in the middle part of the burner, and partly through the slits in the burner where the fuel rests on the upper part. |
Secondary air | Secondary air enters above the combustion chamber and heat exchanger. | Secondary air inlets are positioned on both the left and right sides of the boiler. The secondary air enters the flames in the initial part of the heat exchanger. | Secondary air is injected into the wood gas through nozzles between the fuel and combustion chambers. | Due to the integrated design, distinguishing between primary and secondary combustion air is difficult. |
Emissions | Class 1 (EN 303-5:1999) [24] | Class 2 (EN 303-5:1999) [24] | Class 3 (EN 303-5:2021) [25] | Class 5 (EN 303-5:2021) [25] |
Type of Boiler | Origin of Fuel | Type of Fuel | Granulometry/Mass of Wood Log | Moisture (%) |
---|---|---|---|---|
Over-fire boiler | Fossil fuel | Hard coal (nut 1) | 20 to 40 mm | 4.9 |
Brown coal (nut 1) | 20 to 40 mm | 29.4 | ||
Brown coal briquettes | 25 mm | 18.6 | ||
Biomass | Dry spruce logs | 0.5–1.5 kg | 12.2 | |
Wet spruce logs | 0.5–1.5 kg | 41.6 | ||
Down-draft boiler | Fossil fuel | Hard coal (nut 1) | 20 to 40 mm | 4.9 |
Brown coal (nut 1) | 20 to 40 mm | 29.4 | ||
Brown coal briquettes | 25 mm | 18.6 | ||
Biomass | Dry spruce logs | 0.5–1.5 kg | 8.5 | |
Wet spruce logs | 0.5–1.5 kg | 38.0 | ||
Gasification boiler | Fossil fuel | Brown coal (nut 1) | 20 to 40 mm | 29.4 |
Biomass | Dry spruce logs | 0.5–1.5 kg | 8.5 | |
Wet spruce logs | 0.5–1.5 kg | 40.1 | ||
Automatic boiler | Fossil fuel | Hard coal (nut 2) | 10 to 25 mm | 11.5 |
Brown coal (nut 2) | 10 to 25 mm | 18.7 | ||
Biomass | Wood pellets | 6 mm (diameter), 3–40 mm (length) | 6.0 |
TSP, g/GJ | 16PAHs, mg/GJ | ||||
---|---|---|---|---|---|
Boiler | Fuel | Mean | sd | Mean | sd |
Automatic | Hard coal | 45.7 | 6.2 | 411.6 | 63.0 |
Brown coal | 22.6 | 8.5 | 850.5 | 459.4 | |
Wood pellets | 17.6 | 9.9 | 288.8 | 42.8 | |
Gasification | Brown coal | 70.8 | 70.3 | 913.5 | 1021.2 |
Wet spruce | 303.4 | 174.4 | 6218.1 | 2404.8 | |
Dry spruce | 118.7 | 3.6 | 702.3 | 171.0 | |
Down-draft | Hard coal | 247.4 | 204.1 | 2780.0 | 942.1 |
Brown coal | 1162.5 | 141.6 | 3625.5 | 499.6 | |
Brown coal briquettes | 84.0 | 57.5 | 1783.9 | 559.7 | |
Wet spruce | 842.5 | 116.0 | 10,381.0 | 3985.8 | |
Dry spruce | 350.8 | 58.9 | 2846.9 | 396.9 | |
Over-fire | Hard coal | 2707.8 | 227.8 | 9039.6 | 4019.5 |
Brown coal | 3094.2 | 546.1 | 7003.7 | 781.9 | |
Brown coal briquettes | 916.5 | 280.6 | 6238.2 | 1910.3 | |
Wet spruce | 854.2 | 73.3 | 10,337.5 | 2426.9 | |
Dry spruce | 485.3 | 204.7 | 9315.6 | 2532.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikorova, J.; Hopan, F.; Kubonova, L.; Horak, J.; Milcova, A.; Rossner, P., Jr.; Ambroz, A.; Krpec, K.; Molchanov, O.; Zavodna, T. The Genotoxic Potential of Organic Emissions from Domestic Boilers Combusting Biomass and Fossil Fuels. Toxics 2025, 13, 619. https://doi.org/10.3390/toxics13080619
Sikorova J, Hopan F, Kubonova L, Horak J, Milcova A, Rossner P Jr., Ambroz A, Krpec K, Molchanov O, Zavodna T. The Genotoxic Potential of Organic Emissions from Domestic Boilers Combusting Biomass and Fossil Fuels. Toxics. 2025; 13(8):619. https://doi.org/10.3390/toxics13080619
Chicago/Turabian StyleSikorova, Jitka, Frantisek Hopan, Lenka Kubonova, Jiri Horak, Alena Milcova, Pavel Rossner, Jr., Antonin Ambroz, Kamil Krpec, Oleksandr Molchanov, and Tana Zavodna. 2025. "The Genotoxic Potential of Organic Emissions from Domestic Boilers Combusting Biomass and Fossil Fuels" Toxics 13, no. 8: 619. https://doi.org/10.3390/toxics13080619
APA StyleSikorova, J., Hopan, F., Kubonova, L., Horak, J., Milcova, A., Rossner, P., Jr., Ambroz, A., Krpec, K., Molchanov, O., & Zavodna, T. (2025). The Genotoxic Potential of Organic Emissions from Domestic Boilers Combusting Biomass and Fossil Fuels. Toxics, 13(8), 619. https://doi.org/10.3390/toxics13080619