Wood as Cultural Heritage Material: 2nd Edition

A special issue of Forests (ISSN 1999-4907). This special issue belongs to the section "Wood Science and Forest Products".

Deadline for manuscript submissions: 14 December 2024 | Viewed by 1567

Special Issue Editors


E-Mail Website
Guest Editor
National Research Council of Italy, Institute of BioEconomy (CNR-IBE), Sesto Fiorentino, Italy
Interests: wood science; archaeology; heritage conservation
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
National Research Council of Italy, Institute of BioEconomy (CNR-IBE), Sesto Fiorentino, Italy
Interests: wood aging; archaeological wood; waterlogged archaeological wood; wooden/table paintings; wooden statues; historic timber structures; historic wood dating
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Via San Bonaventura 13, 50145 Florence, Italy
Interests: hygro-mechanical behavior of wood and wooden artefacts; physical and mechanical characterization of wood

E-Mail Website
Guest Editor
Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Via San Bonaventura 13, 50145 Florence, Italy
Interests: wood science application to cultural heritage conservation; hygro-mechanical behavior of wood and wooden artefacts; numerical analysis of wooden cultural heritage and timber structures

E-Mail Website
Guest Editor
China Academy of Cultural Heritage, Beijing 100029, China
Interests: conservation; cultural heritage; wood object; waterlogged wood; archaeological wood; polymer

Special Issue Information

Dear Colleagues,

For thousands of years, humans have used wood as a raw material. We now consider as cultural heritage wooden-made constructions, structures, tools, and other artefacts. The preservation of such objects is of great importance today because they show the skills and knowledge of our past generations, together with their aesthetics. Several are the categories of wooden cultural heritage to be preserved, from buildings to painted panels, musical instruments, statues, furniture, buildings, boats, and archaeological wood, among others. The conservation of these objects is a complex task because of the biodegradable nature of wood and the various as well as different materials used to build them. In some cases, such as, for instance, musical instruments or buildings, preservation also involves the unique aspect of keeping their functionality. Additionally, the advancements in numerical modeling and finite element analysis have become feasible and effective tools in the structural analysis of wooden artifacts. Another crucial aspect of preserving wooden cultural heritage is the dating of wood, which provides useful information to conservators and restorers with which to better analyze objects.

Dr. Nicola Macchioni
Dr. Elisa Pecoraro
Dr. Paola Mazzanti
Dr. Lorenzo Riparbelli
Dr. Dawa Shen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Forests is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • wood aging
  • archaeological wood
  • waterlogged archaeological wood
  • painted panels
  • wooden statues
  • historical music instruments
  • historic furniture
  • historic timber structures
  • historic wood dating
  • historic wood numerical modeling
  • historic wood simulation

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

25 pages, 2065 KiB  
Review
Challenges and Prospects of Applying Nanocellulose for the Conservation of Wooden Cultural Heritage—A Review
by Paulina Kryg, Bartłomiej Mazela, Waldemar Perdoch and Magdalena Broda
Forests 2024, 15(7), 1174; https://doi.org/10.3390/f15071174 - 5 Jul 2024
Viewed by 517
Abstract
Nanocellulose is a nanostructured form of cellulose, which retains valuable properties of cellulose such as renewability, biodegradability, biocompatibility, nontoxicity, and sustainability and, due to its nano-sizes, acquires several useful features, such as low density, high aspect ratio and stiffness, a high specific surface [...] Read more.
Nanocellulose is a nanostructured form of cellulose, which retains valuable properties of cellulose such as renewability, biodegradability, biocompatibility, nontoxicity, and sustainability and, due to its nano-sizes, acquires several useful features, such as low density, high aspect ratio and stiffness, a high specific surface area, easy processing and functionalisation, and good thermal stability. All these make it a highly versatile green nanomaterial for multiple applications, including the conservation of cultural heritage. This review provides the basic characteristics of all nanocellulose forms and their properties and presents the results of recent research on nanocellulose formulations applied for conserving historical artefacts made of wood and paper, discussing their effectiveness, advantages, and disadvantages. Pure nanocellulose proves particularly useful for conserving historical paper since it can form a durable, stable coating that consolidates the surface of a degraded object. However, it is not as effective for wood consolidation treatment due to its poor penetration into the wood structure. The research shows that this disadvantage can be overcome by various chemical modifications of the nanocellulose surface; owing to its specific chemistry, nanocellulose can be easily functionalised and, thus, enriched with the properties required for an effective wood consolidant. Moreover, combining nanocellulose with other agents can also improve its properties, adding new functionalities to the developed supramolecular systems that would address multiple needs of degraded artefacts. Since the broad use of nanocellulose in conservation practice depends on its properties, price, and availability, the development of new, effective, green, and industrial-scale production methods ensuring the manufacture of nanocellulose particles with standardised properties is necessary. Nanocellulose is an interesting and very promising solution for the conservation of cultural heritage artefacts made of paper and wood; however, further thorough interdisciplinary research is still necessary to devise new green methods of its production as well as develop new effective and sustainable nanocellulose-based conservation agents, which would replace synthetic, non-sustainable consolidants and enable proper conservation of historical objects of our cultural heritage. Full article
(This article belongs to the Special Issue Wood as Cultural Heritage Material: 2nd Edition)
Show Figures

Graphical abstract

41 pages, 80924 KiB  
Review
The Pivotal Role of Microscopy in Unravelling the Nature of Microbial Deterioration of Waterlogged Wood: A Review
by Adya P. Singh, Jong Sik Kim, Ralf Möller, Ramesh R. Chavan and Yoon Soo Kim
Forests 2024, 15(5), 889; https://doi.org/10.3390/f15050889 - 20 May 2024
Viewed by 708
Abstract
This review focuses on the pivotal role microscopy has played in diagnosing the type(s) of microbial attacks present in waterlogged ancient wooden objects, and to understand the nature and extent of deterioration of such objects. The microscopic journey began with the application of [...] Read more.
This review focuses on the pivotal role microscopy has played in diagnosing the type(s) of microbial attacks present in waterlogged ancient wooden objects, and to understand the nature and extent of deterioration of such objects. The microscopic journey began with the application of light microscopy (LM) to examine the deterioration of waterlogged woods, notably foundation piles supporting historic buildings, progressing into the use of high-resolution imaging tools (SEM and TEM) and techniques. Although bacteria were implicated in the deterioration of foundation piles, confirmation that bacteria can indeed degrade wood in its native state came when decaying wood from natural environments was examined using electron microscopy, particularly TEM, which enabled bacterial association with cell wall regions undergoing degradation to be clearly resolved. The information base has been a catalyst, stimulating numerous studies in the past three decades or so to understand the nature of microbial degradation of waterlogged archaeological wood more precisely, combining LM, SEM, and TEM with high-resolution chemical analytical methods, including chemical microscopy. The emerging information is aiding targeted developments towards a more effective conservation of ancient wooden objects as they begin to be uncovered from burial and waterlogging environments. Full article
(This article belongs to the Special Issue Wood as Cultural Heritage Material: 2nd Edition)
Show Figures

Figure 1

Back to TopTop