Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (187)

Search Parameters:
Keywords = okra

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2361 KiB  
Article
Abelmoschus esculentus Ameliorates Cognitive Impairment in Hyperlipidemic ApoE−/− Mice via Modulation of Oxidative Stress and Neuronal Differentiation
by Chiung-Huei Peng, Hsin-Wen Liang, Chau-Jong Wang, Chien-Ning Huang and Huei-Jane Lee
Antioxidants 2025, 14(8), 955; https://doi.org/10.3390/antiox14080955 (registering DOI) - 4 Aug 2025
Viewed by 35
Abstract
Cardiovascular disease (CVD) and dementia may share common pathogenic factors such as atherosclerosis and hyperlipoproteinemia. Dyslipidemia-induced oxidative stress contributes to dementia comorbidity in CVD. Abelmoschus esculentus (AE, okra) potentiates in alleviating hyperlipidemia and diabetes-related cognitive impairment. This study evaluated the effects of AE [...] Read more.
Cardiovascular disease (CVD) and dementia may share common pathogenic factors such as atherosclerosis and hyperlipoproteinemia. Dyslipidemia-induced oxidative stress contributes to dementia comorbidity in CVD. Abelmoschus esculentus (AE, okra) potentiates in alleviating hyperlipidemia and diabetes-related cognitive impairment. This study evaluated the effects of AE in hyperlipidemic ApoE−/− mice treated with streptozotocin (50 mg/kg) and fed a high-fat diet (17% lard oil, 1.2% cholesterol). AE fractions F1 or F2 (0.65 mg/kg) were administered for 8 weeks. AE significantly reduced serum LDL-C, HDL-C, triglycerides, and glucose, improved cognitive and memory function, and protected hippocampal neurons. AE also lowered oxidative stress markers (8-hydroxy-2′-deoxyguanosine, 8-OHdG) and modulated neuronal nuclei (NeuN) and doublecortin (DCX) expression. In vitro, AE promoted neurite outgrowth and neuronal differentiation in retinoic acid (RA)-differentiated human SH-SY5Y cells under metabolic stress (glucose and palmitate), alongside the upregulation of heme oxygenase-1 (HO-1), Nuclear factor-erythroid 2-related factor 2 (Nrf2), and brain-derived neurotrophic factor (BDNF). These findings suggest AE may counter cognitive decline via oxidative stress regulation and the enhancement of neuronal differentiation. Full article
Show Figures

Graphical abstract

17 pages, 4532 KiB  
Article
Nitric Oxide Modulates Postharvest Physiology to Maintain Abelmoschus esculentus Quality Under Cold Storage
by Xianjun Chen, Fenghuang Mo, Ying Long, Xiaofeng Liu, Yao Jiang, Jianwei Zhang, Cheng Zhong, Qin Yang and Huiying Liu
Horticulturae 2025, 11(7), 857; https://doi.org/10.3390/horticulturae11070857 - 20 Jul 2025
Viewed by 271
Abstract
Cold storage is widely used for the postharvest preservation of fruits and vegetables; however, okra, as a tropical vegetable, is susceptible to chilling injury under low-temperature storage conditions, leading to quality deterioration, reduced nutritional value, and significant economic losses. Nitric oxide (NO), as [...] Read more.
Cold storage is widely used for the postharvest preservation of fruits and vegetables; however, okra, as a tropical vegetable, is susceptible to chilling injury under low-temperature storage conditions, leading to quality deterioration, reduced nutritional value, and significant economic losses. Nitric oxide (NO), as an important signaling molecule, plays a crucial role in the postharvest preservation of fruits and vegetables. To investigate the effects of different concentrations of nitric oxide on the postharvest quality of okra under cold storage, fresh okra pods were treated with sodium nitroprusside (SNP), a commonly used NO donor, at concentrations of 0 (control), 0.5 (T1), 1.0 (T2), 1.5 (T3), and 2.0 mmol·L−1 (T4). The results showed that low-concentration NO treatment (T1) significantly reduced weight loss, improved texture attributes including hardness, springiness, chewiness, resilience, and cohesiveness, and suppressed the increase in adhesiveness. T1 treatment also effectively inhibited excessive accumulation of cellulose and lignin, thereby maintaining tissue palatability and structural integrity. Additionally, T1 significantly delayed chlorophyll degradation, preserved higher levels of soluble sugars and proteins, and enhanced the activities of key antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), contributing to improved oxidative stress resistance and membrane stability. In contrast, high-concentration NO treatments (T3 and T4) led to pronounced quality deterioration, characterized by accelerated membrane lipid peroxidation as evidenced by increased malondialdehyde (MDA) content and relative conductivity, and impaired antioxidant defense, resulting in rapid texture degradation, chlorophyll loss, nutrient depletion, and oxidative damage. These findings provide theoretical insights and practical guidance for the precise application of NO in extending shelf life and maintaining the postharvest quality of okra fruits. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

17 pages, 2912 KiB  
Article
Effects of Encapsulation and In Vitro Digestion on Anthocyanin Composition and Antioxidant Activity of Raspberry Juice Powder
by Mokgaetji Johanna Mokale, Sreejarani Kesavan Pillai and Dharini Sivakumar
Foods 2025, 14(14), 2492; https://doi.org/10.3390/foods14142492 - 16 Jul 2025
Viewed by 320
Abstract
Microbeads of raspberry extract were produced using encapsulation matrices alginate + pea protein isolate + psyllium mucilage, alginate + pea protein isolate + psyllium mucilage + okra, and alginate + pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic [...] Read more.
Microbeads of raspberry extract were produced using encapsulation matrices alginate + pea protein isolate + psyllium mucilage, alginate + pea protein isolate + psyllium mucilage + okra, and alginate + pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic acid using freeze-drying method. The microbeads were characterised and assessed for their effectiveness on the release, bioaccessibility, of anthocyanin components and antioxidant activities during in vitro digestion. Alginate + pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic acid matrix showed the highest encapsulation efficiency of 91.60% while the lowest encapsulation efficiency was observed in alginate + pea protein isolate + psyllium mucilage + okra (69.94%). Scanning electron microscope images revealed spherical shapes and varying surface morphologies for different encapsulation matrices. Despite the differences observed in Fourier transform infrared spectra, microbeads showed similar thermal degradation patterns. X-ray diffractograms showed amorphous structures for different encapsulation matrices. Comparatively, alginate+ pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic acid microbeads exhibited the highest bioaccessibility for total phenols (93.14%), cyanidin-3-O-sophoroside (54.61%), and cyanidin-3-O-glucoside (55.30%). The encapsulation matrices of different biopolymer combinations (alginate+ pea protein isolate+ psyllium mucilage, alginate + pea protein isolate + psyllium mucilage + okra, and alginate + pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic acid) enhanced anthocyanin stability and protected it against in vitro degradation of bioactive compounds. Full article
Show Figures

Graphical abstract

28 pages, 3637 KiB  
Article
Okra Flower Polysaccharide–Pea Protein Conjugates Stabilized Pickering Emulsion Enhances Apigenin Stability, Bioaccessibility, and Intestinal Absorption In Vitro
by Nuo Zhang, Jiale You, Xiaoli Yan, Hongchen Ji, Wenxuan Ji, Zhengyu Liu, Min Zhang, Peng Liu, Panpan Yue, Zain Ullah, Ting Zhao and Liuqing Yang
Foods 2025, 14(11), 1923; https://doi.org/10.3390/foods14111923 - 28 May 2025
Viewed by 716
Abstract
The covalent interactions of polysaccharides and protein can improve the emulsification and stability of Pickering emulsions, which are promising systems for the delivery of active substances. Okra flowers, which commonly represent agricultural waste, have high-viscosity polysaccharides that can be used for the development [...] Read more.
The covalent interactions of polysaccharides and protein can improve the emulsification and stability of Pickering emulsions, which are promising systems for the delivery of active substances. Okra flowers, which commonly represent agricultural waste, have high-viscosity polysaccharides that can be used for the development of protein–polysaccharide-based emulsifiers. In this study, the Maillard reaction was performed under optimized conditions (70 °C, pH 10, and 12 h) with a 1:1 mass ratio to generate pea protein isolate (PPI)–okra flower polysaccharide (OP) conjugate with the highest grafting degree of 22.80 ± 0.26%. The covalent binding of OP facilitated variations in the secondary and tertiary structures of PPI, decreasing its particle size (from 535.70 to 212.05 nm) and zeta-potential (from −30.37 to −44.39 mV). The emulsifying stability of the emulsion stabilized by OP-PPI conjugates was significantly improved due to the formation of a stable interfacial layer, showing an 80.39% increase compared to that of free PPI. Simultaneously, the emulsions prepared with the conjugates demonstrated excellent stability across diverse environmental conditions by enhancing the interaction between the lipid and protein. Moreover, the conjugate-stabilized emulsion not only exhibited a higher encapsulation efficiency of 91.52 ± 0.75% and superior protective efficacy but also controlled the release of apigenin (API) during gastrointestinal digestion, achieving the highest API bioaccessibility (74.58 ± 1.19%). Furthermore, it also contributed to the absorption and transmembrane transport efficiency of API in Caco-2 cells, improving its bioavailability. These results confirmed that covalent conjugation with OP is a valuable strategy for enhancing the emulsifying features of PPI. The PPI–OP emulsion delivery system holds great potential for nutrient delivery. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

20 pages, 1641 KiB  
Article
The Protective Effects of Pectic Polysaccharides on Dextran Sulfate Sodium-Induced Colitis in Drosophila melanogaster and Their Structure–Function Relationships
by Zhenou Sun, Tianyu Qi, Boyu Cheng, Yingxiao Guo, Dima Atehli, Steve W. Cui, Ji Kang and Qingbin Guo
Nutrients 2025, 17(10), 1738; https://doi.org/10.3390/nu17101738 - 20 May 2025
Viewed by 598
Abstract
Background: Pectic polysaccharides exhibit therapeutic potential against intestinal inflammation. However, the influence of structural variations on their efficacy remains largely unexplored. Methods: This study investigated the structural and anti-inflammatory relationships of okra pectin (OP), citrus pectin (CP), apple pectin (AP), and hawthorn pectin [...] Read more.
Background: Pectic polysaccharides exhibit therapeutic potential against intestinal inflammation. However, the influence of structural variations on their efficacy remains largely unexplored. Methods: This study investigated the structural and anti-inflammatory relationships of okra pectin (OP), citrus pectin (CP), apple pectin (AP), and hawthorn pectin (HP). Based on FT-IR spectra, CP was identified as a high-methoxyl pectin, with a degree of methyl esterification (DM) of 72.07 ± 3.86%. OP, AP, and HP were low-methoxyl pectins with the following DM values: 19.34 ± 3.04%, 32.11 ± 1.71%, and 38.67 ± 2.75%, respectively. Results: Monosaccharide composition analysis revealed that OP exhibited the highest abundance of RG-I regions among all the samples. Homogalacturonan (HG) was the predominant structural region in AP and HP, while CP contained both of the aforementioned structural regions. Our findings demonstrated that OP and CP significantly ameliorated dextran sulfate sodium (DSS)-induced colitis in the wild-type Drosophila melanogaster strain w1118, as evidenced by improved intestinal morphology, reinforced intestinal barrier function, and enhanced locomotor and metabolic activity. These effects were mediated by the inhibition of JAK/STAT signaling and the activation of the Nrf2/Keap1 pathway. Notably, reducing the molecular weight of CP to 18.18 kDa significantly enhanced its therapeutic efficacy, whereas a reduction in OP molecular weight to 119.12 kDa extended its median lifespan. Conclusions: These findings first suggest that abundant RG-I structures and low molecular weight endowed pectins with significant anti-inflammatory activity. Full article
Show Figures

Figure 1

23 pages, 8255 KiB  
Article
Growth and Floral Induction in Okra (Abelmoschus esculentus L.) Under Blue and Red LED Light and Their Alternation
by Yao Hervé Yao, Banah Florent Degni, Pascal Dupuis, Laurent Canale, Arouna Khalil Fanny, Cissé Théodore Haba and Georges Zissis
Horticulturae 2025, 11(5), 548; https://doi.org/10.3390/horticulturae11050548 - 19 May 2025
Cited by 1 | Viewed by 1025
Abstract
Okra (Abelmoschus esculentus) is a tropical vegetable with high nutritional and economic value. Rich in fiber, vitamins (C, K, and B9), and minerals (magnesium, potassium, calcium, and iron), it contributes to food security in many tropical regions. Global production is estimated [...] Read more.
Okra (Abelmoschus esculentus) is a tropical vegetable with high nutritional and economic value. Rich in fiber, vitamins (C, K, and B9), and minerals (magnesium, potassium, calcium, and iron), it contributes to food security in many tropical regions. Global production is estimated at 11.5 million tons in 2023, 62% of which will come from India. Nigeria, Mali, Sudan, Pakistan, and Côte d’Ivoire are also among the major producers. Given its economic importance, optimizing its growth through controlled methods such as greenhouse cultivation and light-emitting diode (LED) lighting is a strategic challenge. Energy-efficient LED horticultural lighting offers promising prospects, but each plant variety reacts differently depending on the light spectrum, intensity, and duration of exposure (photoperiod). This study evaluated the effects of different LED spectra on okra’s flowering after 30 days of growth using B (blue, 445 nm) and R (red, 660 nm) LED lights and red-blue alternating in a three-day cycle (R3B3) by alternating the photoperiod from 14 to 10 h. Outdoor and greenhouse conditions served as controls. The results show that the R3B3 treatment improves germination in terms of both speed and percentage. However, plant growth (height, stem diameter, and leaf area) remains higher in the control group. R3B3 and red light stimulate leaf and node development. Flowering occurs earlier in the control group (51 days) and later under LED, particularly blue (73 days). Fruit diameter after petal fall was also larger in the control group. These results confirm the sensitivity of okra to photoperiod and light quality, and highlight the potential of spectral and photoperiod manipulation to regulate flowering in controlled-environment agriculture. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

17 pages, 4152 KiB  
Article
Characterization of Okra Seed Protein/Rutin Covalent Complex and Its Application in Nanoemulsions
by Chengyun He, Lu Bai, Yingxuan Zhou, Benguo Liu and Sheng Geng
Foods 2025, 14(10), 1672; https://doi.org/10.3390/foods14101672 - 9 May 2025
Viewed by 533
Abstract
A covalent complex of okra seed protein (OSP) and rutin was prepared using the alkali-induced method and characterized. Its application in nanoemulsions was also evaluated. Multi-spectral analysis confirmed the formation of the covalent complex, with OSP as the main body. With an increasing [...] Read more.
A covalent complex of okra seed protein (OSP) and rutin was prepared using the alkali-induced method and characterized. Its application in nanoemulsions was also evaluated. Multi-spectral analysis confirmed the formation of the covalent complex, with OSP as the main body. With an increasing rutin dosage during the preparation process, the amount of rutin in the complex progressively ascended, and the α-helix structure and surface hydrophobicity of the complex gradually declined. The complex exhibited remarkable ABTS radical scavenging capacity and reducing power, which were proportional to the total phenolic content. The OSP/rutin complex could be utilized for the fabrication of O/W nanoemulsions, which remained stable in terms of droplet size and appearance after 28 days of storage at both 4 °C and 25 °C. Furthermore, lipid oxidation in the nanoemulsion stabilized by the OSP/rutin covalent complex could be effectively inhibited, and the emulsion could enhance the UV irradiation resistance of lutein loaded in the oil phase. Our results can provide a reference for the development of protein–polyphenol covalent complexes. Full article
Show Figures

Figure 1

15 pages, 4838 KiB  
Article
Jasmonic Acid-Mediated Antioxidant Defense Confers Chilling Tolerance in Okra (Abelmoschus esculentus L.)
by Weixia Liu, Jielin Wang, Dan Zhu, Xiaomin Yin, Gongfu Du, Yuling Qin, Zhiyuan Zhang and Ziji Liu
Plants 2025, 14(7), 1100; https://doi.org/10.3390/plants14071100 - 2 Apr 2025
Viewed by 558
Abstract
Chilling stress inhibits the growth of okra (Abelmoschus esculentus L.), reduces its overall agricultural yield, and deteriorates fruit quality. Therefore, it is crucial to elucidate the mechanism through which okra plants respond to chilling stress. This study investigates the molecular mechanisms of [...] Read more.
Chilling stress inhibits the growth of okra (Abelmoschus esculentus L.), reduces its overall agricultural yield, and deteriorates fruit quality. Therefore, it is crucial to elucidate the mechanism through which okra plants respond to chilling stress. This study investigates the molecular mechanisms of chilling tolerance by comparing the transcriptome and metabolome of chilling-tolerant (Ae182) and chilling-sensitive (Ae171) okra varieties. We found that Ae182 exhibits higher antioxidant enzyme activities, including SOD, POD, CAT, and APX, suggesting it mitigates oxidative stress more effectively than Ae171. Metabolomics analysis revealed that Ae182 produces higher levels of jasmonic acid (JA) and JA-isoleucine (JA-Ile) under chilling stress, potentially activating genes that alleviate oxidative damage. Additionally, integrated analyses identified key transcription factors, such as AP2, BHLH, and MYB, associated with JA and chilling stress. These findings provide candidate genes for further research on chilling resistance in okra. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

17 pages, 1500 KiB  
Article
Weather-Driven Predictive Models for Jassid and Thrips Infestation in Cotton Crop
by Rubab Shafique, Sharzil Haris Khan, Jihyoung Ryu and Seung Won Lee
Sustainability 2025, 17(7), 2803; https://doi.org/10.3390/su17072803 - 21 Mar 2025
Cited by 2 | Viewed by 921
Abstract
Agriculture is a vital contributor to global food security but faces escalating threats from environmental fluctuations and pest incursions. Among the most prevalent and destructive pests, Jassid (Amrasca biguttula) and Thrips (Thrips tabaci) frequently afflict cotton, okra, and other [...] Read more.
Agriculture is a vital contributor to global food security but faces escalating threats from environmental fluctuations and pest incursions. Among the most prevalent and destructive pests, Jassid (Amrasca biguttula) and Thrips (Thrips tabaci) frequently afflict cotton, okra, and other major crops, resulting in substantial yield losses worldwide. This paper integrates five machine learning (ML) models to predict pest incidence based on key meteorological attributes, including temperature, relative humidity, wind speed, sunshine hours, and evaporation. Two ensemble strategies, soft voting and stacking, were evaluated to enhance predictive performance. Our findings indicate that a stacking ensemble yields superior results, achieving high multi-class AUC scores (0.985). To demystify the underlying mechanisms of the best-performing ensemble, this study employed SHapley Additive exPlanations (SHAP) to quantify the contributions of individual weather parameters. The SHAP analysis revealed that Standard Meteorological Week, evaporation, and relative humidity consistently exert the strongest influence on pest forecasts. These insights align with biological studies highlighting the role of seasonality and humid conditions in fostering Jassid and Thrips proliferation. Importantly, this explainable approach bolsters the practical utility of AI-based solutions for integrated pest management (IPM), enabling stakeholders—farmers, extension agents, and policymakers—to trust and effectively operationalize data-driven recommendations. Future research will focus on integrating real-time weather data and satellite imagery to further enhance prediction accuracy, as well as incorporating adaptive learning techniques to refine model performance under varying climatic conditions. Full article
Show Figures

Figure 1

13 pages, 6924 KiB  
Article
Evaluation of Nano-Niclosamide in Killing Demodex folliculorum In Vitro and the Potential Application in Ocular Surface
by Jiani Li, Panqin Ma, Shujia Guo, Danyi Qin, Yuqian Wang, Yuwen Liu, Zixuan Yang, Caihong Huang, Yi Han and Zuguo Liu
Pharmaceutics 2025, 17(3), 332; https://doi.org/10.3390/pharmaceutics17030332 - 4 Mar 2025
Viewed by 1103
Abstract
Background/Objectives: Blepharitis is a condition often caused by Demodex folliculorum infestations, resulting in significant ocular discomfort and surface damage. Current treatments offer only temporary relief and fail to eliminate mites effectively. This study evaluates nano-niclosamide (nano-NCL), a lipophilic nanosuspension designed to enhance solubility [...] Read more.
Background/Objectives: Blepharitis is a condition often caused by Demodex folliculorum infestations, resulting in significant ocular discomfort and surface damage. Current treatments offer only temporary relief and fail to eliminate mites effectively. This study evaluates nano-niclosamide (nano-NCL), a lipophilic nanosuspension designed to enhance solubility and permeability, for targeting Demodex folliculorum. Methods: Nano-NCL was characterized by particle size, zeta potential, transmission electron microscopy, pH measurement, bacterial culture, and HPLC. Viable Demodex mites were collected from patients’ eyelashes and assigned to six treatment groups: DDW, F127, 0.15% nano-NCL, 0.3% nano-NCL, 20% TTO, and Okra. Mite survival was analyzed using Kaplan–Meier curves. The ocular surface safety was assessed via slit-lamp examination, corneal fluorescein staining, and in vivo confocal microscopy. Results: The nano-NCL particles are uniformly rod-shaped, approximately 291 nm in size, and exhibit good stability, remaining suspended in various media for up to 20 days. The formulation has a stable pH of 6 and demonstrated no bacterial growth, indicating sterility and suitability for clinical use. In vitro, both 0.15% (w/v) and 0.30% (w/v) nano-NCL significantly reduced Demodex survival, with mortality rates ranging from 70.6% to 92.3% within 2 h. Safety evaluations showed minimal corneal staining and inflammation. Notably, 0.15% nano-NCL displayed efficacy comparable to that of 20% tea tree oil (TTO) and Okra, which are established anti-Demodex treatments. Conclusions: Nano-NCL, particularly at 0.15%, rapidly eliminates mites while maintaining excellent ocular tolerability, making it a promising treatment for Demodex-related ocular surface diseases. Full article
(This article belongs to the Special Issue Nanoparticles for Local Drug Delivery)
Show Figures

Figure 1

19 pages, 7829 KiB  
Article
Development of Bioactive Edible Film and Coating Obtained from Spirogyra sp. Extract Applied for Enhancing Shelf Life of Fresh Products
by Siriwan Soiklom, Wipada Siri-anusornsak, Krittaya Petchpoung, Sumpan Soiklom and Thanapoom Maneeboon
Foods 2025, 14(5), 804; https://doi.org/10.3390/foods14050804 - 26 Feb 2025
Cited by 1 | Viewed by 1678
Abstract
The growing interest in environmentally friendly food packaging has led to the development of bio-edible alternatives. This study developed novel, edible, active films and coatings to enhance the shelf life of fresh products. Crude bioactive algal extract (CBAE) was obtained from the ethanol [...] Read more.
The growing interest in environmentally friendly food packaging has led to the development of bio-edible alternatives. This study developed novel, edible, active films and coatings to enhance the shelf life of fresh products. Crude bioactive algal extract (CBAE) was obtained from the ethanol extraction of Spirogyra sp. and incorporated into chitosan-based films and coatings at varying concentrations. The CBAE was rich in phenolic compounds and had antioxidant activity and potential antibacterial properties. The films were prepared using a solvent-casting method and characterized for their biochemical and physical properties. The incorporation of CBAE enhanced the antioxidant activity and improved the tensile strength of the films by 80%. Additionally, film transparency and water vapor permeability were reduced by 13% and 50%, respectively, compared to the control. The developed CBAE coating solution exhibited biocompatibility with human colon adenocarcinoma (HT-29) and mouse subcutaneous connective tissue (L929) fibroblast cells. A shelf-life evaluation using a coating-dipping method on okra showed that the CBAE-coated samples maintained better weight retention and firmness than the uncoated samples over 5 days of storage at ambient temperature. Based on these findings, the CBAE-based edible films and coatings could serve as sustainable alternatives for extending the shelf life of fresh products. Full article
(This article belongs to the Special Issue Bioactive Packaging for Preventing Food Spoilage)
Show Figures

Graphical abstract

17 pages, 3485 KiB  
Article
Effect of Cattails (Typha angustifolia L.) Biochar on Soil Fertility and Okra Productivity as an Effective Eco-Friendly Soil Amendment
by Muntaha Munir, Aisha Nazir, Adam Khan, Sidra Saleem and Hamada E. Ali
Sustainability 2025, 17(4), 1675; https://doi.org/10.3390/su17041675 - 18 Feb 2025
Viewed by 1123
Abstract
The conversion of aquatic biomass into biochar offers a sustainable strategy for improving soil fertility and mitigating ecological imbalances caused by its rapid proliferation. In this study, Typha angustifolia, a widely distributed aquatic weed, was utilized for biochar production. Three biochar types [...] Read more.
The conversion of aquatic biomass into biochar offers a sustainable strategy for improving soil fertility and mitigating ecological imbalances caused by its rapid proliferation. In this study, Typha angustifolia, a widely distributed aquatic weed, was utilized for biochar production. Three biochar types (TABC400, TABC500, and TABC600) were synthesized through pyrolysis at 400 °C, 500 °C, and 600 °C temperature. It was hypothesized that Typha angustifolia biochar would positively influence the growth and development of okra (Abelmoschus esculentus L.). The results demonstrate that biochar yield subsequently decreases with increasing pyrolysis temperature, with the highest yield at 400 °C temperature (49.03%), followed by 500 °C (38.02%) and 600 °C temperature (32.01%). However, carbon content 67.01 to 83.12%, higher heating value (17.31 to 27.42 MJ/kg), and mineral contents (K, Mg, P, Ca, Fe, Cu, Zn) increase significantly with higher pyrolysis temperature. However, oxygen, hydrogen, nitrogen, bulk density, moisture contents, and volatile context exhibited an inverse relationship with pyrolysis temperature, highlighting biochar stability and its potential for soil amendment. Among the three synthesized biochar, the 4%TABC600 (600 °C) revealed the most substantial improvement in plant height (110.11 ± 4.12 cm), plant dry biomass (6.12 ± 0.41 gm), and chlorophyll contact (39.34 ± 3.33 SPAD values), whereas the 2% and 6% TABC600 demonstrated significant influence on fruit yield (9.11 ± 2.11 gm) and fruit weight (750.44 ± 7.83 g), and chlorophyll contact (32–38 SPAD values). Based on our results, we can conclude that Typha angustifolia biochar prepared at 600 °C (TABC600) has great potential as a biofertilizer, promoting soil fertility and growth and development of crops, particularly for vegetable cultivation such as okra. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

21 pages, 2207 KiB  
Article
Characterization of a Diverse Okra (Abelmoschus esculentus L. Moench) Germplasm Collection Based on Fruit Quality Traits
by Mehtap Yildiz, Sibel Turan Sirke, Metin Koçak, İbrahim Mancak, Aslıhan Agar Özkaya, Kazım Abak, Okan Özkaya and Pablo Federico Cavagnaro
Plants 2025, 14(4), 565; https://doi.org/10.3390/plants14040565 - 12 Feb 2025
Viewed by 1072
Abstract
Okra is an important dietary component of many Asian countries, providing high levels of dietary fiber, phytonutrients (e.g., antioxidant vitamins and pigments), and essential minerals. Evaluation of okra germplasm collections can improve the curation of genebanks and help identify superior materials for breeding. [...] Read more.
Okra is an important dietary component of many Asian countries, providing high levels of dietary fiber, phytonutrients (e.g., antioxidant vitamins and pigments), and essential minerals. Evaluation of okra germplasm collections can improve the curation of genebanks and help identify superior materials for breeding. In this study, 66 okra accessions from diverse geographical origins were characterized based on fruit quality traits, including fruit fresh (FFW) and dry weights (FDW), dry matter (DM), diameter, length, and diameter of the fruit peduncle; concentration of vitamin C, chlorophyll a and b, and total chlorophyll; and color-chroma values. Significant (p < 0.05) and substantial variation was found among the accessions for all traits. Mean FFW and FDW varied nearly three-fold, with ranges of 3.76–9.99 g and 0.43–1.34 g, respectively, with a range in DM content of 10.5–19.4%. Vitamin C and total chlorophyll content varied 6.4- and 8.3-fold, with ranges of 12.8–82.8 and 1.07–8.91 mg/100 g fw, respectively, with substantial variation also observed in chlorophyll composition. Significant positive correlations were found between vitamin C and total and subtypes of chlorophyll levels (r = 0.29–0.32), whereas the strongest correlations were between FFW and FDW (r = 0.88) and between total chlorophyll and chlorophyll subtypes a and b (r = 0.90–0.95). Additionally, a dendrogram constructed based on these phenotypic data grouped the accessions in general agreement with their geographical origins and fruit traits. Overall, our results revealed broad phenotypic diversity in the evaluated germplasm, which is exploitable in okra breeding programs aimed at increasing fruit quality and nutraceutical value. Full article
(This article belongs to the Special Issue Characterization and Conservation of Vegetable Genetic Resources)
Show Figures

Figure 1

22 pages, 4234 KiB  
Article
Increasing Productivity and Recovering Nutritional, Organoleptic, and Nutraceutical Qualities of Major Vegetable Crops for Better Dietetics
by Raju Lal Bhardwaj, Latika Vyas, Mahendra Prakash Verma, Suresh Chand Meena, Anirudha Chattopadhyay, Neeraj Kumar Meena, Dan Singh Jakhar and Sita Ram Kumawat
Foods 2025, 14(2), 254; https://doi.org/10.3390/foods14020254 - 15 Jan 2025
Cited by 2 | Viewed by 1351
Abstract
The intensive use of chemical fertilizers for vegetable cultivation to achieve higher productivity causes soil degradation, resulting in an alarming decline (25–50%) in nutritional quality and a reduction in a wide variety of nutritionally essential minerals and nutraceutical compounds in high-yielding vegetable crops [...] Read more.
The intensive use of chemical fertilizers for vegetable cultivation to achieve higher productivity causes soil degradation, resulting in an alarming decline (25–50%) in nutritional quality and a reduction in a wide variety of nutritionally essential minerals and nutraceutical compounds in high-yielding vegetable crops over the last few decades. To restore the physio-chemical and biological qualities of soil as well as the nutritional and nutraceutical qualities of fresh produce, there is a growing desire to investigate the remedial impacts of organic sources of nutrition. This study specifically focused on the impact of six different ratios of chemical fertilizers and organic sources with microbial inoculation on vegetable productivity, nutrition quality, and soil health parameters. Results show that replacing chemical fertilizers with organic sources in the presence of a microbial consortium supports the proliferation of the microbial population in the soil rhizosphere and improves the nutritional status and physico-chemical quality of soil, which is the area around the roots of plants where maximum nutrient uptake occurs. This combination of factors significantly recovers overall soil quality, increasing crop productivity by 13.58 to 18.32 percent in tomato, brinjal, and okra. Experimental findings likewise indicate that an assortment of organic sources with a microbial consortium significantly recovers the abundance of beneficial microbes and earthworms in the rhizosphere, which leads to an improvement in nutritional, organoleptic, and nutraceutical quality, with higher antioxidant contents in all three vegetables grown in arid climate conditions. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

35 pages, 852 KiB  
Review
An Overview of the Current Scientific Evidence on the Biological Properties of Abelmoschus esculentus (L.) Moench (Okra)
by Carsten Tsun-Ka Kwok, Yam-Fung Ng, Hei-Tung Lydia Chan and Shun-Wan Chan
Foods 2025, 14(2), 177; https://doi.org/10.3390/foods14020177 - 8 Jan 2025
Cited by 3 | Viewed by 4622
Abstract
Abelmoschus esculentus (L.) Moench, commonly known as okra or lady’s finger, is an annual flowering plant belonging to the Malvaceae family. Okra is a native plant in Africa as well as a traditional medicine in Africa and India for treating different diseases and [...] Read more.
Abelmoschus esculentus (L.) Moench, commonly known as okra or lady’s finger, is an annual flowering plant belonging to the Malvaceae family. Okra is a native plant in Africa as well as a traditional medicine in Africa and India for treating different diseases and conditions. Today, okra is widely consumed as a vegetable and is increasingly recognized as a superfood due to its rich nutritional profile and potential pharmacological benefits. Research indicates that okra exhibits a range of biological activities, including antidiabetic, antihyperlipidemic, antifatigue, vasoprotective, hepatoprotective, antitumor, anti-inflammatory, and antimicrobial effects. Despite its promising therapeutic potential, research on the active compounds in okra and evaluating efficacy in clinical settings remains limited. This review aims to consolidate existing scientific knowledge on the biological and pharmacological properties of okra, thereby encouraging further investigation into its health benefits. Ultimately, this could pave the way for the development of functional foods or health supplements that leverage okra as a key ingredient to prevent chronic diseases and enhance overall health outcomes. Full article
(This article belongs to the Special Issue Functional Food and Safety Evaluation: Second Edition)
Show Figures

Graphical abstract

Back to TopTop