Okra Flower Polysaccharide–Pea Protein Conjugates Stabilized Pickering Emulsion Enhances Apigenin Stability, Bioaccessibility, and Intestinal Absorption In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Preparation of Okra Flower Polysaccharides
2.3. Preparation of PPI–OP Maillard Conjugates
2.4. Determination of Grafting of PPI–OP Conjugates
2.5. The Structure Features of PPI–OP Conjugates
2.5.1. Fourier Transform Infrared Spectroscopy (FTIR)
2.5.2. Circular Dichroism (CD)
2.5.3. Intrinsic Fluorescence
2.5.4. Particle Size and Zeta-Potential
2.5.5. Turbidity
2.5.6. Scanning Electron Microscopy (SEM)
2.6. Preparation of Emulsion
2.7. Characterization of PPI–OP Conjugate-Stabilized Pickering Emulsions
2.7.1. Emulsifying Property
2.7.2. Microstructure Observation of Pickering Emulsions
Optical Microscope
Confocal Laser Scanning Microscope (CLSM)
2.7.3. Emulsion Stability Evaluation
2.7.4. Raman Spectra Analysis
2.7.5. Rheological Characterization
2.8. Preparation of Pickering Emulsions Loaded with Apigenin (API)
2.9. Stability Determination of API in Emulsion
2.10. In Vitro Digestion, Absorption, and Transport Investigation
2.10.1. Controlled Release
2.10.2. Caco-2 Cell Viability Assay
2.10.3. Establishment of the Caco-2 Cell Absorption Model
2.10.4. Transport and Uptake of API by Caco-2 Cells
2.11. Statistical Analysis
3. Results and Discussion
3.1. Features of the Structure of PPI–OP Conjugates
3.1.1. FTIR Analysis
3.1.2. CD Analysis
3.1.3. Intrinsic Fluorescence Analysis
3.1.4. Turbidity and DLS Analysis
3.1.5. Morphology Analysis
3.2. Emulsifying Properties
3.3. Microstructure of Pickering Emulsions
3.4. Emulsion Stability Evaluation Against Environmental Stresses
3.4.1. PH Stability of Emulsions
3.4.2. Ionic Stability of Emulsions
3.5. Stability of Emulsions to Lipid Oxidation
3.6. Interfacial Structure Analysis of Emulsions
3.7. Rheological Analysis
3.8. Encapsulation Efficiency of API in Emulsion
3.9. Stability of API in Emulsion
3.10. Effect of Emulsion Embedding on the Digestibility of Api In Vitro
3.11. Caco-2 Cellular Absorption and Transmembrane Transport Efficiency of API with Different Encapsulation Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Carvalho-Guimarães, F.B.; Correa, K.L.; de Souza, T.P.; Rodríguez Amado, J.R.; Ribeiro-Costa, R.M.; Silva-Júnior, J.O.C. A Review of Pickering emulsions: Perspectives and applications. Pharmaceuticals 2022, 15, 1413. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Liu, G.; Du, X.; Zhang, X.; Qi, B.; Li, Y. Molecular crowding prevents the aggregation of protein-dextran conjugate by inducing structural changes, improves its functional properties, and stabilizes it in nanoemulsions. Int. J. Biol. Macromol 2020, 164, 4183–4192. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Xu, Y.; Mi, H.; Yi, S.; Gao, R.; Li, X.; Li, J. Effects of chickpea protein-stabilized Pickering emulsion on the structure and gelling properties of hairtail fish myosin gel. Food Chem. 2023, 417, 135821. [Google Scholar] [CrossRef]
- Goodarzi, F.; Zendehboudi, S. A comprehensive review on emulsions and emulsion stability in chemical and energy industries. Chin. J. Chem. Eng. 2018, 97, 281–309. [Google Scholar] [CrossRef]
- Cserha, T.; Forgács, E.; Oros, G. Biological activity and environmental impact of anionic surfactants. Environ. Int. 2002, 28, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Geng, M.; Wu, X.; Tan, X.; Li, L.; Teng, F.; Li, Y. Co-encapsulation of vitamins C and E in SPI-polysaccharide stabilized double emulsion prepared by ultrasound: Fabrication, stability, and In Vitro digestion. Food Biosci. 2024, 59, 104113. [Google Scholar] [CrossRef]
- Boostani, S.; Sarabandi, K.; Tarhan, O.; Rezaei, A.; Assadpour, E.; Rostamabadi, H.; Falsafi, S.R.; Tan, C.; Zhang, F.; Jafari, S.M. Multiple Pickering emulsions stabilized by food-grade particles as innovative delivery systems for bioactive compounds. Adv. Colloid Interface Sci. 2024, 328, 103174. [Google Scholar] [CrossRef]
- Doan, C.D.; Ghosh, S. Formation and stability of pea proteins nanoparticles using ethanol-induced desolvation. Nanomaterials 2019, 9, 949. [Google Scholar] [CrossRef]
- Ma, X.; Hou, F.; Zhao, H.; Wang, D.; Chen, W.; Miao, S.; Liu, D. Conjugation of soy protein isolate (SPI) with pectin by ultrasound treatment. Food Hydrocoll. 2020, 108, 106056. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, R.; Li, L. The interaction between anionic polysaccharides and legume protein and their influence mechanism on emulsion stability. Food Hydrocoll. 2022, 131, 107814. [Google Scholar] [CrossRef]
- Aniya; Cao, Y.; Liu, C.; Lu, S.; Fujii, Y.; Jin, J.; Xia, Q. Improved stabilization and in vitro digestibility of mulberry anthocyanins by double emulsion with pea protein isolate and xanthan gum. Foods 2022, 12, 151. [Google Scholar] [CrossRef]
- Kotchabhakdi, A.; Vardhanabhuti, B. Formation of heated whey protein isolate-pectin complexes at pH greater than the isoelectric point with improved emulsification properties. J. Dairy Sci. 2020, 103, 6820–6829. [Google Scholar] [CrossRef] [PubMed]
- Wagoner, T.B.; Foegeding, E.A. Whey protein–pectin soluble complexes for beverage applications. Food Hydrocoll. 2017, 63, 130–138. [Google Scholar] [CrossRef]
- Cao, J.; Tong, X.; Cao, X.; Peng, Z.; Zheng, L.; Dai, J.; Zhang, X.; Cheng, J.; Wang, H.; Jiang, L. Effect of pH on the soybean whey protein–gum arabic emulsion delivery systems for curcumin: Emulsifying, stability, and digestive properties. Food Chem. 2024, 456, 139938. [Google Scholar] [CrossRef] [PubMed]
- Zha, F.; Dong, S.; Rao, J.; Chen, B. Pea protein isolate-gum Arabic Maillard conjugates improves physical and oxidative stability of oil-in-water emulsions. Food Chem. 2019, 285, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Siddiquy, M.; JiaoJiao, Y.; Rahman, M.H.; Iqbal, M.W.; Al-Maqtari, Q.A.; Easdani, M.; Yiasmin, M.N.; Ashraf, W.; Hussain, A.; Zhang, L. Advances of protein functionalities through conjugation of protein and polysaccharide. Food Bioprocess Tech. 2023, 17, 2077–2097. [Google Scholar] [CrossRef]
- Zhang, W.; Xiang, Q.; Zhao, J.; Mao, G.; Feng, W.; Chen, Y.; Li, Q.; Wu, X.; Yang, L.; Zhao, T. Purification, structural elucidation and physicochemical properties of a polysaccharide from Abelmoschus esculentus L. (okra) flowers. Int. J. Biol. Macromol. 2020, 155, 740–750. [Google Scholar] [CrossRef]
- Chen, P.; Chen, F.; Guo, Z.; Lei, J.; Zhou, B. Recent advancement in bioeffect, metabolism, stability, and delivery systems of apigenin, a natural flavonoid compound: Challenges and perspectives. Front. Nutr. 2023, 10, 1221227. [Google Scholar] [CrossRef]
- Tang, D.; Chen, K.; Huang, L.; Li, J. Pharmacokinetic properties and drug interactions of apigenin, a natural flavone. Expert Opin. Drug Metab. Toxicol. 2017, 13, 323–330. [Google Scholar] [CrossRef]
- Mushtaq, Z.; Sadeer, N.B.; Hussain, M.; Mahwish; Alsagaby, S.A.; Imran, M.; Mumtaz, T.; Umar, M.; Tauseef, A.; Al Abdul-monem, W.; et al. Therapeutical properties of apigenin: A review on the experimental evidence and basic mechanisms. Int. J. Biol. Macromol. 2023, 26, 1914–1939. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Qin, W.; Gu, J.; Zhang, H.; Duan, Y.; Ma, H. Structure and functional properties of soy protein isolate-lentinan conjugates obtained in Maillard reaction by slit divergent ultrasonic assisted wet heating and the stability of oil-in-water emulsions. Food Chem. 2020, 331, 127374. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yan, T.; Hou, F.; Chen, W.; Miao, S.; Liu, D. Formation of soy protein isolate (SPI)-citrus pectin (CP) electrostatic complexes under a high-intensity ultrasonic field: Linking the enhanced emulsifying properties to physicochemical and structural properties. Ultrason. Sonochem. 2019, 59, 104748. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assuncao, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carriere, F.; et al. INFOGEST static In Vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Cai, X.; Shi, N.; Gao, H.; Zhang, Z.; Yan, M.; Li, Y. Emulsification performance and stabilization mechanism of okra polysaccharides with different structural properties. Food Hydrocoll. 2024, 153, 109997. [Google Scholar] [CrossRef]
- Wang, W.Q.; Bao, Y.H.; Chen, Y. Characteristics and antioxidant activity of water-soluble Maillard reaction products from interactions in a whey protein isolate and sugars system. Food Chem. 2013, 139, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Tirgarian, B.; Farmani, J.; Farahmandfar, R.; Milani, J.M.; Van Bockstaele, F. Ultra-stable high internal phase emulsions stabilized by protein-anionic polysaccharide Maillard conjugates. Food Chem. 2022, 393, 133427. [Google Scholar] [CrossRef]
- Teng, X.; Zhang, M.; Adhikari, B.; Liu, K. Garlic essential oil emulsions stabilized by microwave dry-heating induced protein-pectin conjugates and their application in controlling nitrite content in prepared vegetable dishes. Food Hydrocoll. 2023, 136, 108277. [Google Scholar] [CrossRef]
- Ma, L.; Yang, X.; Huo, J.; Li, S. Study on the mechanism of polyphenols regulating the stability of pea isolate protein formed Pickering emulsion based on interfacial effects. Food Chem. 2025, 463 Pt 4, 141423. [Google Scholar] [CrossRef]
- Zang, X.; Yue, C.; Liu, M.; Zheng, H.; Xia, X.; Yu, G. Improvement of freeze-thaw stability of oil-in-water emulsions prepared with modified soy protein isolates. LWT 2019, 102, 122–130. [Google Scholar] [CrossRef]
- Li, L.; Lai, B.; Yan, J.-N.; Yambazi, M.H.; Wang, C.; Wu, H.-T. Characterization of complex coacervation between chia seed gum and whey protein isolate: Effect of pH, protein/polysaccharide mass ratio and ionic strength. Food Hydrocoll. 2024, 148, 109445. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Rao, P.; Zheng, S.; Li, G.; Han, H.; Chen, Y.; Xiang, L. Mechanistic insights into the interaction of Lycium barbarum polysaccharide with whey protein isolate: Functional and structural characterization. Food Chem. 2025, 463 Pt 1, 141080. [Google Scholar] [CrossRef]
- Ma, X.; Chi, C.; Pu, Y.; Miao, S.; Liu, D. Conjugation of soy protein isolate (SPI) with pectin: Effects of structural modification of the grafting polysaccharide. Food Chem. 2022, 387, 132876. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Fei, X.; Huang, Z.; Chen, H.; Gong, D.; Zhang, G. Improvement of antioxidant, emulsification properties and thermal stability of egg white protein by covalent binding to gallic acid/tannic acid and xanthan gum. Food Biosci. 2024, 58, 103789. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, J.; Ren, Y.; Shen, M.; Yu, Q.; Chen, Y.; Zhang, H.; Xie, J. Acid/alkali shifting of Mesona chinensis polysaccharide-whey protein isolate gels: Characterization and formation mechanism. Food Chem. 2021, 355, 129650. [Google Scholar] [CrossRef]
- Feng, X.; Wu, X.; Gao, T.; Geng, M.; Teng, F.; Li, Y. Revealing the interaction mechanism and emulsion properties of carboxymethyl cellulose on soy protein isolate at different pH. Food Hydrocoll. 2024, 150, 109739. [Google Scholar] [CrossRef]
- Karim, A.; Rehman, A.; Jafari, S.M.; Miao, S.; Dabbour, M.; Ashraf, W.; Rasheed, H.A.; Assadpour, E.; Hussain, A.; Suleria, H.A.R.; et al. Fabrication and characterization of sonicated peach gum-sodium caseinate nanocomplexes: Physicochemical, spectroscopic, morphological, and correlation analyses. Food Bioprocess Tech. 2024, 18, 2462–2481. [Google Scholar] [CrossRef]
- Yan, X.; Gong, X.; Zeng, Z.; Wan, D.; Xia, J.; Ma, M.; Zhao, J.; Wang, P.; Zhang, S.; Yu, P.; et al. Changes in structure, functional properties and volatile compounds of Cinnamomum camphora seed kernel protein by Maillard reaction. Food Biosci. 2023, 53, 102628. [Google Scholar] [CrossRef]
- Yadav, M.P.; Strahan, G.D.; Mukhopadhyay, S.; Hotchkiss, A.T.; Hicks, K.B. Formation of corn fiber gum–milk protein conjugates and their molecular characterization. Food Hydrocoll. 2012, 26, 326–333. [Google Scholar] [CrossRef]
- Li, J.; Huang, G.; Qian, H.; Pi, F. Fabrication of soy protein isolate-high methoxyl pectin composite emulsions for improving the stability and bioavailability of carotenoids. Food Biosci. 2023, 53, 102738. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, L.; Liu, Y.; Huang, S.; Li, J. Effects of proteins on emulsion stability: The role of proteins at the oil-water interface. Food Chem. 2022, 397, 133726. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, S.; Li, Y.; Yang, L.; Song, H. Properties and microstructure of pickering emulsion synergistically stabilized by silica particles and soy hull polysaccharides. Food Hydrocoll. 2023, 134, 108084. [Google Scholar] [CrossRef]
- Liu, Z.; Zheng, K.; Yan, R.; Tang, H.; Jia, Z.; Zhang, Z.; Yang, C.; Wang, J. Effects of different solid particle sizes on oat protein isolate and pectin particle-stabilized Pickering emulsions and their use as delivery systems. Food Chem. 2024, 454, 139681. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, Q.; Chen, Q.; Sun, F.; Liu, H.; Kong, B. Synergistic modification of pea protein structure using high-intensity ultrasound and pH-shifting technology to improve solubility and emulsification. Ultrason. Sonochem. 2022, 88, 106099. [Google Scholar] [CrossRef]
- Tang, W.; Wen, L.; He, J.; Liu, J. Prolamin-pectin complexes: Structural properties, interaction mechanisms and food applications. Int. J. Biol. Macromol. 2025, 289, 138675. [Google Scholar] [CrossRef] [PubMed]
- Dulong, V.; Thebault, P.; Karakasyan, C.; Picton, L.; le Cerf, D. Polyelectrolyte complexes of chitosan and hyaluronic acid or carboxymethylpullulan and their aminoguaiacol derivatives with biological activities as potential drug delivery systems. Carbohydr. Polym. 2024, 341, 122330. [Google Scholar] [CrossRef] [PubMed]
- Nooshkam, M.; Varidi, M.; Bashash, M. The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chem. 2019, 275, 644–660. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, Q.; Liu, Y.; Rashid, A.; Qayum, A.; Tuly, J.A.; Ma, H.; Miao, S.; Ren, X. Sodium caseinate/pectin complex-stabilized emulsion: Multi-frequency ultrasound regulation, characterization and its application in quercetin delivery. Food Hydrocoll. 2024, 156, 110316. [Google Scholar] [CrossRef]
- Herrero, A.M.; Carmona, P.; Pintado, T.; Jiménez-Colmenero, F.; Ruíz-Capillas, C. Olive oil-in-water emulsions stabilized with caseinate: Elucidation of protein–lipid interactions by infrared spectroscopy. Food Hydrocoll. 2011, 25, 12–18. [Google Scholar] [CrossRef]
- Cai, Z.; Zhou, W.; Zhang, R.; Tang, Y.; Hu, K.; Wu, F.; Huang, C.; Hu, Y.; Yang, T.; Chen, Y. Fabrication and characterization of oxidized starch-xanthan gum composite nanoparticles with efficient emulsifying properties. Food Chem. 2024, 455, 139679. [Google Scholar] [CrossRef]
- Ma, X.; Yan, T.; Miao, S.; Mao, L.; Liu, D. In Vitro digestion and storage stability of β-carotene-loaded nanoemulsion stabilized by soy protein isolate (SPI)-citrus pectin (CP) complex/conjugate prepared with ultrasound. Foods 2022, 11, 2410. [Google Scholar] [CrossRef]
- Falsafi, S.R.; Rostamabadi, H.; Samborska, K.; Mirarab, S.; Rashidinejhad, A.; Jafari, S.M. Protein-polysaccharide interactions for the fabrication of bioactive-loaded nanocarriers: Chemical conjugates and physical complexes. Pharmacol. Res. 2022, 178, 106164. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Lian, Z.; Cheng, L.; Liu, X.; Dai, S.; Tong, X.; Wang, H.; Jiang, L. Insight into succinylated modified soy protein isolate-sodium alginate emulsion gels: Structural properties, interactions and quercetin release behavior. Food Hydrocoll. 2024, 151, 109857. [Google Scholar] [CrossRef]
- Zhang, H.; Tan, S.; Gan, H.; Zhang, H.; Xia, N.; Jiang, L.; Ren, H.; Zhang, X. Investigation of the formation mechanism and β-carotene encapsulation stability of emulsion gels based on egg yolk granules and sodium alginate. Food Chem. 2023, 400, 134032. [Google Scholar] [CrossRef] [PubMed]
- Akbari, S.; Nour, A.H. Emulsion types, stability mechanisms and rheology: A review. Int. J. Innov. Res. Sci. Stud 2018, 1, 11–17. [Google Scholar] [CrossRef]
- Giménez-Ribes, G.; Sagis, L.M.C.; Habibi, M. Interfacial viscoelasticity and aging effect on droplet formation and breakup. Food Hydrocoll. 2020, 103, 105616. [Google Scholar] [CrossRef]
- Wang, H.; Waterhouse, G.I.N.; Xiang, H.; Sun-Waterhouse, D.; Zhao, Y.; Chen, S.; Wu, Y.; Wang, Y. Mechanisms of slow-release antibacterial properties in chitosan-titanium dioxide stabilized perilla essential oil Pickering emulsions: Focusing on oil-water interfacial behaviors. Carbohydr. Polym. 2024, 346, 122613. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Wu, J.; Deng, D.; Meng, D.; Sha, X.; Liang, L.; Zhang, Y.; Yang, R. Enzymatic hydrolysis enhances the stability of mannoprotein-stabilized O/W emulsion and the protective effect on β-carotene. Food Bioprocess Tech. 2024, 18, 2632–2647. [Google Scholar] [CrossRef]
- Ke, C.; Li, L. Modification mechanism of soybean protein isolate-soluble soy polysaccharide complex by EGCG through covalent and non-covalent interaction: Structural, interfacial, and functional properties. Food Chem. 2024, 448, 139033. [Google Scholar] [CrossRef]
- Yuan, Y.; Hu, Y.; Huang, J.; Liu, B.; Li, X.; Tian, J.; de Vries, R.; Li, B.; Li, Y. Optimizing anthocyanin Oral delivery: Effects of food biomacromolecule types on Nanocarrier performance for enhanced bioavailability. Food Chem. 2024, 454, 139682. [Google Scholar] [CrossRef]
- Paulussen, F.M.; Grossmann, T.N. Peptide-based covalent inhibitors of protein–protein interactions. J. Pept. Sci. 2022, 29, e3457. [Google Scholar] [CrossRef]
- Schneider, A.F.L.; Kithil, M.; Cardoso, M.C.; Lehmann, M.; Hackenberger, C.P.R. Cellular uptake of large biomolecules enabled by cell-surface-reactive cell-penetrating peptide additives. Nat. Chem. 2021, 13, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Keramat, M.; Kheynoor, N.; Golmakani, M.-T. Oxidative stability of Pickering emulsions. Food Chem. X 2022, 14, 100279. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Bai, M.; Zheng, W.; Yang, L.; Liu, H. Absorption and transport of polysaccharides from soybean seed coat in the Caco-2 cell model and their interaction with the MUC2 protein. Int. J. Biol. Macromol. 2025, 309, 143039. [Google Scholar] [CrossRef] [PubMed]
- Foroozandeh, P.; Aziz, A.A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett. 2018, 13, 11671. [Google Scholar] [CrossRef]
Sample | α-Helix (%) | β-Sheet (%) | β-Turn (%) | Random Coil (%) |
---|---|---|---|---|
PPI | 26.2 ± 0.04 | 31.3 ± 0.11 | 10.4 ± 0.04 | 32.1 ± 0.09 |
PPI–OP mixtures | 17.0 ± 0.03 a | 29.1 ± 0.12 a | 14.2 ± 0.06 a | 39.7 ± 0.11 a |
PPI–OP conjugates | 11.9 ± 0.04 ab | 27.8 ± 0.10 ab | 16.7 ± 0.08 ab | 43.6 ± 0.12 ab |
Sample | Turbidity | Particle Size (nm) | Zeta-Potential (mV) |
---|---|---|---|
PPI | 1.93 ± 0.01 | 535.70 ± 0.83 | −30.37 ± 2.33 |
OP | 1.01 ± 0.01 a | 607.75 ± 1.28 a | −32.50 ± 0.10 |
PPI–OP mixtures | 1.86 ± 0.03 b | 288.15 ± 1.06 ab | −38.18 ± 0.45 ab |
PPI–OP conjugates | 1.26 ± 0.02 abc | 212.05 ± 0.64 abc | −44.39 ± 1.53 abc |
Sample | I853/I831 | I2853/I2875 | I2933/I2875 |
---|---|---|---|
PPI | 0.927 ± 0.004 | 1.207 ± 0.008 | 1.229 ± 0.010 |
PPI–OP mixtures | 1.501 ± 0.005 a | 1.168 ± 0.004 a | 1.196 ± 0.001 a |
PPI–OP conjugates | 1.954 ± 0.012 ab | 1.155 ± 0.003 ab | 1.187 ± 0.002 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; You, J.; Yan, X.; Ji, H.; Ji, W.; Liu, Z.; Zhang, M.; Liu, P.; Yue, P.; Ullah, Z.; et al. Okra Flower Polysaccharide–Pea Protein Conjugates Stabilized Pickering Emulsion Enhances Apigenin Stability, Bioaccessibility, and Intestinal Absorption In Vitro. Foods 2025, 14, 1923. https://doi.org/10.3390/foods14111923
Zhang N, You J, Yan X, Ji H, Ji W, Liu Z, Zhang M, Liu P, Yue P, Ullah Z, et al. Okra Flower Polysaccharide–Pea Protein Conjugates Stabilized Pickering Emulsion Enhances Apigenin Stability, Bioaccessibility, and Intestinal Absorption In Vitro. Foods. 2025; 14(11):1923. https://doi.org/10.3390/foods14111923
Chicago/Turabian StyleZhang, Nuo, Jiale You, Xiaoli Yan, Hongchen Ji, Wenxuan Ji, Zhengyu Liu, Min Zhang, Peng Liu, Panpan Yue, Zain Ullah, and et al. 2025. "Okra Flower Polysaccharide–Pea Protein Conjugates Stabilized Pickering Emulsion Enhances Apigenin Stability, Bioaccessibility, and Intestinal Absorption In Vitro" Foods 14, no. 11: 1923. https://doi.org/10.3390/foods14111923
APA StyleZhang, N., You, J., Yan, X., Ji, H., Ji, W., Liu, Z., Zhang, M., Liu, P., Yue, P., Ullah, Z., Zhao, T., & Yang, L. (2025). Okra Flower Polysaccharide–Pea Protein Conjugates Stabilized Pickering Emulsion Enhances Apigenin Stability, Bioaccessibility, and Intestinal Absorption In Vitro. Foods, 14(11), 1923. https://doi.org/10.3390/foods14111923