Increasing Productivity and Recovering Nutritional, Organoleptic, and Nutraceutical Qualities of Major Vegetable Crops for Better Dietetics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Treatment Application
2.2. Soil Quality Parameters
2.2.1. Soil Sample and Nutritional Status
2.2.2. Soil Physical Properties
2.2.3. Soil Chemical Properties
2.2.4. Di-Ethylene-Tri-Amine-Penta-Acetic Acid (DTPA)-Extractable Micronutrient
2.3. Soil Biological Population
2.4. Vegetative Growth and Yield Attributes
2.5. Proximate Composition and Carbohydrates
2.6. Nutritional Quality and Minerals
2.7. Organoleptic Evaluation of Fresh Fruits
2.8. In Vitro Digestibility
2.9. Nutraceutical Quality and Antioxidant Content
2.10. Statistical Analysis
3. Results
3.1. Effects on Soil Nutritional Status
3.2. Effects on Soil Physicochemical Quality
3.3. Effects on Soil Biological Population
3.4. Effects on Vegetative Growth and Yield Attributes
3.5. Effects on Nutritional and Organoleptic Quality
3.6. Effects on Nutraceutical Quality and Antioxidant Content of Fruits
3.7. PCA Biplot Analysis Links Nutrient Supply Sources with Soil Properties
3.8. PCA Biplot Analysis Links Nutrient Supply Sources with the Nutritional and Organoleptic Quality of Vegetables
4. Discussion
4.1. Response on Soil Nutrients and Quality Parameters
4.2. Response to Soil Biological Population
4.3. Response of Plant Growth and Yield Attributes
4.4. Response on Nutritional and Organoleptic Qualities of Fruits
4.5. Response on Nutraceutical and Antioxidant Quality of Fruits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, H.; Chen, Q.; He, J. The end of hunger: Fertilizers, microbes and plant productivity. Microb. Biotechnol. 2021, 15, 1050–1054. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.H.; Wang, X.Q.; Jiang, S.; Zhang, L.Q.; Luo, J. Revealing the role of the rhizosphere microbiota in reproductive growth for fruit productivity when inorganic fertilizer is partially replaced by organic fertilizer in pear orchard fields. Microb. Biotechnol. 2023, 16, 1373–1392. [Google Scholar] [CrossRef] [PubMed]
- NHB. National Horticulture Board. Gurgaon-Haryana, Ministry of Agriculture & Farmers Welfare, Government of India. 2023. Available online: https://www.nhb.gov.in (accessed on 12 November 2024).
- Amoroso, L. The second international conference on nutrition: Implications for hidden hunger. World Rev. Nutr. Diet. 2016, 115, 142–152. [Google Scholar] [PubMed]
- Mayer, A.M.B.; Trenchard, L.; Rayns, F. Historical changes in the mineral content of fruit and vegetables in the UK from 1940 to 2019: A concern for human nutrition and agriculture. Int. J. Food Sci. Nutr. 2022, 73, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, R.L.; Parashar, A.; Parewa, H.P.; Vyas, L. An alarming decline in the nutritional quality of foods: The biggest challenge for future generations health. Foods 2024, 13, 877. [Google Scholar] [CrossRef]
- Han, Z.; Leng, Y.; Sun, Z.; Li, Z.; Xu, P.; Wu, S.; Liu, S.; Li, S.; Wang, J.; Zou, J. Substitution of organic and bio-organic fertilizers for mineral fertilizers to suppress nitrous oxide emissions from intensive vegetable fields. J. Environ. Manag. 2024, 349, 119390. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, K.; Guo, W.; Huang, H.; Gou, Z.; Yang, L.; Chen, Y.; Oh, K.; Fang, C.; Luo, L. The effects of partial substitution of fertilizer using different organic materials on soil nutrient condition, aggregate stability and enzyme activity in a tea plantation. Plants 2023, 12, 3791. [Google Scholar] [CrossRef]
- Pretty, J.; Benton, T.G.; Bharucha, Z.P.; Dicks, L.V.; Flora, C.B.; Godfray, H.C.J.; Goulson, D.; Hartley, S.; Lampkin, N.; Morris, C. Global assessment of agricultural system redesigns for sustainable intensification. Nat. Sustain. 2018, 1, 441–446. [Google Scholar] [CrossRef]
- Gomiero, T. Soil degradation, land scarcity, and food security: Reviewing a complex challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef]
- Bavoravo, M.; Imamverdiyev, N.; Ponkina, E. Farm-level economics of innovative tillage technologies: The case of no-till in the Altai Krai in Russian Siberia. Environ. Sci. Pollut. Res. 2018, 25, 1016–1032. [Google Scholar] [CrossRef]
- Popa, M.E.; Mitelut, A.C.; Popa, E.E.; Stan, A.; Popa, V.I. Organic foods contribution to nutritional quality and value. Trends Food Sci. Technol. 2019, 84, 15–18. [Google Scholar] [CrossRef]
- Mie, A.; Andersen, H.R.; Gunnarsson, S.; Kahl, J.; Kesse-Guyot, E.; Rembialkowska, E.; Quaglio, G.; Grandjean, P. Human health implications of organic food and organic agriculture: A comprehensive review. Environ. Health 2017, 16, 111. [Google Scholar] [CrossRef] [PubMed]
- Pathak, D.V.; Kumar, M.; Rani, K. Biofertilizer Application in Horticultural Crops. In Microorganisms for Green Revolution. Microorganisms for Sustainability; Panpatte, D., Jhala, Y., Vyas, R., Shelat, H., Eds.; Springer: Singapore, 2017; Volume 6. [Google Scholar] [CrossRef]
- Bora, L.; Tripathi, A.; Bajeli, J.; Chaubey, A.K.; Chander, S. A review on microbial association: Its potential and future prospects in fruit crops. Plant Arch. 2016, 16, 1–11. [Google Scholar]
- Martinez-Hidalgo, P.; Maymon, M.; Pule-Meulenberg, F.; Hirsch, A.M. Engineering root micro-biomes for healthier crops and soils using beneficial, environmentally safe bacteria. Can. J. Microbiol. 2019, 65, 91–104. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z.; Cao, K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 2020, 10, 177. [Google Scholar] [CrossRef]
- Yao, R.; Bai, R.; Yu, Q.; Bao, Y.; Yang, W. The effect of nitrogen reduction and applying bio-organic fertilizers on soil nutrients and apple fruit quality and yield. Agronomy 2024, 14, 345. [Google Scholar] [CrossRef]
- Qiu, F.; Liu, W.; Chen, L.; Wang, Y.; Ma, Y.; Lyu, Q.; Yi, S.; Xie, R.; Zheng, Y. Bacillus subtilis bio-fertilizer application reduces chemical fertilization and improves fruit quality in fertigated Tarocco blood orange groves. Sci. Hortic. 2021, 218, 110004. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer method improved for making particle-size analysis of soils. Agron. J. 1962, 53, 464–465. [Google Scholar] [CrossRef]
- Black, C.A. Methods of Soil Analysis—Part 2; American Society of Agronomy: Madison, WI, USA, 1965. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis. Part 1, 2nd ed.; Klute, A., Ed.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis, 2nd ed.; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973; p. 498. [Google Scholar]
- Walkley, A.; Black, C.A. An examination of the wet acid method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Subbiah, B.V.; Asija, G.L. A rapid procedure for the estimation of available nitrogen in soils. Curr. Sci. 1956, 25, 259–266. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Government Printing Office Washington D.C. USDA Circ. 1954, 939, 1–19. [Google Scholar]
- Bouwer, H. Methods of Soil Analysis, Part 1. Physical and Mineralogical Properties, Monograph; ASA: Madison, WI, USA, 1986. [Google Scholar]
- Gupta, P.K. Method in Environmental Analysis of Water, Soil and Air, 2nd ed.; Agrobios: Jodhpur, India, 2007; pp. 127–213. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. A rapid and accurate method for the determination of organic carbon in soils. Proc. Indiana Acad. Sci. 1975, 84, 456–462. [Google Scholar]
- Lindsay, W.L.; Norvell, W. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Parkinson, D.; Gray, T.R.C.; Wlliams, S.T. Methods for studying the ecology of soil microorganisms. In International Biological Programme Handbook 19; Blackwell Scientific Publications: Oxford, UK, 1971. [Google Scholar]
- Martin, J.P. Use of acid rose bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci. 1950, 69, 215–232. [Google Scholar] [CrossRef]
- Jagtap, G.P. Effect of agrochemicals on microflora in soybean rhizospheric soil. Sci. J. Microbiol. 2012, 1, 55–62. [Google Scholar]
- Bhardwaj, R.L.; Parashar, A. Maximizing productivity in onion bulb cultivation through crop geometry and NPKS nutrient management. J. Appl. Hortic. 2023, 25, 308–312. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 20th ed.; The Association of Official Analytical Chemists: Washington, DC, USA, 2016. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000; p. 1250. [Google Scholar]
- Yemm, E.W.; Willis, A. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef]
- Somogyi, M. A new reagent for the determination of sugars. J. Biol. Chem. 1945, 160, 61–68. [Google Scholar] [CrossRef]
- Clegg, K.M. The application of the anthrone reagent to the estimation of starch in cereals. J. Sci. Food Agric. 1956, 7, 40–44. [Google Scholar] [CrossRef]
- Lindsey, W.L.; Norwell, M.A. A new DPTA-TEA soil test for zinc and iron. Agron. Abstr. 1969, 61, 84. [Google Scholar]
- Amerine, M.A.; Pangborn, R.M.; Roessler, E.B. Principles of sensory evaluation of food. In Food Science and Technology Monographs; Academic Press: New York, NY, USA, 1965; pp. 338–339. [Google Scholar]
- Singh, U.; Kherdekar, M.S.; Jambunathan, R. Studies on desi and Kabuli chickpea (Cicer arietinum L.) cultivars. The levels of amylase inhibitors, levels of oligosaccharides, and In-vitro starch digestibility. J. Food Sci. 1982, 47, 510–512. [Google Scholar] [CrossRef]
- Akeson, W.R.; Stahmann, M.A. A pepsin pancreatin digest index of protein quality evaluation. J. Nutr. 1964, 83, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.; Jambunathan, R. Studies on desi and Kabuli chickpea (Cicer arietinum L.) cultivars: Levels of protease inhibitors, levels of polyphenolic compounds, and in vitro protein digestibility. J. Food Sci. 1981, 46, 1364–1367. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A.J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Tadhani, M.B.; Subhash, R. Stevioside and stevia leaf extract as a replacement of sucrose in common beverages: Sensory evaluation. Beverage Food World 2009, 36, 55–59. [Google Scholar]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power” the FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Nosheen, S.; Ajmal, I.; Song, Y. Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability 2021, 13, 1868. [Google Scholar] [CrossRef]
- Fernandez, A.L.; Sheaffer, C.C.; Wyse, D.L.; Staley, C.; Gould, T.J.; Sadowsky, M.J. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment. Sci. Total Environ. 2016, 566, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.W.; Zhao, P.; Li, H.X.; Zhao, M.X.; Dong, C.X.; Xu, Y.C. Effects of compost made from pruned pear trees on the fruit, soil nutrients, and microorganisms in pear orchards. Acta Horticulturae 2018, 1217, 39–44. [Google Scholar] [CrossRef]
- Zhao, Y.; Mao, X.; Zhang, M.; Yang, W.; Di, H.J.; Ma, L.; Liu, W.; Li, B. The application of Bacillus megaterium alters soil microbial community composition, bioavailability of soil phosphorus and potassium, and cucumber growth in the plastic shed system of North China. Agric. Ecosyst. Environ. 2021, 307, 107236. [Google Scholar] [CrossRef]
- Zhang, Y.; Bo, G.; Shen, M.; Shen, M.; Shen, G.; Yang, J. Differences in microbial diversity and environmental factors in plowing-treated tobacco soil. Front. Microbiol. 2022, 13, 924137. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, C.; Liu, H.; Han, D. Study on the effect of sheep manure and chemical fertilizer on growth and fruit quality of grape. Int. J. For. Hortic. 2018, 4, 43–49. [Google Scholar]
- Batista, B.D.; Singh, B.K. Realities and hopes in the application of microbial tools in agriculture. Microb. Biotechnol. 2021, 14, 1258–1268. [Google Scholar] [CrossRef]
- Yao, R.Y.; Wang, J.; Xie, X.; Zheng, W.; Li, F.; Tang, H. Response of soil characteristics and bacterial communities to nitrogen fertilization gradients in a coastal salt-affected agroecosystem. Land Degrad. Dev. 2021, 32, 338–353. [Google Scholar] [CrossRef]
- Wang, J.; Zhai, B.; Shi, D.; Chen, A.; Liu, C. How does bio-organic fertilizer combined with biochar affect Chinese small cabbage’s growth and quality on newly reclaimed land? Plants 2024, 13, 598. [Google Scholar] [CrossRef]
- Gross, C.D.; Bork, E.W.; Carlyle, C.N.; Chang, S.X. Biochar and its manure-based feedstock have divergent effects on soil organic carbon and greenhouse gas emissions in croplands. Sci. Total Environ. 2022, 806, 151337. [Google Scholar] [CrossRef]
- Torres, I.F.; Bastida, F.; Hernandez, T.; Garcia, C. The effects of fresh and stabilized pruning wastes on the biomass, structure, and activity of the soil microbial community in a semiarid climate. Appl. Soil Ecol. 2015, 89, 1–9. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, B.; Zhu, J.; Hu, H.; Tao, C.; Ou, Y. Lime and ammonium carbonate fumigation coupled with bio-organic fertilizer application steered banana rhizosphere to assemble a unique microbiome against Panama disease. Microb. Biotechnol. 2019, 12, 515–527. [Google Scholar] [CrossRef]
- Liang, Y.; Wu, L.; Clark, I.M.; Xue, K.; Yang, Y.; Van Nostrand, J.D. Over 150 years of long-term fertilization alters spatial scaling of microbial biodiversity. Microb. Biotechnol. 2015, 6, e215–e240. [Google Scholar] [CrossRef] [PubMed]
- Davide, F.; Elke, S.; Guillaume, L.; Wubet, T.; Buscot, F.; Reitz, T. Mineral vs. organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 2016, 7, 1446. [Google Scholar] [CrossRef]
- Bao, M.; He, H.; Ma, X.; Wang, C.; Qiu, W. Effects of chemical nitrogen fertilizer and green manure on diversity and functions of soil bacteria in wheat field. Acta Pedologica Sinica 2018, 55, 734–743. [Google Scholar] [CrossRef]
- Lin, Y.; Ye, G.; Kuzyakov, Y.; Liu, D.; Fang, J.; Ding, W. Long-term manure application increases soil organic matter and aggregation and alters microbial community structure and keystone taxa. Soil Biol. Biochem. 2019, 134, 187–196. [Google Scholar] [CrossRef]
- Huang, R.; Mcgrath, S.P.; Hirsch, P.R.; Clark, I.M.; Storkey, J.; Wu, L. Plant-microbe networks in soil are weakened by century-long use of inorganic fertilizers. Microb. Biotechnol. 2019, 12, 1464–1475. [Google Scholar] [CrossRef]
- Song, Z.; Duan, J.; Liang, Z.; Jia, M.; Li, Y.; Cao, D. Effects of different nitrogen application rates on growth, photosynthetic characteristics, and yield of daylily (Hemerocallis citrina Baroni) at the bolting stage. North Hortic. 2023, 13, 8–14. [Google Scholar]
- Zhai, C.; Cheng, Y.; Qiu, L.; Wang, X.; Ge, L. Effects of combined application of bio-organic fertilizer with reduced chemical fertilizer on growth, yield, and quality of Brassica campestris ssp. chinensis var. rosularis. Chin. Agric. Sci. Bull. 2024, 40, 35–43. [Google Scholar]
- Liu, W.; Cui, S.; Wu, L.; Qi, W.; Chen, J.; Ye, Z.; Ma, J.; Liu, D. Effects of bio-organic fertilizer on soil fertility, yield, and quality of tea. J. Soil Sci. Plant Nut. 2023, 23, 5109–5121. [Google Scholar] [CrossRef]
- Miskoska-Milevska, E.; Najdenovska, O.; Popovski, Z.T.; Dimovska, D. The influence of the microbiological fertilizer–Slavol on cauliflower growth. Rom. Biotechnol. Lett. 2018, 23, 13511–13516. [Google Scholar]
- Seif Sahandi, M.; Mehrafarin, A.; Naghdi Badi, H.; Khalighi-Sigaroodi, F.; Sharifi, M. Improving growth, phytochemical, and antioxidant characteristics of peppermint by phosphate-solubilizing bacteria along with reducing phosphorus fertilizer use. Ind. Crops Prod. 2019, 141, 111777. [Google Scholar] [CrossRef]
- Sousa, W.D.S.; de Pontes, J.R.; de Melo, O.F.P. Effect of biofertilizer on soil fertility and lettuce nutrition. Rev. Agrogeoambiental 2020, 12, 26–39. [Google Scholar] [CrossRef]
- Demir, H.; Sonmez, I.; Ucan, U.; Akgun, I.H. Biofertilizers improve the plant growth, yield, and mineral concentration of lettuce and broccoli. Agronomy 2023, 13, 2031. [Google Scholar] [CrossRef]
- Macik, L.; Gryta, A.; Frac, M. Biofertilizers in agriculture: An overview on concepts, strategies, and effects on soil microorganisms. Adv. Agron. 2020, 162, 31–87. [Google Scholar]
- Radhakrishnan, R.; Lee, I.J. Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiol. Biochem. 2016, 109, 181–189. [Google Scholar] [CrossRef]
- Khosravi, A.; Zarei, M.; Ronaghi, A. Effect of PGPR, phosphate sources and vermicompost on growth and nutrient uptake by lettuce in a calcareous soil. J. Plant Nutr. 2018, 41, 80–89. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Di-Mattia, E.; El-Nakhel, C.; Cardarelli, M. Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a bio-stimulant to promote growth, yield and nutrient uptake of vegetable crops. J. Sci. Food Agric. 2015, 95, 1706–1715. [Google Scholar] [CrossRef]
- Lal, S.; Singh, S.P.; Yadav, T.V.; Meena, A.K. Effect of bio-fertilizers and zinc on growth, yield and quality of sprouting broccoli (Brassica oleraceae var. italica L.). Progress Hortic. 2015, 47, 90–96. [Google Scholar]
- Singh, B.; Trivedi, P. Microbiome and the future for food and nutrient security. Microb. Biotechnol. 2017, 10, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Jiang, F.; Zhou, R.; Wu, Y.; Hou, X.; Li, J.; Lin, W.; Wu, Z. Effects of reduced nitrogen with bio-organic fertilizer on soil properties, yield and quality of non-heading Chinese cabbage. Agronomy 2021, 11, 2196. [Google Scholar] [CrossRef]
- Rembialkowska, E. Organic food: Effect on nutrient composition. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 171–177. [Google Scholar] [CrossRef]
- Mukherjee, A.; Omondi, E.C.; Hepperly, P.R.; Seidel, R.; Heller, W.P. Impacts of organic and conventional management on the nutritional level of vegetables. Sustainability 2020, 12, 8965. [Google Scholar] [CrossRef]
- Jin, N.; Jin, L.; Wang, S.; Li, J.; Liu, F.; Liu, Z.; Luo, S.; Wu, Y.; Lyu, J.; Yu, J. Reduced chemical fertilizer combined with bio-organic fertilizer affects the soil microbial community and yield and quality of lettuce. Front. Microbiol. 2022, 13, 863325. [Google Scholar] [CrossRef] [PubMed]
- Li, B.B.; Roley, S.S.; Duncan, D.S.; Guo, J.; Quensen, J.F.; Yu, H.Q. Long-term excess nitrogen fertilizer increases the sensitivity of soil microbial community to seasonal change revealed by ecological network and metagenome analyses. Soil Biol. Biochem. 2021, 160, 108349. [Google Scholar] [CrossRef]
- Yang, X.; Ying, Z.; Liu, H.; Ying, X.; Yang, G. A new homoisoflavone from Portulaca oleracea L. and its antioxidant activity. Nat. Prod. Res. 2018, 6419, 3500–3506. [Google Scholar] [CrossRef]
Particulars | Status | References |
---|---|---|
| ||
Sand (%) | 62.0 | [20] |
Silt (%) | 30.0 | |
Clay (%) | 8.0 | |
Texture class | Sandy loam | [21] |
Bulk density (g cm−3) | 1.43 | [22] |
Particle density (g cm−3) | 2.39 | |
Total porosity (%) | 39.92 | |
Infiltration rate (mm/h) | 3.13 | |
Water holding capacity (%) | 25.44 | |
Moisture (%) | 11.29 | |
| ||
pH (1:2.5 soil water suspension) | 8.40 | [23] |
Electrical conductivity (dS/m) | 0.13 | [23] |
Organic carbon (%) | 0.29 | [24] |
KMnO4 oxidizable N (kg/ha) | 220.0 | [25] |
0.5 M NaHCO3-extractable P (kg/ha) | 12.52 | [26] |
Neutral 1 N NH4OAc-extractable K (kg/ha) | 225.4 | [23] |
Quality Parameters | Initial Values (2019–2020) | Tomato, Brinjal, and Okra Growing Fields in Arid Climate (2023–2024) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Field No. 1 | Field No. 2 | Field No. 3 | Field No. 4 | Field No. 5 | Field No. 6 | S. Em + | C.D. (p = 0.05) | % Change | ||
Nutritional status of the upper layer of soil (0–30 cm) | ||||||||||
O.C. (%) | 0.29 | 0.18 | 0.34 | 0.42 | 0.42 | 0.44 | 0.70 | 0.006 | ** | 141.38 |
N2 (Kg/ha) | 220.0 | 237.50 | 210.40 | 203.4 | 198.7 | 165.7 | 225.0 | 6.124 | ** | 2.27 |
P2O5 (Kg/ha) | 37.5 | 26.50 | 31.00 | 35.00 | 49.00 | 54.00 | 72.50 | 0.612 | ** | 93.33 |
K2O (Kg/ha) | 225.4 | 206.5 | 224.0 | 252.0 | 275.8 | 292.5 | 312.0 | 6.531 | ** | 38.42 |
S (ppm) | 7.55 | 8.62 | 8.11 | 7.58 | 6.92 | 6.25 | 7.11 | 0.245 | ** | −5.83 |
Zn (ppm) | 0.35 | 0.23 | 0.38 | 0.54 | 0.65 | 0.78 | 1.18 | 0.010 | ** | 237.14 |
Fe (ppm) | 1.85 | 1.36 | 1.85 | 2.00 | 2.97 | 3.08 | 3.37 | 0.037 | ** | 82.16 |
Cu (ppm) | 0.60 | 0.46 | 0.55 | 0.88 | 0.90 | 1.02 | 1.12 | 0.012 | ** | 86.87 |
Mn (ppm) | 5.99 | 6.40 | 6.64 | 6.96 | 7.15 | 7.80 | 8.48 | 0.049 | ** | 41.57 |
Physico-chemical quantity of the upper layer of soil (0–30 cm) | ||||||||||
EC | 0.13 | 0.11 | 0.15 | 0.19 | 0.22 | 0.32 | 0.47 | 0.015 | ** | 261.54 |
pH | 8.40 | 8.50 | 8.20 | 8.20 | 8.00 | 7.80 | 7.60 | 0.057 | ** | −9.52 |
Bulk density | 1.43 | 1.45 | 1.46 | 1.42 | 1.42 | 1.32 | 1.30 | 0.029 | ** | −9.09 |
Particle density | 2.39 | 2.30 | 2.33 | 2.40 | 2.44 | 2.30 | 2.27 | 0.037 | ** | −5.02 |
Porosity (%) | 39.92 | 36.96 | 37.34 | 40.83 | 41.80 | 42.17 | 42.73 | 0.453 | ** | 7.04 |
Infiltration Rate (mm/hr) | 3.13 | 3.01 | 3.18 | 4.02 | 5.21 | 6.12 | 6.52 | 0.045 | ** | 108.31 |
MWHC (%) | 25.44 | 25.05 | 26.30 | 29.34 | 33.96 | 37.54 | 37.62 | 0.461 | ** | 47.88 |
Moisture (%) # | 11.29 | 10.99 | 11.12 | 13.58 | 14.21 | 14.98 | 15.11 | 0.349 | ** | 33.84 |
Water saving (%) | 00.0 | −1.56 | 3.27 | 13.29 | 25.09 | 32.23 | 32.38 | 0.327 | ** | 32.38 |
Soil biological population in the upper layer of soil (0–30 cm) | ||||||||||
Fungi (CFU) | 3 × 10−3 | 0.00 | 0.00 | 0.00 | 5 × 10−3 | 25 × 10−3 | 92 × 10−3 | 0.230 | ** | 2966.7 |
Bacteria (CFU) | 6 × 10−3 | 0.00 | 0.00 | 0.00 | 8 ×10−3 | 22 × 10−3 | 82 × 10−3 | 0.322 | ** | 1267.0 |
Trichoderma (CFU) | 1 × 10−3 | 0.00 | 0.00 | 0.00 | 3 × 10−3 | 19 × 10−3 | 97 ×10−3 | 0.610 | ** | 9600.0 |
Actinomycete (CFU) | 4 × 10−3 | 0.00 | 0.00 | 3 × 10−3 | 5 × 10−3 | 25 × 10−3 | 75 × 10−3 | 0.491 | ** | 1775.0 |
Earthworm ## | 20.0 | 0.00 | 0.00 | 3.50 | 15.83 | 27.50 | 29.83 | 0.429 | ** | 49.15 |
Quality Parameters | Field No. 1 | Field No. 2 | Field No. 3 | Field No. 4 | Field No. 5 | Field No. 6 | S. Em + | C.D. (p = 0.05) | Percent Change |
---|---|---|---|---|---|---|---|---|---|
Tomato fruits | |||||||||
Plant height (cm) | 101.11 | 97.51 | 95.03 | 87.84 | 79.38 | 104.91 | 1.461 | ** | 3.76 |
Number of leaves | 215.45 | 193.22 | 191.78 | 178.15 | 165.45 | 236.74 | 1.869 | ** | 9.88 |
Root length (cm) | 13.25 | 11.23 | 10.89 | 10.61 | 9.51 | 14.65 | 0.237 | ** | 10.57 |
No. of roots/plant | 18.97 | 19.11 | 20.66 | 21.45 | 22.89 | 24.15 | 0.318 | ** | 27.31 |
No. of fruits/plants | 37.23 | 35.44 | 32.14 | 28.79 | 27.55 | 42.35 | 0.400 | ** | 13.75 |
Fruit weight (g) | 88.75 | 85.56 | 82.54 | 80.11 | 79.56 | 99.15 | 1.217 | ** | 11.72 |
Fruit yield (tons/ha) | 42.15 | 40.15 | 39.87 | 37.81 | 35.11 | 49.87 | 0.808 | ** | 18.32 |
Total income (INR L/ha) | 2.56 | 2.50 | 2.31 | 2.19 | 2.14 | 2.97 | 0.033 | ** | 16.02 |
Net income (INR L/ha) | 1.90 | 1.82 | 1.58 | 1.43 | 1.34 | 2.05 | 0.037 | ** | 7.89 |
B:C Ratio | 2.93 | 2.68 | 2.20 | 1.91 | 1.68 | 2.23 | 0.045 | ** | −23.89 |
Brinjal fruits | |||||||||
Plant height (cm) | 68.23 | 67.99 | 65.14 | 60.15 | 58.25 | 72.58 | 0.673 | ** | 6.38 |
Number of leaves | 101.15 | 95.82 | 89.56 | 82.44 | 72.15 | 109.72 | 1.270 | ** | 8.47 |
Root length (cm) | 14.32 | 13.65 | 13.22 | 12.65 | 11.15 | 14.98 | 0.610 | ** | 4.61 |
No. of roots/plant | 10.14 | 10.22 | 10.27 | 11.24 | 13.25 | 14.58 | 0.078 | ** | 43.79 |
No. of fruits/plants | 29.58 | 27.12 | 25.46 | 24.01 | 20.17 | 32.55 | 0.486 | ** | 10.04 |
Fruit weight (g) | 78.52 | 75.44 | 72.15 | 70.89 | 65.48 | 85.47 | 0.510 | ** | 8.85 |
Fruit yield (tons/ha) | 37.48 | 35.51 | 32.14 | 30.55 | 27.12 | 42.57 | 0.645 | ** | 13.58 |
Total income (INR L/ha) | 2.44 | 2.31 | 2.09 | 1.99 | 1.76 | 2.77 | 0.033 | ** | 13.52 |
Net income (INR L/ha) | 1.77 | 1.61 | 1.35 | 1.22 | 0.94 | 1.85 | 0.029 | ** | 4.52 |
B:C Ratio | 2.64 | 2.30 | 1.82 | 1.58 | 1.15 | 2.01 | 0.037 | ** | −23.86 |
Okra fruits | |||||||||
Plant height (cm) | 94.26 | 91.22 | 89.65 | 88.50 | 85.14 | 106.41 | 0.853 | ** | 12.89 |
Number of leaves | 31.54 | 28.56 | 25.01 | 21.14 | 17.66 | 37.45 | 0.445 | ** | 18.74 |
Root length (cm) | 18.20 | 16.11 | 14.60 | 14.27 | 13.51 | 21.77 | 0.363 | ** | 19.62 |
No. of roots/plant | 24.07 | 25.56 | 28.14 | 32.15 | 35.46 | 37.28 | 0.404 | ** | 54.88 |
No. of fruits/plants | 12.45 | 11.33 | 10.87 | 10.13 | 9.56 | 14.56 | 0.326 | ** | 16.95 |
Fruit weight (g) | 8.58 | 7.61 | 8.31 | 7.89 | 7.56 | 9.25 | 0.204 | ** | 7.81 |
Fruit yield (tons/ha) | 10.23 | 10.01 | 9.23 | 8.74 | 8.56 | 11.89 | 0.184 | ** | 16.23 |
Total income (INR L/ha) | 2.56 | 2.51 | 2.31 | 2.19 | 2.14 | 2.97 | 0.021 | ** | 16.02 |
Net income (INR L/ha) | 1.92 | 1.83 | 1.58 | 1.43 | 1.34 | 2.05 | 0.022 | ** | 6.77 |
B:C Ratio | 2.93 | 2.68 | 2.21 | 1.91 | 1.68 | 2.23 | 0.028 | ** | −23.89 |
Quality Parameters | Tomato, Brinjal, and Okra (100 g of Vegetable Pulp) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Field No. 1 | Field No. 2 | Field No. 3 | Field No. 4 | Field No. 5 | Field No. 6 | S. Em + | C.D. (p = 0.05) | % Change | |
Proximate composition | |||||||||
Moisture (%) | 92.04 | 91.37 | 91.08 | 90.30 | 89.96 | 89.82 | 2.368 | NS | −2.41 |
Crude protein (%) | 2.10 | 2.08 | 2.01 | 1.91 | 1.91 | 1.96 | 0.033 | ** | −6.67 |
Crude fat (%) | 0.34 | 0.35 | 0.38 | 0.42 | 0.45 | 0.49 | 0.003 | ** | 44.12 |
Ash (%) | 0.65 | 0.68 | 0.70 | 0.75 | 0.80 | 0.88 | 0.020 | ** | 35.38 |
Crude fiber (%) | 3.22 | 3.17 | 3.21 | 3.38 | 3.42 | 3.56 | 0.038 | ** | 10.56 |
Total carbohydrates (g) | 85.07 | 85.23 | 85.33 | 85.22 | 85.29 | 85.43 | 2.041 | NS | 0.42 |
Available carbohydrates | |||||||||
Total sugars (%) | 1.11 | 1.31 | 1.65 | 1.79 | 3.29 | 3.64 | 0.020 | ** | 227.93 |
Reducing sugar (%) | 0.59 | 0.80 | 0.96 | 1.03 | 2.37 | 2.59 | 0.032 | ** | 338.98 |
Non-reducing sugars (%) | 0.52 | 0.51 | 0.69 | 0.76 | 0.92 | 1.05 | 0.012 | ** | 101.92 |
Total minerals | |||||||||
Calcium (mg) | 37.49 | 37.83 | 38.12 | 39.16 | 39.66 | 39.74 | 0.400 | ** | 6.00 |
Phosphorus (mg) | 36.13 | 36.42 | 36.67 | 37.45 | 38.29 | 38.47 | 0.416 | ** | 6.48 |
Iron (mg) | 0.82 | 0.88 | 0.93 | 1.01 | 1.08 | 1.20 | 0.008 | ** | 46.34 |
Zinc (mg) | 0.27 | 0.29 | 0.32 | 0.36 | 0.41 | 0.52 | 0.004 | ** | 92.59 |
Magnesium (mg) | 33.69 | 34.14 | 34.29 | 34.56 | 35.43 | 38.80 | 0.772 | ** | 15.17 |
Nitrogen (g) | 0.71 | 0.69 | 0.69 | 0.68 | 0.72 | 0.76 | 0.006 | ** | 7.04 |
Potassium (mg) | 237.20 | 237.39 | 238.01 | 240.26 | 241.41 | 244.37 | 2.864 | ** | 12.14 |
Organoleptic evaluation of fresh vegetables by the 9-point hedonic mean scale | |||||||||
Appearance | 7.34 | 7.40 | 7.39 | 7.48 | 7.58 | 7.81 | 0.082 | ** | 6.40 |
Color | 7.71 | 7.78 | 7.82 | 7.96 | 8.23 | 8.37 | 0.118 | ** | 8.56 |
Aroma | 6.97 | 7.05 | 7.30 | 7.53 | 7.69 | 7.91 | 0.143 | ** | 18.65 |
Taste | 6.42 | 6.55 | 7.02 | 7.59 | 7.88 | 8.12 | 0.184 | ** | 32.87 |
Texture | 7.49 | 7.55 | 7.63 | 7.79 | 8.00 | 8.22 | 0.163 | ** | 12.42 |
Overall acceptability | 7.18 | 7.27 | 7.43 | 7.68 | 7.88 | 8.30 | 0.157 | ** | 15.60 |
Digestibility | |||||||||
In vitro protein Digestibility (%) | 74.48 | 75.34 | 77.12 | 78.09 | 79.54 | 78.04 | 1.020 | ** | 4.78 |
In vitro starch Digestibility (%) | 63.76 | 65.99 | 67.81 | 67.85 | 69.10 | 70.99 | 1.053 | ** | 11.34 |
Quality Parameters | Field No. 1 | Field No. 2 | Field No. 3 | Field No. 4 | Field No. 5 | Field No. 6 | S. Em + | C.D. (p = 0.05) | % Change |
---|---|---|---|---|---|---|---|---|---|
Tomato fruits | |||||||||
Total flavonoids (mg QE/g) | 2.21 | 2.26 | 2.35 | 2.47 | 2.63 | 3.04 | 0.073 | ** | 37.56 |
Total phenolic content (mg GAE/g) | 3.51 | 5.21 | 6.45 | 7.46 | 7.92 | 8.74 | 0.068 | ** | 41.14 |
Radicals Scavenging Activity (DPPH, µmol Trolox/g) | 10.27 | 11.29 | 11.49 | 12.64 | 13.87 | 14.20 | 0.351 | ** | 38.27 |
# FRAP (µmol Trolox/g) assay | 14.73 | 15.21 | 16.09 | 17.66 | 18.49 | 19.27 | 0.340 | ** | 30.82 |
## ABTS (µmol Trolox/g) assay | 28.20 | 29.48 | 31.08 | 32.88 | 33.66 | 34.11 | 0.745 | ** | 20.96 |
Brinjal fruits | |||||||||
Total flavonoids (mg QE/g) | 4.67 | 4.73 | 4.96 | 5.19 | 5.60 | 6.34 | 0.113 | ** | 35.84 |
Total phenolic content (mg GAE/g) | 5.49 | 6.25 | 7.20 | 7.61 | 8.46 | 8.84 | 0.153 | ** | 42.81 |
Radicals Scavenging Activity (DPPH, µmol Trolox/g) | 4.71 | 4.82 | 4.97 | 5.27 | 6.24 | 7.14 | 0.133 | ** | 51.60 |
# FRAP (µmol Trolox/g) assay | 4.61 | 4.74 | 4.95 | 5.18 | 5.69 | 6.84 | 0.129 | ** | 48.37 |
## ABTS (µmol Trolox/g) assay | 10.11 | 10.98 | 12.01 | 12.91 | 13.40 | 14.12 | 0.365 | ** | 39.66 |
Okra fruits | |||||||||
Total flavonoids (mg QE/g) | 2.48 | 2.52 | 2.63 | 2.81 | 2.97 | 3.62 | 0.014 | ** | 45.97 |
Total phenolic content (mg GAE/g) | 2.79 | 2.85 | 2.97 | 3.12 | 3.65 | 4.15 | 0.055 | ** | 48.75 |
Radicals Scavenging Activity (DPPH, µmol Trolox/g) | 4.23 | 4.88 | 5.15 | 5.85 | 6.31 | 6.52 | 0.076 | ** | 54.14 |
# FRAP (µmol Trolox/g) assay | 6.15 | 6.48 | 6.78 | 7.12 | 8.14 | 8.54 | 0.089 | ** | 36.86 |
## ABTS (µmol Trolox/g) assay | 19.67 | 21.66 | 22.40 | 23.22 | 24.02 | 24.85 | 0.496 | ** | 26.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhardwaj, R.L.; Vyas, L.; Verma, M.P.; Meena, S.C.; Chattopadhyay, A.; Meena, N.K.; Jakhar, D.S.; Kumawat, S.R. Increasing Productivity and Recovering Nutritional, Organoleptic, and Nutraceutical Qualities of Major Vegetable Crops for Better Dietetics. Foods 2025, 14, 254. https://doi.org/10.3390/foods14020254
Bhardwaj RL, Vyas L, Verma MP, Meena SC, Chattopadhyay A, Meena NK, Jakhar DS, Kumawat SR. Increasing Productivity and Recovering Nutritional, Organoleptic, and Nutraceutical Qualities of Major Vegetable Crops for Better Dietetics. Foods. 2025; 14(2):254. https://doi.org/10.3390/foods14020254
Chicago/Turabian StyleBhardwaj, Raju Lal, Latika Vyas, Mahendra Prakash Verma, Suresh Chand Meena, Anirudha Chattopadhyay, Neeraj Kumar Meena, Dan Singh Jakhar, and Sita Ram Kumawat. 2025. "Increasing Productivity and Recovering Nutritional, Organoleptic, and Nutraceutical Qualities of Major Vegetable Crops for Better Dietetics" Foods 14, no. 2: 254. https://doi.org/10.3390/foods14020254
APA StyleBhardwaj, R. L., Vyas, L., Verma, M. P., Meena, S. C., Chattopadhyay, A., Meena, N. K., Jakhar, D. S., & Kumawat, S. R. (2025). Increasing Productivity and Recovering Nutritional, Organoleptic, and Nutraceutical Qualities of Major Vegetable Crops for Better Dietetics. Foods, 14(2), 254. https://doi.org/10.3390/foods14020254