Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (627)

Search Parameters:
Keywords = oil and moisture content

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 758 KB  
Article
Performance Evaluation of Rubber Modified Asphalt Mixtures with Two Typical Light Oils: A Comparative Study Between Aromatic and Tall Oils
by Qiangbin Zhu, Youxin Jiang, Dongdong Ge, Li Liu, Chaopeng Li, Xiangyang Jiang and Milkos Borges Cabrera
Materials 2026, 19(3), 508; https://doi.org/10.3390/ma19030508 - 27 Jan 2026
Viewed by 131
Abstract
Recycling waste rubber is essential for promoting circular economy practices, reducing environmental pollution, and conserving resources. This study examines the performance of crumb rubber-modified asphalt mixtures incorporating two light oils (aromatic oil and tall oil) to alleviate the high viscosity and poor workability [...] Read more.
Recycling waste rubber is essential for promoting circular economy practices, reducing environmental pollution, and conserving resources. This study examines the performance of crumb rubber-modified asphalt mixtures incorporating two light oils (aromatic oil and tall oil) to alleviate the high viscosity and poor workability of asphalt with high rubber content. Mixtures were prepared using a neat asphalt modified with 20% crumb rubber and 5% light oil (by mass of the neat asphalt), combined with basalt aggregate in an AC-13 gradation. High-temperature performance was evaluated via Marshall stability and wheel tracking tests at 60 °C, moisture sensitivity through immersion Marshall and freeze–thaw splitting tests, and low-temperature cracking resistance using semi-circular bending (SCB) tests at 15 °C. Tensile strength and fatigue life were measured by splitting tests at 25 °C and fatigue tests at 15 °C, respectively. Results indicate that the rubber-modified mixtures showed significant improvements: the total deformation decreased by 44.7% and 64.1% for aromatic oil- and tall oil-modified mixtures, respectively, compared to the neat asphalt. Fracture toughness increased by 46.5% and 71.9%, and tensile strength improved by 40.2% and 63.6%, respectively. At a low stress ratio (0.281), mixtures with tall oil exhibited a 47.9% longer fatigue life than those with aromatic oil. Tall oil demonstrated superior performance, attributed to enhanced rubber swelling and crosslinked network formation, which improved viscosity and aggregate coating. The findings confirm that light oil-modified rubber asphalt mixtures, especially those containing tall oil, present a viable approach for developing high-performance and environmentally sustainable road pavements. Full article
(This article belongs to the Special Issue Sustainable Recycling Techniques of Pavement Materials (3rd Edition))
31 pages, 9516 KB  
Article
Optimization of Hydrothermal and Oleothermal Treatments for the Resistance of Dabema (Piptadeniastrum africanum (Hook.f.) Brenan) Wood
by John Nwoanjia, Jean Jalin Eyinga Biwôlé, Joseph Zobo Mfomo, Joel Narcisse Bebga, Desmond Mufor Zy, Junior Maimou Nganko, Yvane S. Nké Ayinda, Pierre-Marie Tefack, Antonio Pizzi, Ioanna A. Papadopoulou, Salomé Ndjakomo Essiane, Antonios N. Papadopoulos and Achille Bernard Biwolé
Forests 2026, 17(1), 138; https://doi.org/10.3390/f17010138 - 21 Jan 2026
Viewed by 247
Abstract
This study evaluates the effects of hydrothermal and oleothermal treatments on the physical, colorimetric, and mechanical properties of Dabema wood. Samples were heated at 100, 160, and 220 °C for 2, 3.5, and 5 h. Equilibrium moisture content decreased from 13.16% in untreated [...] Read more.
This study evaluates the effects of hydrothermal and oleothermal treatments on the physical, colorimetric, and mechanical properties of Dabema wood. Samples were heated at 100, 160, and 220 °C for 2, 3.5, and 5 h. Equilibrium moisture content decreased from 13.16% in untreated wood to approximately 43% lower after hydrothermal treatment at 160 °C for 5 h and to 64% lower after oleothermal treatment at 220 °C for 5 h. Water absorption decreased from 78% in untreated samples to 25%–64% following hydrothermal treatment and to 17%–44% after oleothermal treatment. Hydrothermal treatment caused significant darkening, whereas oleothermal treatment maintained a lighter, more stable color. Mechanical properties improved substantially: in compression, MOE increased by 113% after oleothermal treatment at 220 °C for 5 h. In bending, MOR and MOE rose by 25%–35% under optimal oil-heat conditions. In tensile, MOE increased by 30%, and maximum tensile stress improved by up to 130%. Oleothermal treatments yielded the most stable enhancements, whereas severe hydrothermal treatments sometimes reduced mechanical performance despite improving moisture resistance. Multivariate analysis (PCA) and response surface methodology (RSM) indicate that oleothermal treatment at 160 °C for 3.5–5 h provides the best compromise between stiffness and color stability. Thermogravimetric analyses (TG/DTG) show hydrothermal treatment promotes hemicelluloses degradation, whereas oleothermal treatment stabilizes the cellulose–lignin network. Overall, hydrothermal treatment enhances dimensional stability, while oleothermal treatment achieves an optimal balance of stiffness, mechanical performance, and color retention. Deep color changes from furanic resin formation under hydrothermal conditions are strongly suppressed by oil during oleothermal processing, yielding lighter and more durable wood. For commercial applications such as furniture and structural components, oleothermal treatment is recommended, whereas hydrothermal treatment is more suitable when dimensional stability is prioritized over mechanical performance. Full article
(This article belongs to the Special Issue Wood Testing, Processing and Modification)
Show Figures

Figure 1

20 pages, 2128 KB  
Article
Valorization of Carrot Processing Waste Through Lycopene Recovery and Development of Functional Oil-Enriching Agents
by María Celia Román, Mathias Riveros-Gómez, Daniela Zalazar-García, Inés María Ranea-Vera, Celina Podetti, María Paula Fabani, Rosa Rodriguez and Germán Mazza
Sustainability 2026, 18(2), 789; https://doi.org/10.3390/su18020789 - 13 Jan 2026
Viewed by 174
Abstract
This study demonstrates a sustainable, integrated pathway for valorizing carrot processing by-products through solvent-free lycopene recovery. The approach combines optimized infrared dehydration with ultrasound-assisted extraction using edible oils. Drying kinetics were modeled at multiple temperatures, with the Midilli model providing the best fit [...] Read more.
This study demonstrates a sustainable, integrated pathway for valorizing carrot processing by-products through solvent-free lycopene recovery. The approach combines optimized infrared dehydration with ultrasound-assisted extraction using edible oils. Drying kinetics were modeled at multiple temperatures, with the Midilli model providing the best fit (R2 > 0.99), enabling accurate prediction of moisture content removal while preserving bioactive compounds. Optimization via Box–Behnken design identified efficient extraction conditions (49.7–60 °C, 10 mL/g, 60 min), achieving lycopene equivalent (LE) yields of 3.07 to 5.00 mg/kg oil. Sunflower and blended oils showed comparable performance under maximum sonication power (240 W), with strong agreement between predicted and experimental yields. The process generated two valuable outputs: a functional lycopene-enriched oil and an exhausted carrot powder co-product, the latter retaining its crude fiber content despite other compositional changes. This research presents a scalable, green methodology that aligns with circular economy principles, transforming agro-industrial waste into functional food ingredients without organic solvents. Thus, the developed approach establishes a transferable model for the sustainable valorization of carotenoid-rich residues, contributing directly to greener food production systems. By providing a practical technological framework to convert waste into wealth, this work supports the fundamental transition toward a circular bioeconomy. Full article
(This article belongs to the Section Bioeconomy of Sustainability)
Show Figures

Figure 1

19 pages, 1900 KB  
Article
Experimental Evaluation of the Bioenergy Potential of Enterolobium cyclocarpum (Orejero) Fruit Peel Residue
by Zully-Esmeralda Gómez-Rosales, Paola-Andrea Hernández-Mejía, Andrés-Gonzalo Forero-González, Johanna-Karina Solano-Meza, Javier Rodrigo-Ilarri and María-Elena Rodrigo-Clavero
Energies 2026, 19(2), 360; https://doi.org/10.3390/en19020360 - 12 Jan 2026
Viewed by 241
Abstract
This study presents an experimental evaluation of the bioenergy potential of Enterolobium cyclocarpum (“orejero”) fruit peel residue, an underutilized agroforestry by-product in tropical America. Although the species is widely used for shade and fodder in livestock systems, its fruit peel has not yet [...] Read more.
This study presents an experimental evaluation of the bioenergy potential of Enterolobium cyclocarpum (“orejero”) fruit peel residue, an underutilized agroforestry by-product in tropical America. Although the species is widely used for shade and fodder in livestock systems, its fruit peel has not yet been characterized for energy recovery purposes. Fruit samples were collected in rural areas of Tesalia (Huila, Colombia), and the peel fraction was analyzed in certified laboratories. The moisture content of the peel was determined as 11 wt%, and the lower heating value was measured as 0.015 TJ/t following ASTM E711-06. Elemental analysis according to ASTM D5373-16 yielded (dry basis): 37.2 wt% C, 4.09 wt% H, 0.45 wt% N and 0.13 wt% S. Based on Colombian cultivation and production data, the theoretical energy potential was estimated as 3.6 TJ/year per hectare. The technical energy potential reached 0.18 and 0.21 TJ/year per hectare for combustion and gasification, respectively. CO2-equivalent emissions were also estimated for both conversion routes, revealing a trade-off between the higher energy yield and higher specific emissions associated with gasification. Overall, the results show that E. cyclocarpum fruit peel residue has a calorific value comparable to widely used agri-food residues in Colombia (e.g., sugarcane bagasse and oil palm fiber), but with a substantially higher per-hectare energy potential due to its large residue fraction. Its high availability, favorable fuel properties, and compatibility with decentralized combustion and gasification technologies support its use as a promising feedstock for bioenergy generation in rural or off-grid areas, in line with circular economy and sustainable energy transition strategies. Full article
(This article belongs to the Special Issue Biomass and Waste-to-Energy for Sustainable Energy Production)
Show Figures

Figure 1

18 pages, 777 KB  
Article
Ecofriendly Biosurfactant-Containing Solid Shampoo Formulation for Pets
by Ana Paula B. Cavalcanti, Gleice P. de Araújo, Fabíola Carolina G. de Almeida, Káren Gercyane O. Bezerra, Maria da Glória C. da Silva, Alessandra Sarubbo, Rita de Cássia F. Soares da Silva and Leonie A. Sarubbo
Cosmetics 2026, 13(1), 11; https://doi.org/10.3390/cosmetics13010011 - 8 Jan 2026
Viewed by 445
Abstract
The growing demand for sustainable cosmetic products and the rapid expansion of the pet care market have driven the search for environmentally friendly, safe, and effective alternatives to conventional formulations. In this study, an ecofriendly solid shampoo for pets was developed using exclusively [...] Read more.
The growing demand for sustainable cosmetic products and the rapid expansion of the pet care market have driven the search for environmentally friendly, safe, and effective alternatives to conventional formulations. In this study, an ecofriendly solid shampoo for pets was developed using exclusively natural ingredients and a microbial biosurfactant produced by Starmerella bombicola ATCC 22214 as a surface-active component. The biosurfactant was combined with renewable anionic and nonionic surfactants, conditioning agents, natural oils and butters, and minimal water content to obtain a compact, solid formulation. The shampoo was produced through a controlled multi-phase process and subsequently characterized by physicochemical, microbiological, toxicological, and performance analyses. The formulation exhibited stable pH values suitable for pet skin, low moisture content, absence of free alkalinity, high solid content, and satisfactory foaming capacity. Cleaning efficiency tests demonstrated effective removal of artificial sebum from pet fur while preserving softness and shine. Microbiological assays confirmed the absence of bacterial and fungal contamination, and toxicological evaluations revealed no cytotoxicity and low eye irritation potential. In addition, the shampoo showed 100% biodegradability and maintained physicochemical and organoleptic stability over six months of storage. Overall, the results demonstrate that the developed solid shampoo represents an innovative, safe, and biodegradable alternative that reduces water consumption and plastic packaging, contributing to sustainable development in the pet cosmetics sector. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

12 pages, 5506 KB  
Article
Green Synthesis of Activated Carbon from Waste Biomass for Biodiesel Dry Wash
by Diana Litzajaya García-Ruiz, Dylan Sinhue Valencia-Delgado, Salvador Moisés Hernández-Ocaña, Luis Fernando Ortega-Varela, Lada Domratcheva-Lvova, Fermín Morales-Troyo, Yadira Solana-Reyes and Carmen Judith Gutiérrez-García
Biomass 2026, 6(1), 3; https://doi.org/10.3390/biomass6010003 - 5 Jan 2026
Viewed by 325
Abstract
The valorization of agro-industrial waste could be a strategy to improve organic waste management. The production of activated carbon (AC) is a path to use for this waste, with the aim of reducing its negative effects. AC is characterized by a high internal [...] Read more.
The valorization of agro-industrial waste could be a strategy to improve organic waste management. The production of activated carbon (AC) is a path to use for this waste, with the aim of reducing its negative effects. AC is characterized by a high internal surface area, chemical stability, and oxygen-containing functional groups in its structure. This work is focused on the valorization of agro-industrial waste such as pineapple peel and coconut shells. These are made up of sucrose, glucose, fructose, and other essential nutrients, as well as cellulose, hemicellulose, and lignin. Activated Carbon was obtained with slow pyrolysis at 400 °C, for 4 h in a stainless-steel tubular reactor with physical activation. The obtained samples were analyzed using SEM, TGA, FTIR, and BET to verify the morphology, thermal degradation, functional groups and pores ratio of the AC, highlighting the presence of materials pore >10 µm. The TGA residual materials gave 16.3% of pineapple peel AC ashes and 0.2% of coconut AC. A C=C, C-HX, CO, and OH stretching were observed in 400–4000 cm−1. The peak intensity decreased once the biodiesel was treated with AC, because the traces of water and functional groups interacted actively, resulting a high content of bases. Activated carbon was used for dry cleaning of the obtained biodiesel from residual oil, which was effective in reducing pH and moisture levels in the biodiesel samples. Pore distribution was determined by BET, 5.6 nm for pineapple peel and 39.8243 nm for coconut shells. The obtained activated carbon offers a sustainable alternative to traditional carbon sources and contributes to the circular economy by recycling waste biomass. Full article
Show Figures

Graphical abstract

16 pages, 1623 KB  
Article
Hydrothermal Carbonization of Fish Waste: A Sustainable Pathway for Valorization and Resource Recovery
by Carmen María Álvez-Medina, Sergio Nogales-Delgado, Beatriz Ledesma Cano, Vicente Montes-Jiménez and Silvia Román Suero
Clean Technol. 2026, 8(1), 4; https://doi.org/10.3390/cleantechnol8010004 - 4 Jan 2026
Viewed by 275
Abstract
Fisheries and aquaculture residues pose escalating environmental challenges due to their high moisture content, nutrient loads, and pollutant potential when improperly managed. Conventional valorization routes, such as fishmeal, fish oil, and silage, offer partial mitigation but remain limited in scalability, conversion efficiency, and [...] Read more.
Fisheries and aquaculture residues pose escalating environmental challenges due to their high moisture content, nutrient loads, and pollutant potential when improperly managed. Conventional valorization routes, such as fishmeal, fish oil, and silage, offer partial mitigation but remain limited in scalability, conversion efficiency, and environmental performance. In this study, fish processing residues were subjected to hydrothermal carbonization (HTC) under controlled subcritical conditions (180–220 °C), along with a high-severity catalytic run (325 °C) using sodium bicarbonate (NaHCO3) as an additive. The latter condition exceeded the typical HTC range and entered the subcritical hydrothermal liquefaction (HTL) regime. The resulting solid, liquid, and gaseous fractions were comprehensively characterized to assess their energy potential, chemical composition, and reactivity. Hydrochars achieved higher heating values (HHVs) ranging from 14.2 to 25.7 MJ/kg. These results underscore their suitability as renewable solid fuels. The gas products were dominated by CO2 under standard HTC conditions. In contrast, the catalytic run in the subcritical HTL regime achieved a hydrogen enrichment of up to 30 vol.%, demonstrating the efficacy of NaHCO3 in promoting the water-gas shift reaction. Subsequent air gasification confirmed the high reactivity of the hydrochars, producing syngas enriched in H2 and CO at elevated temperatures. Overall, this study demonstrates a scalable multiproduct valorization route for fishery residues, supporting circular bioeconomy strategies and contributing to the achievement of UN Sustainable Development Goals (SDGs 7, 12, and 13). Full article
Show Figures

Figure 1

13 pages, 1583 KB  
Article
Co-Gasification of Bio-Oil and Black Liquor as Renewable Gasification Feedstocks
by Jae Gyu Hwang, Seong Wan Hong, Myung Kyu Choi and Hang Seok Choi
Appl. Sci. 2026, 16(1), 359; https://doi.org/10.3390/app16010359 - 29 Dec 2025
Viewed by 202
Abstract
The co-gasification of bio-oil produced via fast pyrolysis and black liquor from the pulp industry may yield a valuable feedstock for renewable gasification. This study investigated the synergistic potential of this co-gasification process. Experiments were conducted in a miniature conical spouted-bed reactor at [...] Read more.
The co-gasification of bio-oil produced via fast pyrolysis and black liquor from the pulp industry may yield a valuable feedstock for renewable gasification. This study investigated the synergistic potential of this co-gasification process. Experiments were conducted in a miniature conical spouted-bed reactor at 800 °C using bio-oil/black liquor mixing ratios ranging from 1:9 to 9:1 under equivalence ratios (ER) of 0.1, 0.3, and 0.5. Syngas characteristics and gasification performance were assessed using the lower heating value (LHV), H2/CO ratio, cold gas efficiency (CGE), and carbon conversion ratio (CCR). Increasing the bio-oil fraction increased CO and CH4 concentrations due to its higher carbon content and lower moisture content, whereas black liquor promoted H2 formation through moisture-driven water–gas shift reactions. Higher ER values intensified combustion, increasing CO2 while reducing combustible gases. The most energy-rich syngas, with the highest LHV and CGE, was obtained using a 9:1 mixture at ER = 0.1. The CCR was greatest for pure bio-oil and the 5:5 ratio among mixtures, reflecting the catalytic effects of alkali species in black liquor. These results demonstrate that co-gasification can improve syngas quality and carbon utilization, with optimal performance depending on the intended application. Full article
Show Figures

Figure 1

14 pages, 305 KB  
Article
From Raw to Cooked: Proximate Composition, Fatty Acids and Fat-Soluble Vitamins in Bluefish (Pomatomus saltatrix) from the Black Sea
by Veselina Panayotova, Katya Peycheva, Tatyana Hristova, Diana A. Dobreva, Tonika Stoycheva, Rositsa Stancheva, Stanislava Georgieva, Evgeni Andreev, Silviya Nikolova, Rouzha Pancheva and Albena Merdzhanova
Foods 2026, 15(1), 55; https://doi.org/10.3390/foods15010055 - 24 Dec 2025
Viewed by 541
Abstract
Bluefish (Pomatomus saltatrix) is an important Black Sea species; however, quantitative data on how traditional household cooking affects its nutritional composition remain limited. This study assessed the effects of grilling, pan-frying, and smoking on the proximate composition, fatty acid profile, fat-soluble [...] Read more.
Bluefish (Pomatomus saltatrix) is an important Black Sea species; however, quantitative data on how traditional household cooking affects its nutritional composition remain limited. This study assessed the effects of grilling, pan-frying, and smoking on the proximate composition, fatty acid profile, fat-soluble vitamins, antioxidant pigments, and cholesterol content of bluefish. Cooking led to moisture reductions of 7–18%, accompanied by increased total lipid content (26–80%). Crude protein content decreased in grilled and smoked fish and increased in pan-fried samples. Pan-frying resulted in the largest reduction in long-chain n-3 PUFA, with reductions of approximately 25.2% for EPA and 20.3% for DHA (in mg/100 g wet weight), probably due to higher temperature and absorption of other fatty acids from the cooking oil. Combined EPA + DHA levels ranged from 743 to 2223 mg/100 g (wet weight), with smoked fish showing the highest values. Vitamin E exhibited substantial losses during grilling but was largely preserved during smoking, whereas astaxanthin was undetectable in the grilled samples. Vitamin D3 demonstrated moderate thermal stability. Overall, each cooking method induced distinct quantitative changes driven by moisture loss and changes in the relative proportions of individual fatty acids within the total lipids. Grilling and smoking were the most favorable for retaining long-chain n-3 PUFA and key micronutrients. Full article
(This article belongs to the Special Issue Nutrients in Seafood)
25 pages, 3889 KB  
Article
Performance of Warm Mix Asphalt with Polymer Modified RAP Using Recycled Engine Oil and SBS Binder Modification
by Byung-Sik Ohm and Tri Ho Minh Le
Polymers 2026, 18(1), 44; https://doi.org/10.3390/polym18010044 - 23 Dec 2025
Viewed by 496
Abstract
The growing use of reclaimed asphalt pavement (RAP) in warm-mix asphalt (WMA) presents significant challenges when RAP originates from aged polymer-modified binder (PMB) pavements, where severe oxidation and polymer degradation lead to excessive stiffness and poor cracking resistance. This study presents a multi-scale [...] Read more.
The growing use of reclaimed asphalt pavement (RAP) in warm-mix asphalt (WMA) presents significant challenges when RAP originates from aged polymer-modified binder (PMB) pavements, where severe oxidation and polymer degradation lead to excessive stiffness and poor cracking resistance. This study presents a multi-scale evaluation of a hybrid modification strategy combining recycled engine oil waste (REOW, 3 wt.%) and styrene–butadiene–styrene (SBS, 1–4 wt.%) to restore aged PMB-containing RAP systems under controlled binder conditions. Three binders (control, REOW-modified, and REOW–SBS hybrid) were prepared using a fixed 70/30 virgin-to-RAP binder blend and characterized through rheological analysis, and multiple stress creep recovery (MSCR). The findings show that REOW softened the binder but reduced elastic recovery, whereas SBS modification restored elastic response. Corresponding WMA mixtures with 30 wt.% RAP and 5.0 wt.% total binder content were evaluated for moisture damage, raveling, rutting, and cracking resistance. At the mixture scale, the hybrid system achieved a TSR of 83%, reduced Hamburg rut depth by ~20%, and increased SCB fracture energy by ~30% compared with the control. These findings demonstrate that combined rejuvenation–reinforcement effectively re-mobilizes aged PMB chemistry and restores polymer elasticity, enabling high-performance WMA production with RAP derived from polymer-modified pavements. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

24 pages, 1999 KB  
Article
Characterization, Kinetic Studies, and Thermodynamic Analysis of Pili (Canarium ovatum Engl.) Nutshell for Assessing Its Biofuel Potential and Bioenergy Applications
by Kaye Papa, Jeffrey Lavarias, Melba Denson, Danila Paragas, Mari Rowena Tanquilut and Arly Morico
Fuels 2026, 7(1), 2; https://doi.org/10.3390/fuels7010002 - 23 Dec 2025
Viewed by 588
Abstract
Pili nutshell (PS), an abundant agro-industrial byproduct in the Bicol Region, Philippines, demonstrates substantial potential as a solid biofuel and bioenergy feedstock. Proximate and ultimate analyses revealed high volatile matter (72.00 ± 0.20 wt%), low ash content (4.33 ± 0.76 wt%), and a [...] Read more.
Pili nutshell (PS), an abundant agro-industrial byproduct in the Bicol Region, Philippines, demonstrates substantial potential as a solid biofuel and bioenergy feedstock. Proximate and ultimate analyses revealed high volatile matter (72.00 ± 0.20 wt%), low ash content (4.33 ± 0.76 wt%), and a higher heating value of 20.60 MJ/kg, indicating strong suitability as a solid fuel for thermochemical conversion and biofuel production. Thermogravimetric analysis (TGA) was conducted from 30 °C to 900 °C at heating rates of 10, 15, and 20 °C/min under nitrogen to examine its thermal decomposition behavior. The process followed three stages: initial moisture loss, active devolatilization, and lignin-rich char formation. The resulting kinetic and thermodynamic parameters are directly relevant for designing fast pyrolysis processes aimed at liquid biofuel production and optimizing downstream fuel utilization of the derived bio-oil and char. Kinetic analysis using the Coats–Redfern method identified third-order reaction (CR03) and diffusion-controlled (DM6) models as best-fitting, with activation energies ranging from 64.03–96.21 kJ/mol (CR03) and 66.98–104.72 kJ/mol (DM6). Corresponding thermodynamic parameters—ΔH (58.67–90.95 kJ/mol), ΔG (201.51–231.46 kJ/mol), and ΔS (−174.57 to −255.08 kJ/mol·K)—indicated an endothermic, non-spontaneous, entropy-reducing reaction pathway. Model-free methods confirmed a highly reactive zone at α = 0.3–0.6, with consistent Ea values (~130–190 kJ/mol). These findings affirm the viability of PS for fast pyrolysis, offering data-driven insights for optimizing advanced fuel and bioenergy systems in line with circular economy objectives. Full article
(This article belongs to the Special Issue Biofuels and Bioenergy: New Advances and Challenges)
Show Figures

Figure 1

21 pages, 1738 KB  
Article
Developing Active Modified Starch-Based Films Incorporated with Ultrasound-Assisted Muña (Minthostachys mollis) Essential Oil Nanoemulsions
by José Antonio Flores-Bao, Luis Jaime Pérez-Córdoba, Patricia Martínez-Tapia, Fiorela Peña-Carrasco, Paulo José do Amaral Sobral, Izabel Freitas Moraes and Carmen Velezmoro-Sánchez
Polymers 2026, 18(1), 23; https://doi.org/10.3390/polym18010023 - 22 Dec 2025
Viewed by 402
Abstract
In this study, an I-optimal design was used to select an optimal muña essential oil nanoemulsion (MEO-NE) for application in active starch-based films. Four independent variables were used to optimize the process: emulsifier concentration (X1) (% w/w), sonication [...] Read more.
In this study, an I-optimal design was used to select an optimal muña essential oil nanoemulsion (MEO-NE) for application in active starch-based films. Four independent variables were used to optimize the process: emulsifier concentration (X1) (% w/w), sonication time (X2) (min), essential oil concentration (X3) (% w/w), and emulsifier type (X4) (Tween 80 or sapote gum). Results revealed that MEO-NE containing 5.24% of MEO, 6% Tween® 80, and 9 min of ultrasound treatment exhibited a small droplet size (Y1) (48.6 nm), moderate ζ-potential (Y2) (−15 mV), and DPPH inhibition (Y3) (95.6%). Starch-based films were incorporated with optimized MEO-NE at 5% (F1) and 10% (F2) and compared with control films (F0). F1 and F2 exhibited lower moisture content, water solubility, and water vapor permeability than F0; however, their contact angles were higher. The addition of MEO-NE into the polymeric matrix increased the stiffness of F1 and F2; however, the elongation at yield was slightly lower than that of F0, resulting in less stretchable composite films. All films were disintegrated by more than 90% after 5 days of burial under composting conditions. The incorporation of MEO-NE into composite films significantly enhanced their properties, suggesting their potential use as eco-friendly packaging. Full article
(This article belongs to the Special Issue Biopolymer-Based Materials for Edible Food Packaging)
Show Figures

Figure 1

20 pages, 3974 KB  
Article
Production of Prebiotic-Fortified Instant Rice Macaroni: Application of Heat–Moisture and Microwave Treatments to Enhance Resistant Starch and Reduce Glycemic Index
by Anh Hoang Nguyen, Phat Thuan Nguyen, Truc Thanh Pham, Uyen Hanh Le and Duy Doan Nguyen Le
Processes 2025, 13(12), 4060; https://doi.org/10.3390/pr13124060 - 16 Dec 2025
Viewed by 622
Abstract
This study developed a process for producing prebiotic-fortified instant rice macaroni to diversify rice-based convenience foods. Resistant starch (RS) rice flour from three varieties—IR504 and two pigmented, anthocyanidin-rich rice cultivars (Huyet Rong and MS2019)—was blended with wheat flour and fixed ingredients (tapioca starch, [...] Read more.
This study developed a process for producing prebiotic-fortified instant rice macaroni to diversify rice-based convenience foods. Resistant starch (RS) rice flour from three varieties—IR504 and two pigmented, anthocyanidin-rich rice cultivars (Huyet Rong and MS2019)—was blended with wheat flour and fixed ingredients (tapioca starch, salt, and vegetable oil at a ratio of 9g:1g:1g), together with hot water. The instant rice macaroni with the highest RS content (11.64%) was obtained using IR504 RS and wheat flour (44:6), gelatinized at 100 °C for 20 min, microwaved at 36 W/g for 30 s, retrograded at 4 °C for 24 h, and sterilized at 115 °C for 15 min. For anthocyanidin-containing macaroni, the combination of Huyet Rong RS and wheat flour (39:11) yielded 9.47% RS under similar retrogradation and sterilization conditions, but with a shorter gelatinization step (100 °C, 15 min) and longer microwave treatment (50 s at 27 W/g). The other optimized colored-RS formulation was based on MS2019 RS and wheat flour (21:29) processed under similar conditions. All optimized formulations exhibited lower estimated glycemic index (eGI) values of 64.1, 65.7, and 68.2, which were significantly lower than those of the control instant rice macaroni (78.2–85.9, p < 0.05). This study confirms the potential of developing instant rice macaroni rich in RS to enhance prebiotic effects that support the growth of beneficial intestinal bacteria, strengthen immune function, and improve nutritional quality through the incorporation of anthocyanidin-rich rice varieties and a processing procedure combining heat–moisture treatment with microwave heating. Full article
Show Figures

Figure 1

26 pages, 6335 KB  
Article
Integration of Nonlinear Rheology and CFD Simulation to Elucidate the Influence of Saturated Oil on Soy Protein Concentrate Behavior During High-Moisture Extrusion
by Timilehin Martins Oyinloye, Chae-Jin Lee and Won Byong Yoon
Gels 2025, 11(12), 1003; https://doi.org/10.3390/gels11121003 - 12 Dec 2025
Viewed by 409
Abstract
This study investigated the influence of coconut oil concentration (0–2%) on the nonlinear rheological and thermal behavior of soy protein concentrate (SPC) mixtures and integrated these data into computational fluid dynamics (CFD) models to predict flow behavior during high-moisture extrusion. Temperature sweep tests [...] Read more.
This study investigated the influence of coconut oil concentration (0–2%) on the nonlinear rheological and thermal behavior of soy protein concentrate (SPC) mixtures and integrated these data into computational fluid dynamics (CFD) models to predict flow behavior during high-moisture extrusion. Temperature sweep tests revealed that increasing oil content elevated the onset and peak gelation temperatures from 64.13 to 70.21 °C and 70.29 to 76.08 °C, respectively, while decreasing gelation enthalpy from 4.05 J/g to 2.81 J/g. Large-amplitude oscillatory shear (LAOS) analysis showed a shift from strain-stiffening (e3/e1 > 0.15) behavior to strain-thinning (e3/e1 < 0.05) behavior with increasing oil, accompanied by enhanced shear-thinning behavior (v3/v1 < 0). Integrating these nonlinear parameters into the CFD simulations enhanced model accuracy relative to the SAOS-based approach, resulting in lower RMSE values (≤4.41 kPa for pressure and ≤0.11 mm/s for velocity) and enabling more realistic prediction of deformation and flow under extrusion-relevant conditions, a capability that conventional SAOS-based models could not achieve. Predicted outlet melt temperatures averaged 70.27 ± 1.55 °C, consistent with experimental results. The findings demonstrate that oil addition modulates protein network formation and flow resistance, and that nonlinear rheology-coupled CFD models enable reliable prediction of extrusion behavior. Overall, this study provides a novel rheology-driven modeling strategy for enhancing the design and optimization of oil-enriched plant-protein extrusion processes. Full article
(This article belongs to the Special Issue Recent Developments in Food Gels (3rd Edition))
Show Figures

Figure 1

9 pages, 971 KB  
Proceeding Paper
Parametric Study of Slow Pyrolysis on Invasive Water Hyacinth for Energy Recovery and Towards Cleaner Blue Carbon Technologies
by Pauline Patrice Tamoria, Eugenie Mhel Chavez, Trisha Camille Garcia, Winnieruth Manio, Ivy Jane Milana, Rugi Vicente Rubi, Eric Halabaso and Rich Jhon Paul Latiza
Eng. Proc. 2025, 117(1), 13; https://doi.org/10.3390/engproc2025117013 - 10 Dec 2025
Viewed by 515
Abstract
The urgent need for cleaner energy sources has driven exploration into innovative and sustainable solutions. This study investigates the potential of the invasive aquatic plant, the water hyacinth, to contribute to energy recovery and support the preservation of blue carbon ecosystems through biomass [...] Read more.
The urgent need for cleaner energy sources has driven exploration into innovative and sustainable solutions. This study investigates the potential of the invasive aquatic plant, the water hyacinth, to contribute to energy recovery and support the preservation of blue carbon ecosystems through biomass removal. Employing slow pyrolysis, this study examines the influence of temperature (300–500 °C) and residence time (30–90 min) on bio-oil and biochar production in a fixed-bed reactor. Results revealed that residence time was the key operational parameter significantly influencing total liquid condensate yield, which peaked at 34.34 wt% at 400 °C after 90 min. Moisture content reveals an actual organic bio-oil yield of approximately 3.4–4.8 wt%. In contrast, biochar yield (max. 43.74 wt%) was not significantly affected by the tested parameters. The resulting bio-oil exhibited a high heating value of up to 25.84 MJ/kg, suggesting its potential as a renewable fuel. This study concludes that slow pyrolysis of invasive water hyacinth provides a dual-benefit pathway: it co-produces renewable bio-oil for energy recovery alongside a stable biochar, offering a tangible route for blue carbon sequestration. This integrated approach transforms an environmental liability into valuable resources, contributing to a cleaner environment and a more sustainable future. Full article
Show Figures

Figure 1

Back to TopTop