Production of Prebiotic-Fortified Instant Rice Macaroni: Application of Heat–Moisture and Microwave Treatments to Enhance Resistant Starch and Reduce Glycemic Index
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemicals and Reagents
2.3. Processing
2.4. Effect of Mixing Ratio on RS Content
2.5. Effect of Starch Gelatinization Time on RS Content
2.6. Effect of Microwave Processing on RS Content
2.7. Effect of Retrogradation Processing on RS Content
2.8. Effect of Sterilization Processing on RS Content
2.9. Microbiological Analysis
2.10. Determine the Color of Macaroni
2.11. Textural Measurement of Macaroni by TPA
2.12. In Vitro Determination of Glycemic Index (GI)
2.13. Data Analysis
3. Result and Discussion
3.1. Effect of Mixing Ratio on Rice Macaroni Dough Moisture and Resistant Starch Content
3.2. Effect of Starch Gelatinization Time on RS Content
3.3. Effect of Microwave Processing on RS Content
3.4. Effect of Retrogradation Processing on RS Content
3.5. Effect of Sterilization Processing on RS Content
3.5.1. Nutritional Ingredients
3.5.2. Effect of RS Content on Glycemic Index (GI)
3.5.3. Color Measurement Results
3.5.4. Hardness Measurement Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giacco, R.; Vitale, M.; Riccardi, G. Pasta: Role in Diet. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 242–245. [Google Scholar] [CrossRef]
- Bresciani, A.; Pagani, M.A.; Marti, A. Pasta-Making Process: A Narrative Review on the Relation between Process Variables and Pasta Quality. Foods 2022, 11, 256. [Google Scholar] [CrossRef]
- Giannetti, V.; Boccacci Mariani, M.; Marini, F.; Biancolillo, A. Effects of thermal treatments on durum wheat pasta flavour during production process: A modelling approach to provide added-value to pasta dried at low temperatures. Talanta 2021, 225, 121955. [Google Scholar] [CrossRef] [PubMed]
- Dello Russo, M.; Spagnuolo, C.; Moccia, S.; Angelino, D.; Pellegrini, N.; Martini, D. Nutritional quality of pasta sold on the italian market: The food labelling of italian products (FLIP) study. Nutrients 2021, 13, 171. [Google Scholar] [CrossRef] [PubMed]
- Angelino, D.; Martina, A.; Rosi, A.; Veronesi, L.; Antonini, M.; Mennella, I.; Vitaglione, P.; Grioni, S.; Brighenti, F.; Zavaroni, I.; et al. Glucose- and Lipid-Related Biomarkers Are Affected in Healthy Obese or Hyperglycemic Adults Consuming a Whole-Grain Pasta Enriched in Prebiotics and Probiotics: A 12-Week Randomized Controlled Trial. J. Nutr. 2019, 149, 1714–1723. [Google Scholar] [CrossRef] [PubMed]
- Ciccoritti, R.; Taddei, F.; Nicoletti, I.; Gazza, L.; Corradini, D.; D’Egidio, M.G.; Martini, D. Use of bran fractions and debranned kernels for the development of pasta with high nutritional and healthy potential. Food Chem. 2017, 225, 77–86. [Google Scholar] [CrossRef]
- Oliviero, T.; Fogliano, V. Food design strategies to increase vegetable intake: The case of vegetable enriched pasta. Trends Food Sci. Technol. 2016, 51, 58–64. [Google Scholar] [CrossRef]
- Hu, H.; Jiang, H.; Sang, S.; McClements, D.J.; Jiang, L.; Wen, J.; Jin, Z.; Qiu, C. Research advances in origin, applications, and interactions of resistant starch: Utilization for creation of healthier functional food products. Trends Food Sci. Technol. 2024, 148, 104519. [Google Scholar] [CrossRef]
- Tian, S.; Sun, Y. Influencing factor of resistant starch formation and application in cereal products: A review. Int. J. Biol. Macromol. 2020, 149, 424–431. [Google Scholar] [CrossRef]
- Dupuis, J.H.; Liu, Q.; Yada, R.Y. Methodologies for Increasing the Resistant Starch Content of Food Starches: A Review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1219–1234. [Google Scholar] [CrossRef]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50. Available online: http://www.ncbi.nlm.nih.gov/pubmed/1330528 (accessed on 1 October 1992).
- Ellis, R.P.; Cochrane, M.P.; Dale, M.F.B.; Duffus, C.M.; Lynn, A.; Morrison, I.M.; Prentice, R.D.M.; Swanston, J.S.; Tiller, S.A. Starch production and industrial use. J. Sci. Food Agric. 1998, 77, 289–311. [Google Scholar] [CrossRef]
- Bojarczuk, A.; Skąpska, S.; Mousavi Khaneghah, A.; Marszałek, K. Health benefits of resistant starch: A review of the literature. J. Funct. Foods 2022, 93, 105094. [Google Scholar] [CrossRef]
- Lee, C.-S.; Chung, H.-J. Enhancing Resistant Starch Content of High Amylose Rice Starch through Heat–Moisture Treatment for Industrial Application. Molecules 2022, 27, 6375. [Google Scholar] [CrossRef] [PubMed]
- da Rosa Zavareze, E.; Mello El Halal, S.L.; de los Santos, D.G.; Helbig, E.; Pereira, J.M.; Guerra Dias, A.R. Resistant starch and thermal, morphological and textural properties of heat-moisture treated rice starches with high-, medium- and low-amylose content. Starch 2012, 64, 45–54. [Google Scholar] [CrossRef]
- Van Hung, P.; Binh, V.T.; Nhi, P.H.Y.; Phi, N.T.L. Effect of heat-moisture treatment of unpolished red rice on its starch properties and in vitro and in vivo digestibility. Int. J. Biol. Macromol. 2020, 154, 1–8. [Google Scholar] [CrossRef]
- Deka, D.; Sit, N. Dual modification of taro starch by microwave and other heat moisture treatments. Int. J. Biol. Macromol. 2016, 92, 416–422. [Google Scholar] [CrossRef]
- Denchai, N.; Suwannaporn, P.; Lin, J.; Soontaranon, S.; Kiatponglarp, W.; Huang, T. Retrogradation and Digestibility of Rice Starch Gels: The Joint Effect of Degree of Gelatinization and Storage. J. Food Sci. 2019, 84, 1400–1410. [Google Scholar] [CrossRef]
- Fan, D.; Wang, L.; Chen, W.; Ma, S.; Ma, W.; Liu, X.; Zhao, J.; Zhang, H. Effect of microwave on lamellar parameters of rice starch through small-angle X-ray scattering. Food Hydrocoll. 2014, 35, 620–626. [Google Scholar] [CrossRef]
- Suwannaporn, P.; Pitiphunpong, S.; Champangern, S. Classification of Rice Amylose Content by Discriminant Analysis of Physicochemical Properties. Starch 2007, 59, 171–177. [Google Scholar] [CrossRef]
- Thuy, N.M.; Van Tai, N. Effect of different cooking conditions on resistant starch and estimated glycemic index of macaroni. J. Appl. Biol. Biotechnol. 2022, 10, 151–157. [Google Scholar] [CrossRef]
- Wang, M.; Sun, M.; Zhang, Y.; Chen, Y.; Wu, Y.; Ouyang, J. Effect of microwave irradiation-retrogradation treatment on the digestive and physicochemical properties of starches with different crystallinity. Food Chem. 2019, 298, 125015. [Google Scholar] [CrossRef] [PubMed]
- Górecki, A.R.; Błaszczak, W.; Lewandowicz, J.; Le Thanh-Blicharz, J.; Penkacik, K. Influence of High Pressure or Autoclaving-Cooling Cycles and Pullulanase Treatment on Buckwheat Starch Properties and Resistant Starch Formation. Pol. J. Food Nutr. Sci. 2018, 68, 235–242. [Google Scholar] [CrossRef]
- Li, Y.D.; Xu, T.C.; Xiao, J.X.; Zong, A.Z.; Qiu, B.; Jia, M.; Liu, L.N.; Liu, W. Efficacy of potato resistant starch prepared by microwave–toughening treatment. Carbohydr. Polym. 2018, 192, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kuang, Y.; Liang, Z.; Sun, X. Materials Today Nano Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: A review. Mater. Today Nano 2020, 11, 100076. [Google Scholar] [CrossRef]
- Li, J.; Han, W.; Zhang, B.; Zhao, S.; Du, H. Structure and Physicochemical Properties of Resistant Starch Prepared by Autoclaving-Microwave. Starch 2018, 70, 1800060. [Google Scholar] [CrossRef]
- Morris, V.J. Starch gelation and retrogradation. Trends Food Sci. Technol. 1990, 1, 2–6. [Google Scholar] [CrossRef]
- Duong, Q.H.; Hoàng, T.M.; Tuyên, A.D.; Vu, T.T.; Luong, N.H. Effect of some factors on the hydrolysis process of sweet potato starch by spezyme alpha to produce isomaltooligosaccharide (IMO). Vietnam J. Sci. Technol. 2022, 60, 191–202. [Google Scholar] [CrossRef]
- Hoover, R.; Hughes, T.; Chung, H.J.; Liu, Q. Composition, molecular structure, properties, and modification of pulse starches: A review. Food Res. Int. 2010, 43, 399–413. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Hwang, C.-C.; Tsai, Y.-H.; Huang, Y.-T. Development and pasteurization of in-packaged ready-to-eat rice products prepared with novel microwave-assisted induction heating (MAIH) technology. Appl. Food Res. 2025, 5, 100697. [Google Scholar] [CrossRef]
- Tao, K.; Yu, W.; Prakash, S.; Gilbert, R.G. Investigating cooked rice textural properties by instrumental measurements. Food Sci. Hum. Wellness 2020, 9, 130–135. [Google Scholar] [CrossRef]
- Sulung, N.K.; Aziss, N.A.S.M.; Kutbi, N.F.; Ahadaali, A.A.; Zairi, N.A.; Mahmod, I.I.; Sajak, A.A.B.; Sultana, S.; Azlan, A. Validation of in vitro glycaemic index (eGI) and glycaemic load (eGL) based on selected baked products, beverages, and canned foods. Food Chem. Adv. 2023, 3, 100502. [Google Scholar] [CrossRef]
- Too, B.C.; Thuy, N.M. Effect of partial replacement of wheat flour with flour/starch containing resistant starch on macaroni quality. Food Res. 2023, 7, 5–15. [Google Scholar] [CrossRef]
- Syahariza, Z.A.; Sar, S.; Hasjim, J.; Tizzotti, M.J.; Gilbert, R.G. The importance of amylose and amylopectin fine structures for starch digestibility in cooked rice grains. Food Chem. 2013, 136, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.J.; Liu, Q.Q.; Wilson, J.D.; Gu, M.H.; Shi, Y.C. Digestibility and physicochemical properties of rice (Oryza sativa L.) flours and starches differing in amylose content. Carbohydr. Polym. 2011, 86, 1751–1759. [Google Scholar] [CrossRef]
- He, J.; Monica Giusti, M. Anthocyanins: Natural colorants with health-promoting properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar] [CrossRef]
- Isra, M.; Andrianto, D.; Setiarto, R.H.B. Effect heat moisture treatment for resistant starch levels and prebiotic properties of high carbohydrate food: Meta-analysis study. Food Res. 2023, 7, 144–150. [Google Scholar] [CrossRef]
- Ek, K.L.; Brand-Miller, J.; Copeland, L. Glycemic effect of potatoes. Food Chem. 2012, 133, 1230–1240. [Google Scholar] [CrossRef]
- Kolarič, L.; Minarovičová, L.; Lauková, M.; Karovičová, J.; Kohajdová, Z. Pasta noodles enriched with sweet potato starch: Impact on quality parameters and resistant starch content. J. Texture Stud. 2020, 51, 464–474. [Google Scholar] [CrossRef]
- Tian, Y.; Li, M.; Tang, A.; Jane, J.L.; Dhital, S.; Guo, B. RS Content and EGI value of cooked noodles (I): Effect of cooking methods. Foods 2020, 9, 328. [Google Scholar] [CrossRef]
- Juansang, J.; Puttanlek, C.; Rungsardthong, V.; Puncha-Arnon, S.; Uttapap, D. Effect of gelatinisation on slowly digestible starch and resistant starch of heat-moisture treated and chemically modified canna starches. Food Chem. 2012, 131, 500–507. [Google Scholar] [CrossRef]
- Zeng, S.; Chen, B.; Zeng, H.; Guo, Z.; Lu, X.; Zhang, Y.; Zheng, B. Effect of Microwave Irradiation on the Physicochemical and Digestive Properties of Lotus Seed Starch. J. Agric. Food Chem. 2016, 64, 2442–2449. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, F.; Liu, F.; Wang, Z.W. Study on structural changes of microwave heat-moisture treated resistant Canna edulis Ker starch during digestion in vitro. Food Hydrocoll. 2010, 24, 27–34. [Google Scholar] [CrossRef]
- Mutlu, S.; Kahraman, K.; Öztürk, S. Optimization of resistant starch formation from high amylose corn starch by microwave irradiation treatments and characterization of starch preparations. Int. J. Biol. Macromol. 2017, 95, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Amaral, O.; Guerreiro, C.S.; Gomes, A.; Cravo, M. Resistant starch production in wheat bread: Effect of ingredients, baking conditions and storage. Eur. Food Res. Technol. 2016, 242, 1747–1753. [Google Scholar] [CrossRef]
- Mora-Escobedo, R.; Osorio-Díaz, P.; García-Rosas, M.I.; Bello-Pérez, A.; Hernández-Unzón, H. Changes in selected nutrients and microstructure of white starch quality maize and common maize during tortilla preparation and storage. Food Sci. Technol. Int. 2004, 10, 79–87. [Google Scholar] [CrossRef]
- Borczak, B.; Sikora, E.; Sikora, M.; Kapusta-Duch, J. The influence of prolonged frozen storage of wheat-flour rolls on resistant starch development. Starch 2014, 66, 533–538. [Google Scholar] [CrossRef]
- Sangwongchai, W.; Sa-ingthong, N.; Phothiset, S.; Saenubon, C.; Thitisaksakul, M. Resistant starch formation and changes in physicochemical properties of waxy and non-waxy rice starches by autoclaving-cooling treatment. Int. J. Food Prop. 2024, 27, 532–548. [Google Scholar] [CrossRef]
- Berry, C.S. Resistant starch: Formation and measurement of starch that survives exhaustive digestion with amylolytic enzymes during the determination of dietary fibre. J. Cereal Sci. 1986, 4, 301–314. [Google Scholar] [CrossRef]
- Chen, X.; Du, X.; Chen, P.; Guo, L.; Xu, Y.; Zhou, X. Morphologies and gelatinization behaviours of high-amylose maize starches during heat treatment. Carbohydr. Polym. 2017, 157, 637–642. [Google Scholar] [CrossRef]
- Milasinovic, M.; Radosavljevic, M.; Dokic, L. Effects of autoclaving and pullulanase debranching on the resistant starch yield of normal maize starch. J. Serbian Chem. Soc. 2010, 75, 449–458. [Google Scholar] [CrossRef]
- Song, R.; Huang, M.; Li, B.; Zhou, B. The effect of three gums on the retrogradation of indica rice starch. Nutrients 2012, 4, 425–435. [Google Scholar] [CrossRef]
- Cheung, P.C.-K.; Chau, C.-F. Changes in the Dietary Fiber (Resistant Starch and Nonstarch Polysaccharides) Content of Cooked Flours Prepared from Three Chinese Indigenous Legume Seeds. J. Agric. Food Chem. 1998, 46, 262–265. [Google Scholar] [CrossRef]
- Kim, M.K.; Park, J.; Kim, D.; Kim, D. Resistant starch and type 2 diabetes mellitus: Clinical perspective. J. Diabetes Investig. 2024, 15, 395–401. [Google Scholar] [CrossRef]
- Ma, Z.; Hu, X.; Boye, J.I. Research advances on the formation mechanism of resistant starch type III : A review Research advances on the formation mechanism of resistant starch type III: A review. Crit. Rev. Food Sci. Nutr. 2022, 60, 276–297. [Google Scholar] [CrossRef]
- Brasoveanu, M.; Nemtanu, M.R. Behaviour of starch exposed to microwave radiation treatment. Starch 2014, 66, 3–14. [Google Scholar] [CrossRef]
- Birt, D.F.; Boylston, T.; Hendrich, S.; Jane, J.-L.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.J.; Rowling, M.; et al. Resistant Starch: Promise for Improving Human Health. Adv. Nutr. 2013, 4, 587–601. [Google Scholar] [CrossRef]









| IR504 | A1 | A2 | A3 | A4 | A5 |
| Moisture (%) | 30.12 ± 0.1 d | 32.64 ± 1.2 c | 36.57 ± 1.26 b | 38.74 ± 1.70 b | 42.13 ± 1.49 a |
| Processability Observations | Low dough moisture caused poor formability and fragile extrudate. | The extruded product showed a stable shape but retained slight dryness. | The product retained a satisfactory shape after extrusion | Optimal moisture provided good plasticity and shape retention. | High dough moisture caused poor shape retention and stickiness in the extruded product. |
| Dough Characteristics | ![]() | ![]() | ![]() | ![]() | ![]() |
| Huyet Rong | B1 | B2 | B3 | B4 | B5 |
| Moisture (%) | 30.17 ± 1.30 d | 32.56 ± 0.86 c | 36.44 ± 1.49 b | 38.3 ± 1.07 b | 42.11 ± 1.38 a |
| Processability Observations | Low dough moisture caused poor formability and fragile extrudate. | The extruded product showed a stable shape but retained slight dryness. | The product retained a satisfactory shape after extrusion | Optimal moisture provided good plasticity and shape retention. | High dough moisture caused poor shape retention and stickiness in the extruded product. |
| Dough Characteristics | ![]() | ![]() | ![]() | ![]() | ![]() |
| MS2019 | C1 | C2 | C3 | C4 | C5 |
| Moisture (%) | 31.09 ± 1.04 d | 32.54 ± 1.05 d | 36.17 ± 0.87 c | 38.8 ± 0.69 b | 42.19 ± 1.35 a |
| Processability Observations | Low dough moisture caused poor formability and fragile extrudate. | The extruded product showed a stable shape but retained slight dryness. | Optimal dough moisture ensured good plasticity, resulting in excellent shape retention during extrusion. | Good dough plasticity allowed for excellent shape retention during extrusion, despite residual stickiness. | High dough moisture caused poor shape retention and stickiness in the extruded product. |
| Dough Characteristics | ![]() | ![]() | ![]() | ![]() | ![]() |
| Sample | Carbohydrate (g/100 g) | Fat (g/100 g) | Protein (g/100 g) | Fiber (g/100 g) | Moisture (%) | RS (g/100 g) |
|---|---|---|---|---|---|---|
| IR504 Macaroni | 30.56 ± 0.087 a | 1.82 ± 0.180 ab | 3.32 ± 0.045 c | 0.24 ± 0.045 b | 63.3 ± 0.047 e | 2.37 ± 0.087 d |
| IR504 Macaroni Prebiotic | 29.35 ± 0.173 b | 1.94 ± 0.130 a | 3.28 ± 0.030 c | 0.37 ± 0.050 a | 64.5 ± 0.201 d | 11.64 ± 0.091 a |
| Huyet Rong Macaroni | 28.81 ± 0.062 c | 1.36 ± 0.055 c | 3.71 ± 0.087 a | 0.36 ± 0.02 a | 65.0 ± 0.081 c | 2.03 ± 0.120 e |
| Huyet Rong Macaroni Prebiotic | 26.35 ± 0.120 e | 1.15 ± 0.085 d | 3.53 ± 0.055 b | 0.31 ± 0.032 a | 66.0 ± 0.117 b | 9.47 ± 0.055 b |
| MS2019 Macaroni | 27.13 ± 0.118 d | 1.03 ± 0.051 d | 3.30 ± 0.047 c | 0.17 ± 0.023 c | 65.9 ± 0.081 b | 1.90 ± 0.046 e |
| MS2019 Macaroni Prebiotic | 28.70 ± 0.136 c | 1.74 ± 0.036 b | 3.24 ± 0.110 c | 0.37 ± 0.040 a | 66.8 ± 0.081 a | 4.57 ± 0.206 c |
| Sample | AUC | HI | eGI (White Bread) |
|---|---|---|---|
| Reference Food | |||
| White Bread | 11,598 ± 94.5 | 100 | - |
| Food Selection | |||
| IR504 Macaroni | 8127 ± 145.5 | 70.1 ± 0.68 c | 78.2 ± 0.38 c |
| IR504 Macaroni Prebiotic | 5158 ± 64.5 | 44.5 ± 0.19 e | 64.1 ± 0.11 e |
| Huyet Rong Macaroni | 8810 ± 142.0 | 75.9 ± 0.61 b | 81.4 ± 0.33 b |
| Huyet Rong Macaroni Prebiotic | 5490 ± 128.5 | 47.3 ± 0.72 e | 65.7 ± 0.39 e |
| MS2019 Macaroni | 9765 ± 171.5 | 84.2 ± 0.79 a | 85.9 ± 0.43 a |
| MS2019 Macaroni Prebiotic | 6010 ± 495.0 | 51.8 ± 3.85 d | 68.2 ± 2.11 d |
| L* | a* | b* | WI | |
|---|---|---|---|---|
| IR504 Macaroni | 61.34 ± 1.36 | −3.47 ± 0.12 | 2.85 ± 0.28 | 61.08 ± 1.35 |
| IR504 Macaroni Prebiotic | 58. 23 ± 1.70 | −4.20 ± 0.30 | 3.58 ± 1.24 | 57.85 ± 1.65 |
| Huyet Rong Macaroni | 48.94 ± 1.35 | 4.51 ± 0.26 | 9.60 ± 0.17 | 47.85 ± 1.29 |
| Huyet Rong Macaroni Prebiotic | 45.23 ± 2.33 | 3.06 ± 0.24 | 8.623 ± 0.52 | 44.46 ± 2.22 |
| MS2019 Macaroni | 26.71 ± 0.32 | 2.95 ± 0.25 | 1.54 ± 0.11 | 26.33 ± 0.33 |
| MS2019 Macaroni Prebiotic | 24.48 ± 1.25 | 1.92 ± 0.20 | 1.88 ± 0.15 | 24.43 ± 1.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, A.H.; Nguyen, P.T.; Pham, T.T.; Le, U.H.; Le, D.D.N. Production of Prebiotic-Fortified Instant Rice Macaroni: Application of Heat–Moisture and Microwave Treatments to Enhance Resistant Starch and Reduce Glycemic Index. Processes 2025, 13, 4060. https://doi.org/10.3390/pr13124060
Nguyen AH, Nguyen PT, Pham TT, Le UH, Le DDN. Production of Prebiotic-Fortified Instant Rice Macaroni: Application of Heat–Moisture and Microwave Treatments to Enhance Resistant Starch and Reduce Glycemic Index. Processes. 2025; 13(12):4060. https://doi.org/10.3390/pr13124060
Chicago/Turabian StyleNguyen, Anh Hoang, Phat Thuan Nguyen, Truc Thanh Pham, Uyen Hanh Le, and Duy Doan Nguyen Le. 2025. "Production of Prebiotic-Fortified Instant Rice Macaroni: Application of Heat–Moisture and Microwave Treatments to Enhance Resistant Starch and Reduce Glycemic Index" Processes 13, no. 12: 4060. https://doi.org/10.3390/pr13124060
APA StyleNguyen, A. H., Nguyen, P. T., Pham, T. T., Le, U. H., & Le, D. D. N. (2025). Production of Prebiotic-Fortified Instant Rice Macaroni: Application of Heat–Moisture and Microwave Treatments to Enhance Resistant Starch and Reduce Glycemic Index. Processes, 13(12), 4060. https://doi.org/10.3390/pr13124060
















