Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (378)

Search Parameters:
Keywords = novel resistance resources

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1121 KiB  
Article
Electrical Circuit Model for Sensing Water Quality Analysis
by Omar Awayssa, Roqaya A. Ismail, Ali Hilal-AlNaqbi and Mahmoud Al Ahmad
Water 2025, 17(15), 2345; https://doi.org/10.3390/w17152345 - 7 Aug 2025
Abstract
Water is essential to human civilization and development, yet its quality is increasingly threatened by climate change, pollution, and resource mismanagement. This work introduces an empirical, non-invasive framework for assessing water potability using electrical impedance spectroscopy (EIS) combined with a novel equivalent circuit [...] Read more.
Water is essential to human civilization and development, yet its quality is increasingly threatened by climate change, pollution, and resource mismanagement. This work introduces an empirical, non-invasive framework for assessing water potability using electrical impedance spectroscopy (EIS) combined with a novel equivalent circuit model. A customized sensor holder was designed to reduce impedance magnitude and enhance phase sensitivity, improving detection accuracy. Various water samples, including seawater, groundwater, and commercially bottled water, were analyzed. The proposed method achieved a 100% classification accuracy in distinguishing among water types, as validated by extracted circuit parameters and verified by inductively coupled plasma (ICP) measurements. Sensitivity analysis demonstrated the ability to detect compositional changes as small as 10%, highlighting a strong potential for fine discrimination of ionic contents. The extracted parameters, such as resistance, capacitance, and inductance, showed clear correlations with ionic composition, enabling reliable potability classification in accordance with WHO guidelines. The approach is rapid, label-free, and suitable for field applications, offering a promising tool for real-time water quality monitoring and supporting sustainable water resource management. Full article
Show Figures

Graphical abstract

19 pages, 6218 KiB  
Article
Quantitative Relationship Between Electrical Resistivity and Water Content in Unsaturated Loess: Theoretical Model and ERT Imaging Verification
by Hu Zeng, Qianli Zhang, Cui Du, Jie Liu and Yilin Li
Geosciences 2025, 15(8), 302; https://doi.org/10.3390/geosciences15080302 - 5 Aug 2025
Viewed by 23
Abstract
As a typical porous medium, unsaturated loess demonstrates critical hydro-mechanical coupling properties that fundamentally influence geohazard mitigation, groundwater resource evaluation, and foundation stability in geotechnical engineering. This investigation develops a novel theoretical framework to overcome the limitations of existing models in converting electrical [...] Read more.
As a typical porous medium, unsaturated loess demonstrates critical hydro-mechanical coupling properties that fundamentally influence geohazard mitigation, groundwater resource evaluation, and foundation stability in geotechnical engineering. This investigation develops a novel theoretical framework to overcome the limitations of existing models in converting electrical resistivity tomography (ERT) profiles into water content distributions for unsaturated loess through quantitative inversion modeling. Systematic laboratory investigations on remolded loess specimens with controlled density and water content conditions revealed distinct resistivity–water interaction mechanisms. A characteristic two-stage decay pattern was identified: resistivity exhibited an exponential decrease from 420 Ω·m (water saturation (Sw = 10%)) to 90 Ω·m (Sw = 40%), followed by asymptotic stabilization at Sw ≥ 40%. The derived quantitative correlation provides a robust mathematical basis for water content profile inversion. Field validation through integrated ERT and borehole data demonstrated exceptional predictive accuracy in shallow strata (<20 m depth), achieving mean absolute errors of <5%. However, inversion reliability decreased with depth (>20 m), primarily attributed to density-dependent charge transport mechanisms. This underscores the necessity of incorporating coupled thermo-hydro-mechanical processes for deep-layer characterization. This study provides a robust framework for engineering applications of ERT in loess terrains, offering significant advancements in geotechnical monitoring and geohazard prevention. Full article
Show Figures

Figure 1

22 pages, 6758 KiB  
Article
Screening of an FDA-Approved Drug Library: Menadione Induces Multiple Forms of Programmed Cell Death in Colorectal Cancer Cells via MAPK8 Cascades
by Liyuan Cao, Weiwei Song, Jinli Sun, Yang Ge, Wei Mu and Lei Li
Pharmaceuticals 2025, 18(8), 1145; https://doi.org/10.3390/ph18081145 - 31 Jul 2025
Viewed by 287
Abstract
Background: Colorectal cancer (CRC) is a prevalent gastrointestinal malignancy, ranking third in incidence and second in cancer-related mortality. Despite therapeutic advances, challenges such as chemotherapy toxicity and drug resistance persist. Thus, there is an urgent need for novel CRC treatments. However, developing [...] Read more.
Background: Colorectal cancer (CRC) is a prevalent gastrointestinal malignancy, ranking third in incidence and second in cancer-related mortality. Despite therapeutic advances, challenges such as chemotherapy toxicity and drug resistance persist. Thus, there is an urgent need for novel CRC treatments. However, developing new drugs is time-consuming and resource-intensive. As a more efficient approach, drug repurposing offers a promising alternative for discovering new therapies. Methods: In this study, we screened 1068 small molecular compounds from an FDA-approved drug library in CRC cells. Menadione was selected for further study based on its activity profile. Mechanistic analysis included a cell death pathway PCR array, differential gene expression, enrichment, and network analysis. Gene expressions were validated by RT-qPCR. Results: We identified menadione as a potent anti-tumor drug. Menadione induced three programmed cell death (PCD) signaling pathways: necroptosis, apoptosis, and autophagy. Furthermore, we found that the anti-tumor effect induced by menadione in CRC cells was mediated through a key gene: MAPK8. Conclusions: By employing methods of cell biology, molecular biology, and bioinformatics, we conclude that menadione can induce multiple forms of PCD in CRC cells by activating MAPK8, providing a foundation for repurposing the “new use” of the “old drug” menadione in CRC treatment. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

19 pages, 955 KiB  
Review
Methicillin-Resistant Staphylococcus aureus (MRSA): Resistance, Prevalence, and Coping Strategies
by Jiajing Li, Fusheng Cheng, Xiaojuan Wei, Yubin Bai, Qing Wang, Bing Li, Yaxin Zhou, Bintao Zhai, Xuzheng Zhou, Weiwei Wang and Jiyu Zhang
Antibiotics 2025, 14(8), 771; https://doi.org/10.3390/antibiotics14080771 - 30 Jul 2025
Viewed by 428
Abstract
Increased antimicrobial resistance requires effective ways to overcome the global challenge of bacterial infections, including methicillin-resistant Staphylococcus aureus (MRSA). From the emergence of MRSA to its continued evolution, it is important to explore this pathogen from fresh perspectives and develop corresponding coping strategies [...] Read more.
Increased antimicrobial resistance requires effective ways to overcome the global challenge of bacterial infections, including methicillin-resistant Staphylococcus aureus (MRSA). From the emergence of MRSA to its continued evolution, it is important to explore this pathogen from fresh perspectives and develop corresponding coping strategies to counter its growing threat. New coping strategies are continuously emerging, including but not limited to enhancing penetration capabilities or targeting their virulence. This review summarizes the epidemiological characteristics, drug resistance mechanisms, and therapeutic strategies of MRSA that have emerged over the past fifteen years. The focus of this paper is to explore the promising applications and current limitations of novel MRSA control strategies. This review serves as a key resource for treating MRSA infections and discussing novel strategies to overcome bacterial drug resistance. Full article
Show Figures

Figure 1

23 pages, 2002 KiB  
Article
Precision Oncology Through Dialogue: AI-HOPE-RTK-RAS Integrates Clinical and Genomic Insights into RTK-RAS Alterations in Colorectal Cancer
by Ei-Wen Yang, Brigette Waldrup and Enrique Velazquez-Villarreal
Biomedicines 2025, 13(8), 1835; https://doi.org/10.3390/biomedicines13081835 - 28 Jul 2025
Viewed by 471
Abstract
Background/Objectives: The RTK-RAS signaling cascade is a central axis in colorectal cancer (CRC) pathogenesis, governing cellular proliferation, survival, and therapeutic resistance. Somatic alterations in key pathway genes—including KRAS, NRAS, BRAF, and EGFR—are pivotal to clinical decision-making in precision oncology. However, the integration of [...] Read more.
Background/Objectives: The RTK-RAS signaling cascade is a central axis in colorectal cancer (CRC) pathogenesis, governing cellular proliferation, survival, and therapeutic resistance. Somatic alterations in key pathway genes—including KRAS, NRAS, BRAF, and EGFR—are pivotal to clinical decision-making in precision oncology. However, the integration of these genomic events with clinical and demographic data remains hindered by fragmented resources and a lack of accessible analytical frameworks. To address this challenge, we developed AI-HOPE-RTK-RAS, a domain-specialized conversational artificial intelligence (AI) system designed to enable natural language-based, integrative analysis of RTK-RAS pathway alterations in CRC. Methods: AI-HOPE-RTK-RAS employs a modular architecture combining large language models (LLMs), a natural language-to-code translation engine, and a backend analytics pipeline operating on harmonized multi-dimensional datasets from cBioPortal. Unlike general-purpose AI platforms, this system is purpose-built for real-time exploration of RTK-RAS biology within CRC cohorts. The platform supports mutation frequency profiling, odds ratio testing, survival modeling, and stratified analyses across clinical, genomic, and demographic parameters. Validation included reproduction of known mutation trends and exploratory evaluation of co-alterations, therapy response, and ancestry-specific mutation patterns. Results: AI-HOPE-RTK-RAS enabled rapid, dialogue-driven interrogation of CRC datasets, confirming established patterns and revealing novel associations with translational relevance. Among early-onset CRC (EOCRC) patients, the prevalence of RTK-RAS alterations was significantly lower compared to late-onset disease (67.97% vs. 79.9%; OR = 0.534, p = 0.014), suggesting the involvement of alternative oncogenic drivers. In KRAS-mutant patients receiving Bevacizumab, early-stage disease (Stages I–III) was associated with superior overall survival relative to Stage IV (p = 0.0004). In contrast, BRAF-mutant tumors with microsatellite-stable (MSS) status displayed poorer prognosis despite higher chemotherapy exposure (OR = 7.226, p < 0.001; p = 0.0000). Among EOCRC patients treated with FOLFOX, RTK-RAS alterations were linked to worse outcomes (p = 0.0262). The system also identified ancestry-enriched noncanonical mutations—including CBL, MAPK3, and NF1—with NF1 mutations significantly associated with improved prognosis (p = 1 × 10−5). Conclusions: AI-HOPE-RTK-RAS exemplifies a new class of conversational AI platforms tailored to precision oncology, enabling integrative, real-time analysis of clinically and biologically complex questions. Its ability to uncover both canonical and ancestry-specific patterns in RTK-RAS dysregulation—especially in EOCRC and populations with disproportionate health burdens—underscores its utility in advancing equitable, personalized cancer care. This work demonstrates the translational potential of domain-optimized AI tools to accelerate biomarker discovery, support therapeutic stratification, and democratize access to multi-omic analysis. Full article
Show Figures

Figure 1

18 pages, 6124 KiB  
Article
Extraction of Alumina and Alumina-Based Cermets from Iron-Lean Red Muds Using Carbothermic Reduction of Silica and Iron Oxides
by Rita Khanna, Dmitry Zinoveev, Yuri Konyukhov, Kejiang Li, Nikita Maslennikov, Igor Burmistrov, Jumat Kargin, Maksim Kravchenko and Partha Sarathy Mukherjee
Sustainability 2025, 17(15), 6802; https://doi.org/10.3390/su17156802 - 26 Jul 2025
Viewed by 435
Abstract
A novel strategy has been developed for extracting value-added resources from iron-lean, high-alumina- and -silica-containing red muds (RMs). With little or no recycling, such RMs are generally destined for waste dumps. Detailed results are presented on the carbothermic reduction of 100% RM (29.3 [...] Read more.
A novel strategy has been developed for extracting value-added resources from iron-lean, high-alumina- and -silica-containing red muds (RMs). With little or no recycling, such RMs are generally destined for waste dumps. Detailed results are presented on the carbothermic reduction of 100% RM (29.3 wt.% Fe2O3, 22.2 wt.% Al2O3, 20.0 wt.% SiO2, 1.2 wt.% CaO, 12.2 wt.% Na2O) and its 2:1 blends with Fe2O3 and red mill scale (MS). Synthetic graphite was used as the reductant. Carbothermic reduction of RM and blends was carried out in a Tamman resistance furnace at 1650 °C for 20 min in an Ar atmosphere. Reduction residues were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), elemental mapping and X-ray diffraction (XRD). Small amounts of Fe3Si alloys, alumina, SiC and other oxide-based residuals were detected in the carbothermic residue of 100% RM. A number of large metallic droplets of Fe–Si alloys were observed for RM/Fe2O3 blends; no aluminium was detected in these metallic droplets. A clear segregation of alumina was observed as a separate phase. For the RM/red MS blends, a number of metallic Fe–Si droplets were seen embedded in an alumina matrix in the form of a cermet. This study has shown the regeneration of alumina and the formation of alumina-based cermets, Fe–Si alloys and SiC during carbothermic reduction of RM and its blends. This innovative recycling strategy could be used for extracting value-added resources from iron-lean RMs, thereby enhancing process productivity, cost-effectiveness of alumina regeneration, waste utilization and sustainable developments in the field. Full article
(This article belongs to the Special Issue Sustainable Materials, Waste Management, and Recycling)
Show Figures

Figure 1

26 pages, 1809 KiB  
Review
Salt-Adapted Microorganisms: A Promising Resource for Novel Anti-Cancer Drug Discovery
by Longteng Fang, Liping Xu, Marhaba Kader, Tingting Ding, Shiyang Lu, Dong Wang, Amit Raj Sharma and Zhiwei Zhang
Mar. Drugs 2025, 23(8), 296; https://doi.org/10.3390/md23080296 - 24 Jul 2025
Viewed by 489
Abstract
Microorganisms serve as a vital source of natural anticancer agents, with many of their secondary metabolites already employed in clinical oncology. In recent years, salt-adapted microbes, including halophilic and halotolerant species from marine, salt lake, and other high-salinity environments, have gained significant attention. [...] Read more.
Microorganisms serve as a vital source of natural anticancer agents, with many of their secondary metabolites already employed in clinical oncology. In recent years, salt-adapted microbes, including halophilic and halotolerant species from marine, salt lake, and other high-salinity environments, have gained significant attention. Their unique adaptation mechanisms and diverse secondary metabolites offer promising potential for novel anticancer drug discovery. This review consolidated two decades of research alongside current global cancer statistics to evaluate the therapeutic potential of salt-adapted microorganisms. Halophilic and halotolerant species demonstrate significant promise, with their bioactive metabolites exhibiting potent inhibitory effects against major cancer cell lines, particularly in lung and breast cancer. Evidence reveals structurally unique secondary metabolites displaying enhanced cytotoxicity compared to conventional anticancer drugs. Collectively, salt-adapted microorganisms represent an underexplored yet high-value resource for novel anticancer agents, offering potential solutions to chemotherapy resistance and treatment-related toxicity. Full article
Show Figures

Figure 1

20 pages, 5416 KiB  
Article
A Novel One-Dimensional Chaotic System for Image Encryption Through the Three-Strand Structure of DNA
by Yingjie Su, Han Xia, Ziyu Chen, Han Chen and Linqing Huang
Entropy 2025, 27(8), 776; https://doi.org/10.3390/e27080776 - 23 Jul 2025
Viewed by 295
Abstract
Digital images have been widely applied in fields such as mobile devices, the Internet of Things, and medical imaging. Although significant progress has been made in image encryption technology, it still faces many challenges, such as attackers using powerful computing resources and advanced [...] Read more.
Digital images have been widely applied in fields such as mobile devices, the Internet of Things, and medical imaging. Although significant progress has been made in image encryption technology, it still faces many challenges, such as attackers using powerful computing resources and advanced algorithms to crack encryption systems. To address these challenges, this paper proposes a novel image encryption algorithm based on one-dimensional sawtooth wave chaotic system (1D-SAW) and the three-strand structure of DNA. Firstly, a new 1D-SAW chaotic system was designed. By introducing nonlinear terms and periodic disturbances, this system is capable of generating chaotic sequences with high randomness and initial value sensitivity. Secondly, a new diffusion rule based on the three-strand structure of DNA is proposed. Compared with the traditional DNA encoding and XOR operation, this rule further enhances the complexity and anti-attack ability of the encryption process. Finally, the security and randomness of the 1D-SAW and image encryption algorithms were verified through various tests. Results show that this method exhibits better performance in resisting statistical attacks and differential attacks. Full article
(This article belongs to the Topic Recent Trends in Nonlinear, Chaotic and Complex Systems)
Show Figures

Figure 1

17 pages, 432 KiB  
Article
Internal Validation of a Machine Learning-Based CDSS for Antimicrobial Stewardship
by Ari Frenkel, Alicia Rendon, Carlos Chavez-Lencinas, Juan Carlos Gomez De la Torre, Jen MacDermott, Collen Gross, Stephanie Allman, Sheri Lundblad, Ivanna Zavala, Dave Gross, Jessica Siegel, Soojung Choi and Miguel Hueda-Zavaleta
Life 2025, 15(7), 1123; https://doi.org/10.3390/life15071123 - 17 Jul 2025
Viewed by 405
Abstract
Background: Antimicrobial stewardship programs (ASPs) are essential in combating antimicrobial resistance (AMR); however, limited resources hinder their implementation. Arkstone, a biotechnology company, developed a machine learning (ML)-driven clinical decision support system (CDSS) to guide antimicrobial prescribing. While AI (artificial intelligence) applications are increasingly [...] Read more.
Background: Antimicrobial stewardship programs (ASPs) are essential in combating antimicrobial resistance (AMR); however, limited resources hinder their implementation. Arkstone, a biotechnology company, developed a machine learning (ML)-driven clinical decision support system (CDSS) to guide antimicrobial prescribing. While AI (artificial intelligence) applications are increasingly used, each model must be carefully validated. Methods: Three components of the ML system were assessed: (1) A prospective observational study tested its ability to distinguish trained from novel data using various validation techniques and BioFire molecular panel inputs. (2) An anonymous retrospective analysis of internal infectious disease lab results evaluated the recognition of novel versus trained complex datasets. (3) A prospective observational validation study reviewed clinical recommendations against standard guidelines by independent clinicians. Results: The system achieved 100% accuracy (F1 = 1) in identifying 111 unique novel data points across 1110 tests over nine training sessions. It correctly identified all 519 fully trained and 644 novel complex datasets. Among 644 clinician-trained reports, there were no major discrepancies in recommendations, with only 100 showing minor differences. Conclusions: This novel ML system demonstrated high accuracy in distinguishing trained from novel data and produced recommendations consistent with clinical guidelines. These results support its value in strengthening CDSS and ASP efforts. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

16 pages, 4152 KiB  
Article
Genome-Wide Association Study of Immune Indices in Yaks
by Daoning Yu, Xiaoming Ma, Chun Huang, Tong Wang, Mengfan Zhang, Fen Feng, Xiaoyun Wu, Yongfu La, Xian Guo, Ping Yan, Derong Zhang and Chunnian Liang
Animals 2025, 15(14), 2114; https://doi.org/10.3390/ani15142114 - 17 Jul 2025
Viewed by 288
Abstract
The yak is a vital livestock resource on the Qinghai–Tibet Plateau, renowned for its strong disease resistance and high-quality meat. However, various diseases pose significant threats to its health and lead to substantial economic losses. Current feeding management practices, along with available drugs [...] Read more.
The yak is a vital livestock resource on the Qinghai–Tibet Plateau, renowned for its strong disease resistance and high-quality meat. However, various diseases pose significant threats to its health and lead to substantial economic losses. Current feeding management practices, along with available drugs and vaccines, have demonstrated limited effectiveness in preventing and controlling infectious diseases. Additionally, challenges such as drug resistance and the safety of animal products persist. Therefore, enhancing the disease-resistant breeding capacity of yaks is crucial. In this study, we examined 192 yaks by measuring the concentrations of 10 immune indicators in serum by using the ELISA method and conducting whole-genome resequencing, which identified 19,182,942 SNP loci. Through genome-wide association analysis, we detected 323 significant SNPs located near or within 125 candidate genes, most of which are associated with disease and significantly enriched in the TGF-β signaling pathway. Overall, our study identified a series of novel variants and candidate genes associated with disease resistance traits in yaks, providing important information for the molecular breeding of disease resistance in yaks. These results not only contribute to a deeper understanding of the function of disease resistance genes in yaks but also hold great potential for accelerating precision disease resistance breeding in yaks. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

12 pages, 1279 KiB  
Article
Discovery of Germplasm Resources and Molecular Marker-Assisted Breeding of Oilseed Rape for Anticracking Angle
by Cheng Zhu, Zhi Li, Ruiwen Liu and Taocui Huang
Genes 2025, 16(7), 831; https://doi.org/10.3390/genes16070831 - 17 Jul 2025
Viewed by 347
Abstract
Introduction: Scattering of kernels due to angular dehiscence is a key bottleneck in mechanized harvesting of oilseed rape. Materials and Methods: In this study, a dual-track “genotype–phenotype” screening strategy was established by innovatively integrating high-throughput KASP molecular marker technology and a standardized random [...] Read more.
Introduction: Scattering of kernels due to angular dehiscence is a key bottleneck in mechanized harvesting of oilseed rape. Materials and Methods: In this study, a dual-track “genotype–phenotype” screening strategy was established by innovatively integrating high-throughput KASP molecular marker technology and a standardized random collision phenotyping system for the complex quantitative trait of angular resistance. Results: Through the systematic evaluation of 634 oilseed rape hybrid progenies, it was found that the KASP marker S12.68, targeting the cleavage resistance locus (BnSHP1) on chromosome C9, achieved a 73.34% introgression rate (465/634), which was significantly higher than the traditional breeding efficiency (<40%). Phenotypic characterization screened seven excellent resources with cracking resistance index (SRI) > 0.6, of which four reached the high resistance standard (SRI > 0.8), including the core materials NR21/KL01 (SRI = 1.0) and YuYou342/KL01 (SRI = 0.97). Six breeding intermediate materials (44.7–48.7% oil content, mycosphaerella resistance MR grade or above) were created, combining high resistance to chipping and excellent agronomic traits. For the first time, it was found that local germplasm YuYou342 (non-KL01-derived line) was purely susceptible at the S12.68 locus (SRI = 0.86), but its angiosperm vascular bundles density was significantly increased by 37% compared with that of the susceptible material 0911 (p < 0.01); and the material 187308 (SRI = 0.78), although purely susceptible at S12.68, had a 2.8-fold downregulation in expression of the angiosperm-related gene, BnIND1, and a 2.8-fold downregulation of expression of the angiosperm-related gene, BnIND1. expression was significantly downregulated 2.8-fold (q < 0.05), indicating the existence of a novel resistance mechanism independent of the primary effector locus. Conclusions: The results of this research provide an efficient technical platform and breakthrough germplasm resources for oilseed rape crack angle resistance breeding, which is of great practical significance for promoting the whole mechanized production. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

29 pages, 1878 KiB  
Article
Comprehensive Resilience Assessment and Obstacle Analysis of Cities Based on the PSR-TOPSIS Model: A Case Study of Jiangsu Cities
by Zikai Zhao, Chao Liu, Wenye Chang and Yangjun Ren
Land 2025, 14(7), 1437; https://doi.org/10.3390/land14071437 - 9 Jul 2025
Viewed by 469
Abstract
As global urbanization accelerates amidst compounding risks, comprehensive urban resilience assessment has emerged as a pivotal issue in optimizing risk governance pathways. Grounded in the Pressure–State–Response (PSR) theoretical framework, this study constructs a multidimensional evaluation system for comprehensive urban resilience. Through the integration [...] Read more.
As global urbanization accelerates amidst compounding risks, comprehensive urban resilience assessment has emerged as a pivotal issue in optimizing risk governance pathways. Grounded in the Pressure–State–Response (PSR) theoretical framework, this study constructs a multidimensional evaluation system for comprehensive urban resilience. Through the integration of a combined weighting method and the TOPSIS model, we systematically measure resilience levels across 13 prefecture-level cities in Jiangsu Province, with the obstacle degree model employed to identify critical resilience constraints. The findings reveal significant spatial heterogeneity in regional resilience patterns. High-resilience cities establish positive feedback mechanisms through economic foundations, innovation-driven strategies, and institutional coordination. Conversely, low-resilience cities face multidimensional constraints, including industrial structure imbalance, inadequate social security systems, and infrastructure deficiencies. The resilience disparity stems from the coupling effects of systemic multidimensional elements, with three core obstacles identified: energy consumption and population pressure in the Pressure dimension, medical resource scarcity and innovation deficit in the State dimension, and fiscal expenditure inefficiency in the Response dimension. The study proposes strategic interventions, including fiscal structure optimization, cross-regional resource coordination enhancement, and innovation–translation mechanism improvement, to facilitate urban systems’ transformation from passive resistance to proactive adaptation. This research provides novel perspectives for analyzing complex system resilience evolution and offers scientific grounds for urban agglomeration risk prevention and sustainable development. Full article
Show Figures

Figure 1

13 pages, 2724 KiB  
Article
Efficient Marker-Assisted Pyramiding of Xa21 and Xa23 Genes into Elite Rice Restorer Lines Confers Broad-Spectrum Resistance to Bacterial Blight
by Yao Li, Yulong Fan, Yihang You, Ping Wang, Yuxuan Ling, Han Yin, Yinhua Chen, Hua Zhou, Mingrui Luo, Bing Cao and Zhihui Xia
Plants 2025, 14(14), 2107; https://doi.org/10.3390/plants14142107 - 9 Jul 2025
Viewed by 425
Abstract
Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major threat to global rice productivity. Although hybrid rice breeding has significantly enhanced yields, persistent genetic vulnerabilities within restorer lines continue to compromise BB resistance. This study addresses this [...] Read more.
Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major threat to global rice productivity. Although hybrid rice breeding has significantly enhanced yields, persistent genetic vulnerabilities within restorer lines continue to compromise BB resistance. This study addresses this challenge by implementing functional marker-assisted selection (FMAS) to pyramid two broad-spectrum resistance (R) genes, Xa21 and Xa23, into the elite, yet BB-susceptible, restorer line K608R. To enable precise Xa23 genotyping, we developed a novel three-primer functional marker (FM) system (IB23/CB23/IR23). This system complements the established U1/I2 markers used for Xa21. This recombination-independent FMAS platform facilitates simultaneous, high-precision tracking of both homozygous and heterozygous alleles, thereby effectively circumventing the linkage drag limitations typical of conventional markers. Through six generations of marker-assisted backcrossing followed by intercrossing, we generated K608R2123 pyramided lines harboring both R genes in homozygous states, achieving a recurrent parent genome recovery rate of 96.93%, as determined by single nucleotide polymorphism (SNP) chip analysis. The pyramided lines exhibited enhanced resistance against six virulent Xoo pathogenic races while retaining parental yield performance across key agronomic traits. Our FMAS strategy overcomes the historical trade-off between broad-spectrum resistance and the preservation of elite phenotypes, with the developed lines exhibiting resistance coverage complementary to that of both introgressed R genes. This integrated approach provides breeders with a reliable molecular tool to accelerate the development of high-yielding, disease-resistant varieties, demonstrating significant potential for practical deployment in rice improvement programs. The K608R2123 germplasm represents a dual-purpose resource suitable for both commercial hybrid seed production and marker-assisted breeding programs, and it confers synergistic resistance against diverse Xoo races, thereby providing a pivotal breeding resource for sustainable BB control in epidemic regions. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

27 pages, 1835 KiB  
Review
Investigating the Antimicrobial Activity of Anuran Toxins
by Manuela B. Pucca, Anne Grace A. C. Marques, Ana Flávia M. Pereira, Guilherme Melo-dos-Santos, Felipe A. Cerni, Beatriz C. S. Jacob, Isabela G. Ferreira, Rafael L. Piccolo, Marco A. Sartim, Wuelton M. Monteiro and Isadora S. Oliveira
Microorganisms 2025, 13(7), 1610; https://doi.org/10.3390/microorganisms13071610 - 8 Jul 2025
Viewed by 404
Abstract
Anurans, commonly known as frogs and toads, comprise a diverse group of amphibians distributed across all continents except Antarctica. This manuscript provides a detailed overview of the global anuran fauna, emphasizing their biology, remarkable adaptations, and ecological importance. A particular focus is placed [...] Read more.
Anurans, commonly known as frogs and toads, comprise a diverse group of amphibians distributed across all continents except Antarctica. This manuscript provides a detailed overview of the global anuran fauna, emphasizing their biology, remarkable adaptations, and ecological importance. A particular focus is placed on their specialized cutaneous glands, which are crucial for defense, communication, and survival. These glands secrete a diverse array of bioactive compounds, including peptides, alkaloids, and other secondary metabolites, shaped by evolutionary pressures. Among these compounds, toxins with potent antimicrobial properties stand out due to their ability to combat a broad spectrum of microbial pathogens. We explore the chemical diversity of these secretions, analyzing their modes of action and their potential applications in combating antibiotic-resistant bacteria and other pathogens. By integrating knowledge, this study underscores the importance of anurans as both ecological keystones and a valuable resource for biotechnological innovations. Furthermore, it highlights the urgent need to conserve anuran biodiversity for harnessing their potential in the development of novel antimicrobial agents to address global health challenges. Full article
(This article belongs to the Special Issue Exploring Antimicrobial Properties of Animal Toxins)
Show Figures

Figure 1

27 pages, 5510 KiB  
Article
Study on the Rheological Optimization and Multiscale Verification of the Asphalt Rejuvenator
by Shanglin Song, Zhen Wang, Xiupeng Yao, Meng Guo, Haihong Zhang, Hongbin Chen and Fukui Zhang
Materials 2025, 18(13), 2925; https://doi.org/10.3390/ma18132925 - 20 Jun 2025
Viewed by 292
Abstract
The use of Reclaimed Asphalt Pavement (RAP) is a sustainable strategy to conserve natural resources, reduce environmental pollution, and lower construction costs. However, aged asphalt in RAP suffers from oxidation and loss of light fractions, increasing stiffness and brittleness. A key scientific challenge [...] Read more.
The use of Reclaimed Asphalt Pavement (RAP) is a sustainable strategy to conserve natural resources, reduce environmental pollution, and lower construction costs. However, aged asphalt in RAP suffers from oxidation and loss of light fractions, increasing stiffness and brittleness. A key scientific challenge is how to effectively restore the performance of aged asphalt while maintaining cost efficiency. In this study, a novel asphalt rejuvenator was developed to address this issue. The rejuvenator consists of 6% aromatic oil-like materials to replenish light components, 1.52% plasticizer to enhance ductility, and 0.3% modifier A to improve adhesion, with a total dosage of 7.82% by the mass of the aged binder. The rejuvenator meets the requirements of Chinese specifications. The performance evaluation was conducted at both asphalt binder and mixture scales. The results show that the rejuvenator significantly improves low-temperature cracking resistance and medium-temperature fatigue performance of aged binders, although it slightly reduces high-temperature rutting resistance. When applied to asphalt mixtures with 45% RAP, the rejuvenated mixtures exhibited enhanced low-temperature performance. A comparative analysis with commercial rejuvenators confirmed the developed product’s competitive performance and economic benefit. This study provides technical insight into rejuvenator design and addresses critical challenges in RAP recycling for sustainable pavement engineering. Full article
Show Figures

Figure 1

Back to TopTop