Electrical Circuit Model for Sensing Water Quality Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. ICP-MS Measurements
2.3. Experimental Setup
2.4. Equivalent Circuit Model
- Rs represents the resistance of the solution medium;
- Cp denotes the double-layer capacitance at the solid–liquid interface;
- and Rp corresponds to the charge transfer resistance.
- A series inductance L is added to account for the high ionic concentration effects at elevated frequencies, which is characteristic of seawater samples. The observed inductance may arise from the manifestation of a negative capacitance effect, which can occur at electrified interfaces.
- An additional capacitance C is included to represent high-frequency performance, enabling the circuit to adapt to different media conditions.
3. Results and Discussion
Electrical Impedance Spectroscopy (EIS) Tests
4. Water Quality Classification
5. Sensitivity Study
6. Discussions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lambert, L.A. Water, State Power, and Tribal Politics in the GCC: The Case of Kuwait and Abu Dhabi. SSRN Electron. J. 2014. [Google Scholar] [CrossRef]
- Gleick, P.H. Basic water requirements for human activities: Meeting basic needs. Water Int. 1996, 21, 83–92. [Google Scholar] [CrossRef]
- Amuthakkannan, R.; Al Yaqoubi, M.H.A. Development of IoT Based Water Pollution Identification to Avoid Destruction of Aquatic Life and to Improve the Quality of Water. Int. J. Eng. Trends Technol. 2023, 71, 355–370. [Google Scholar] [CrossRef]
- Bassem, S.M. Water pollution and aquatic biodiversity. Biodivers. Int. J. 2020, 4, 10–16. [Google Scholar]
- Dulsat-Masvidal, M.; Ciudad, C.; Infante, O.; Mateo, R.; Lacorte, S. Water pollution threats in important bird and biodiversity areas from Spain. J. Hazard. Mater. 2023, 448, 130938. [Google Scholar] [CrossRef]
- Heidari, A.; Kumar, V.; Keshavarzi, A. Appraisal of metallic pollution and ecological risks in agricultural soils of Alborz province, Iran, employing contamination indices and multivariate statistical analyses. Int. J. Environ. Health Res. 2021, 31, 607–625. [Google Scholar] [CrossRef]
- Saravanakumar, K.; SivaSantosh, S.; Sathiyaseelan, A.; Naveen, K.V.; AfaanAhamed, M.A.; Zhang, X.; Priya, V.V.; Mubarak Ali, D.; Wang, M.H. Unraveling the hazardous impact of diverse contaminants in the marine environment: Detection and remedial approach through nanomaterials and nano-biosensors. Hazard. Mater. 2022, 433, 128720. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Ismail, R.A.; Ogungbenro, A.; Pankratz, T.; Banat, F.; Arafat, H.A. The sociopolitical factors impacting the adoption and proliferation of desalination: A critical review. Desalination 2021, 498, 114798. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Olbert, A.I. A review of water quality index models and their use for assessing surface water quality. Ecol. Indic. 2021, 122, 107218. [Google Scholar] [CrossRef]
- Chowdhury, M.A.Z.; Banik, S.; Uddin, B.; Moniruzzaman, M.; Karim, N.; Gan, S.H. Organophosphorus and carbamate pesticide residues detected in water samples from paddy and vegetable fields of Savar and Dhamrai, Bangladesh. Int. J. Environ. Res. Public. Health 2012, 9, 3318–3329. [Google Scholar] [CrossRef]
- Manivannan, V.; Elango, L. Seawater intrusion and submarine groundwater discharge along the Indian coast. Environ. Sci. Pollut. Res. 2019, 26, 31592–31608. [Google Scholar] [CrossRef]
- Syeed, M.M.M.; Hossain, M.S.; Karim, M.R.; Uddin, M.F.; Hasan, M.; Khan, R.H. Surface water quality profiling using the water quality index, pollution index and statistical methods: A critical review. Environ. Sustain. Indicat. 2023, 18, 100247. [Google Scholar] [CrossRef]
- Karim, K.; Guha, S.; Beni, R. Comparative Analysis of Chemical, Physical and Biological Contaminants in Drinking Water in Various Developed Countries around the World. J. Water Resour. Prot. 2020, 12, 1–15. [Google Scholar] [CrossRef]
- Rocha, F.C.; Andrade, E.M.; Lopes, F.B. Water quality index calculated from biological, physical and chemical attributes. Environ. Monit. Assess. 2015, 187, 4163. [Google Scholar] [CrossRef]
- Vasanthavigar, M.; Srinivasamoorthy, K.; Vijayaragavan, K.; Ganthi, R.R.; Chidambaram, S.; Anandhan, P.; Manivannan, R.; Vasudevan, S. Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environ. Monit. Assess. 2010, 171, 595–609. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, X.; Li, Y. Application of inductively coupled plasma optical emission spectrometer in water quality monitoring. Desalination Water Treat. 2023, 314, 1–10. [Google Scholar] [CrossRef]
- Agberien, A.V.; Örmeci, B. Monitoring of cyanobacteria in water using spectrophotometry and first derivative of absorbance. Water 2020, 12, 124. [Google Scholar] [CrossRef]
- Thomas, O.; Burgess, C. UV-Visible Spectrophotometry of Water and Wastewater; Elsevier Science: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Bifano, L.; Meiler, V.; Peter, R.; Fischerauer, G. Detection of microplastics in water using electrical impedance spectroscopy and support vector machines. Tech. Mess. 2023, 90, 374–387. [Google Scholar] [CrossRef]
- Giao, N.T.; Nhien, H.T.H. Application of GIS and Multi-Criteria Statistical Techniques in Assessing Water Quality in the Coastal Province of Vietnamese Mekong Delta. Appl. Environ. Res. 2021, 43, 17–33. [Google Scholar] [CrossRef]
- Lasia, A. Electrochemical Impedance Spectroscopy and Its Applications, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Lee, M.H.; Won, J.; Chung, S.; Kim, S.; Park, S.S. Rapid detection of ionic contents in water through sensor fusion and convolutional neural network. Chemosphere 2022, 294, 133746. [Google Scholar] [CrossRef]
- Pía Canales, C. Electrochemical impedance spectroscopy and its applications. In 21st Century Nanostructured Materials—Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Widodo, C.S.; Sela, H.; Santosa, D.R. The effect of NaCl concentration on the ionic NaCl solutions electrical impedance value using electrochemical impedance spectroscopy methods. AIP Conf. Proc. 2018, 2021, 050003. [Google Scholar] [CrossRef]
- Nagaraj, V.; Jacobs, M.; Vattipalli, K.; Annam, V.; Prasad, S. Nanochannel-based electrochemical sensor for the detection of pharmaceutical contaminants in water. Environ. Sci. Process. Impacts 2014, 16, 135–140. [Google Scholar]
- Houssin, T.; Follet, J.; Follet, A.; Dei-Casa, E.; Senez, V. Label-free analysis of water-polluting parasite by electrochemical impedance spectroscopy. Biosens. Bioelectron. 2010, 25, 1122–1129. [Google Scholar]
- Yang, L.; Li, Y.; Erf, G. Interdigitated Array Microelectrode-Based Electrochemical Impedance Immunosensor for Detection of Escherichia coli O157:H7. Anal. Chem. 2024, 76, 1107–1113. [Google Scholar]
- Brosel-Oliu, S.; Ferreira, R.; Uria, N.; Abramova, N.; Gargallo, R.; Muñoz-Pascual, F.-X. Novel impedimetric aptasensor for label-free detection of Escherichia coli O157:H7. Sens. Actuators B Chem. 2018, 255, 2988–2995. [Google Scholar]
- Fernández-Turiel, J.L.; Llorens, J.F.; López-Vera, F.; Gómez-Artola, C.; Morell, I.; Gimeno, D. Strategy for water analysis using ICP-MS. Fresenius’ J. Anal. Chem. 2000, 368, 601–606. [Google Scholar] [CrossRef]
- GenePulser Cuvette from BioRad. Available online: https://www.bio-rad.com/ (accessed on 1 August 2025).
- Gamry Reference 3000. Available online: https://www.gamry.com/ (accessed on 1 August 2025).
- Baptista, J.P.; Matos, T.; Lopes, S.F.; Faria, C.L.; Magalhaes, V.H.; Vieira, E.M.F.; Martins, M.S.; Goncalves, L.M.; Brito, F.B. A four-probe salinity sensor optimized for long-term autonomous marine deployments. In Proceedings of the OCEANS 2019—Marseille, Marseille, France, 17–20 June 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Hattab, G.; El-Tarhuni, M.; Al-Ali, M.; Joudeh, T.; Qaddoumi, N. An Underwater Wireless Sensor Network with Realistic Radio Frequency Path Loss Model. Int. J. Distrib. Sens. Netw. 2013, 9, 188–192. [Google Scholar] [CrossRef]
- Gonzalez-Tovar, E.; Jimenez-Angeles, F.; Messina, R.; Lozada-Cassou, M. A new correlation effect in the Helmholtz and surface potentials of the electrical double layer. J. Chem. Phys. 2004, 120, 9782–9792. [Google Scholar]
Sample | Ions | |||
---|---|---|---|---|
Na+ | K+ | Ca2+ | Mg2+ | |
SW1 | 4720.650 | 491.589 | 282.622 | 935.555 |
SW2 | 4389.380 | 472.270 | 281.646 | 925.194 |
SW3 | 4611.220 | 447.453 | 285.357 | 922.324 |
GW1 | 46.710 | 2.931 | 19.432 | 1.067 |
GW2 | 421.156 | 34.399 | 22.795 | 121.046 |
GW3 | 141.096 | 3.908 | 3.021 | 110.355 |
GW4 | 64.249 | 2.334 | 24.287 | 65.051 |
GW5 | 150.051 | 9.416 | 14.309 | 116.087 |
GW6 | 65.137 | 2.279 | 33.394 | 66.284 |
GW7 | 40.568 | 2.194 | 18.409 | 1.078 |
Evian | 6.5 | 1 | 80 | 26 |
Fiji | 17 | 5 | 18 | 15 |
AlApin | 0.84 | 27.4 | 27.4 | 6.07 |
MaiDubai | <1 | 75 | 16.5 | 7.8 |
Masafi | 6 | <1 | 3.3 | 18 |
Masafi zero | <1 | 7 | 8 | 46 |
AlAin | 8 | 2 | 8 | 13 |
Sample | Rp (Ω) | Rs (Ω) | Cp (µF) | L (nH) | C (pF) |
---|---|---|---|---|---|
SW1 * | 321 | 4.0 | 1.994 | 920 | 0.063 |
SW2 * | 438 | 4.0 | 2.905 | 935 | 0.027 |
SW3 * | 314 | 3.8 | 2.42 | 890 | 0.052 |
GW1 ** | 127 | 224 | 11.29 | 4.5 | 47.44 |
GW2 *** | 33 | 30 | 6.098 | 1387 | 100.8 |
GW3 *** | 244 | 89 | 4.88 | 410 | 0.6 m |
GW4 *** | 196 | 141 | 7.583 | 4.2 | 16 |
GW5 *** | 289 | 41 | 2.816 | 795 | 0.2 m |
GW6 *** | 16 | 47 | 27.49 | 1457 | 0.1 m |
GW7 *** | 199 | 132 | 7.17 | 0.62 | 9.626 |
Evian ** | 179 | 175 | 6.345 | 7.47 | 38.29 |
Fiji ** | 121 | 233 | 14.93 | 18.01 | 49.53 |
Alpin ** | 107 | 248 | 20.03 | 0.9 m | 51.86 |
Masafi ** | 107 | 245 | 20.45 | 10.47 | 51.11 |
MasafiZ ** | 97 | 256 | 24.84 | 21.19 | 52 |
Dubai ** | 106 | 246 | 21.36 | 49 m | 51 |
AlAin ** | 94 | 257 | 26.91 | 24.06 | 53.45 |
Sample | Rp (Ω) | Rs (Ω) | Cp (µF) | L (µH) | C (fF) |
---|---|---|---|---|---|
10% | 340.2 | 25.43 | 2.05 | 1.14 | 51.1 |
25% | 341.2 | 13.04 | 2.10 | 1.17 | 10.1 |
50% | 339.9 | 9.352 | 2.31 | 1.17 | 63.5 |
75% | 340.6 | 8.074 | 2.50 | 1.17 | 12.3 |
100% | 344.3 | 6.16 | 2.66 | 1.17 | 1.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awayssa, O.; Ismail, R.A.; Hilal-AlNaqbi, A.; Al Ahmad, M. Electrical Circuit Model for Sensing Water Quality Analysis. Water 2025, 17, 2345. https://doi.org/10.3390/w17152345
Awayssa O, Ismail RA, Hilal-AlNaqbi A, Al Ahmad M. Electrical Circuit Model for Sensing Water Quality Analysis. Water. 2025; 17(15):2345. https://doi.org/10.3390/w17152345
Chicago/Turabian StyleAwayssa, Omar, Roqaya A. Ismail, Ali Hilal-AlNaqbi, and Mahmoud Al Ahmad. 2025. "Electrical Circuit Model for Sensing Water Quality Analysis" Water 17, no. 15: 2345. https://doi.org/10.3390/w17152345
APA StyleAwayssa, O., Ismail, R. A., Hilal-AlNaqbi, A., & Al Ahmad, M. (2025). Electrical Circuit Model for Sensing Water Quality Analysis. Water, 17(15), 2345. https://doi.org/10.3390/w17152345