Salt-Adapted Microorganisms: A Promising Resource for Novel Anti-Cancer Drug Discovery
Abstract
1. Introduction
2. Halophilic/Halotolerant Microorganisms
3. Cytotoxic Secondary Metabolites from Halophilic and Halotolerant Microorganisms
3.1. Anti-Lung Cancer
3.1.1. Actinomycetes
3.1.2. Bacteria
3.1.3. Fungi
3.2. Anti-Breast Cancer
3.2.1. Actinomycetes
3.2.2. Bacteria
3.2.3. Fungi
3.3. Other Cancers
4. Perspectives
4.1. Uniqueness of Metabolites from Salt-Adapted Microorganisms and Their Environmental Association
4.2. Diversity of Salt-Adapted Microorganisms
4.3. Research Gaps and Challenges
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Lu, J.-J.; Ding, J. Natural Products in Cancer Therapy: Past, Present and Future. Nat. Prod. Bioprospect. 2021, 11, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Corral, P.; Amoozegar, M.A.; Ventosa, A. Halophiles and Their Biomolecules: Recent Advances and Future Applications in Biomedicine. Mar. Drugs 2019, 18, 33. [Google Scholar] [CrossRef] [PubMed]
- Santhaseelan, H.; Dinakaran, V.T.; Dahms, H.-U.; Ahamed, J.M.; Murugaiah, S.G.; Krishnan, M.; Hwang, J.-S.; Rathinam, A.J. Recent Antimicrobial Responses of Halophilic Microbes in Clinical Pathogens. Microorganisms 2022, 10, 417. [Google Scholar] [CrossRef] [PubMed]
- Oren, A. Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 2002, 28, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, J.C.; Burns, B.P. Untapped Resources: Biotechnological Potential of Peptides and Secondary Metabolites in Archaea. Archaea 2015, 2015, 282035. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Espinosa, R.M.; Kumar, S.; Upadhyay, S.K.; Orhan, F. Editorial: Adaptation of halophilic/halotolerant microorganisms and their applications. Front. Microbiol. 2023, 14, 1252921. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, Y.; Ma, Y.; Wang, X.; Zhang, B.; Zhang, G.; Bahadur, A.; Chen, T.; Liu, G.; Zhang, W.; et al. Research progress regarding the role of halophilic and halotolerant microorganisms in the eco-environmental sustainability and conservation. J. Clean. Prod. 2023, 418, 138054. [Google Scholar] [CrossRef]
- Ben Hmad, I.; Gargouri, A. Halophilic filamentous fungi and their enzymes: Potential biotechnological applications. J. Biotechnol. 2024, 381, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Mostofa, M.G.; Keya, S.S.; Siddiqui, M.N.; Ansary, M.M.U.; Das, A.K.; Rahman, M.A.; Tran, L.S.-P. Adaptive Mechanisms of Halophytes and Their Potential in Improving Salinity Tolerance in Plants. Int. J. Mol. Sci. 2021, 22, 733. [Google Scholar] [CrossRef] [PubMed]
- Edbeib, M.F.; Wahab, R.A.; Huyop, F. Halophiles: Biology, adaptation, and their role in decontamination of hypersaline environments. World J. Microbiol. Biotechnol. 2016, 32, 135. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ma, K.; Huang, Y.; Fu, Q.; Qiu, Y.; Yao, Z. Significant response of microbial community to increased salinity across wetland ecosystems. Geoderma 2022, 415, 115778. [Google Scholar] [CrossRef]
- Ponte, R.M.; Sun, Q.; Liu, C.; Liang, X. How Salty Is the Global Ocean: Weighing It All or Tasting It a Sip at a Time? Geophys. Res. Lett. 2021, 48, e2021GL092935. [Google Scholar] [CrossRef]
- Baxter, B.K. Great Salt Lake microbiology: A historical perspective. Int. Microbiol. 2018, 21, 79–95. [Google Scholar] [CrossRef] [PubMed]
- Delgado-García, M.; Contreras-Ramos, S.M.; Rodríguez, J.A.; Mateos-Díaz, J.C.; Aguilar, C.N.; Camacho-Ruíz, R.M. Isolation of halophilic bacteria associated with saline and alkaline-sodic soils by culture dependent approach. Heliyon 2018, 4, e00954. [Google Scholar] [CrossRef] [PubMed]
- Dutta, B.; Bandopadhyay, R. Biotechnological potentials of halophilic microorganisms and their impact on mankind. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 75. [Google Scholar] [CrossRef] [PubMed]
- Galinski, E.A.; Trüper, H.G. Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol. Rev. 1994, 15, 95–108. [Google Scholar] [CrossRef]
- Feng, H.-J.; Chen, L.; Ding, Y.-C.; Ma, X.-J.; How, S.-W.; Wu, D. Mechanism on the microbial salt tolerance enhancement by electrical stimulation. Bioelectrochemistry 2022, 147, 108206. [Google Scholar] [CrossRef] [PubMed]
- Plemenitaš, A.; Lenassi, M.; Konte, T.; Kejžar, A.; Zajc, J.; Gostinčar, C.; Gunde-Cimerman, N. Adaptation to high salt concentrations in halotolerant/halophilic fungi: A molecular perspective. Front. Microbiol. 2014, 5, 199. [Google Scholar] [CrossRef] [PubMed]
- Ventosa, A.; Nieto, J.n.J.; Oren, A. Biology of Moderately Halophilic Aerobic Bacteria. Microbiol. Mol. Biol. Rev. 1998, 62, 504–544. [Google Scholar] [CrossRef] [PubMed]
- Bremer, E.; Krämer, R. Responses of Microorganisms to Osmotic Stress. Annu. Rev. Microbiol. 2019, 73, 313–334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, X.; Li, Y.; Yang, N.; Qiao, L.; Miao, Z.; Xing, J.; Zhu, D. Study of osmoadaptation mechanisms of halophilic Halomonas alkaliphila XH26 under salt stress by transcriptome and ectoine analysis. Extremophiles 2022, 26, 14. [Google Scholar] [CrossRef] [PubMed]
- Delgado-García, M.; Valdivia-Urdiales, B.; Aguilar-González, C.N.; Contreras-Esquivel, J.C.; Rodríguez-Herrera, R. Halophilic hydrolases as a new tool for the biotechnological industries. J. Sci. Food Agric. 2012, 92, 2575–2580. [Google Scholar] [CrossRef] [PubMed]
- DasSarma, S.; DasSarma, P. Halophiles and their enzymes: Negativity put to good use. Curr. Opin. Microbiol. 2015, 25, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Tenchov, B.; Vescio, E.M.; Sprott, G.D.; Zeidel, M.L.; Mathai, J.C. Salt Tolerance of Archaeal Extremely Halophilic Lipid Membranes. J. Biol. Chem. 2006, 281, 10016–10023. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.M.; Solem, C.; Jensen, P.R. Harnessing biocompatible chemistry for developing improved and novel microbial cell factories. Microb. Biotechnol. 2019, 13, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.-S.; Yang, S.-F.; Sethi, G.; Hu, D.-N. Natural Bioactives in Cancer Treatment and Prevention. BioMed Res. Int. 2015, 2015, 182835. [Google Scholar] [CrossRef] [PubMed]
- Giddings, L.-A.; Newman, D.J. Extremophilic Fungi from Marine Environments: Underexplored Sources of Antitumor, Anti-Infective and Other Biologically Active Agents. Mar. Drugs 2022, 20, 62. [Google Scholar] [CrossRef] [PubMed]
- Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet 2021, 398, 535–554. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.L.; Fitzgerald, B.G.; Paz-Ares, L.; Cappuzzo, F.; Janne, P.A.; Peters, S.; Hirsch, F.R. New promises and challenges in the treatment of advanced non-small-cell lung cancer. Lancet 2024, 404, 803–822. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Martinez, E.D.; MacMillan, J.B. Anthraquinones from a Marine-Derived Streptomyces spinoverrucosus. J. Nat. Prod. 2012, 75, 1759–1764. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Sun, C.; Huang, H.; Gui, C.; Wang, L.; Li, Q.; Ju, J. Biosynthetic Baeyer–Villiger Chemistry Enables Access to Two Anthracene Scaffolds from a Single Gene Cluster in Deep-Sea-Derived Streptomyces olivaceus SCSIO T05. J. Nat. Prod. 2018, 81, 1570–1577. [Google Scholar] [CrossRef] [PubMed]
- Che, Q.; Zhu, T.; Qi, X.; Mándi, A.; Kurtán, T.; Mo, X.; Li, J.; Gu, Q.; Li, D. Hybrid Isoprenoids from a Reeds Rhizosphere Soil Derived Actinomycete Streptomyces sp. CHQ-64. Org. Lett. 2012, 14, 3438–3441. [Google Scholar] [CrossRef] [PubMed]
- Che, Q.; Zhu, T.; Keyzers, R.A.; Liu, X.; Li, J.; Gu, Q.; Li, D. Polycyclic Hybrid Isoprenoids from a Reed Rhizosphere Soil Derived Streptomyces sp. CHQ-64. J. Nat. Prod. 2013, 76, 759–763. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, R.; Zhang, W.; Li, A. Total Synthesis of Indotertine A and Drimentines A, F, and G. Angew. Chem. Int. Ed. 2013, 52, 9201–9204. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, Y.; Wang, M.; Tan, Y.; Hu, X.; He, H.; Xiao, C.; You, X.; Wang, Y.; Gan, M. Neo-actinomycins A and B, natural actinomycins bearing the 5H-oxazolo[4,5-b]phenoxazine chromophore, from the marine-derived Streptomyces sp. IMB094. Sci. Rep. 2017, 7, 3591. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Yue, L.; Deng, F.; Wang, X.; Wang, N.; Chen, H.; Li, H. NMR-Metabolomic Profiling and Genome Mining Drive the Discovery of Cyclic Decapeptides from a Marine Streptomyces. J. Nat. Prod. 2023, 86, 2122–2130. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Wang, S.; Hong, K.; Li, X.; Liu, P.; Wang, Y.; Zhu, W. Cytotoxic Bipyridines from the Marine-Derived Actinomycete Actinoalloteichus cyanogriseus WH1-2216-6. J. Nat. Prod. 2011, 74, 1751–1756. [Google Scholar] [CrossRef] [PubMed]
- Lalitha, P.; Veena, V.; Vidhyapriya, P.; Lakshmi, P.; Krishna, R.; Sakthivel, N. Anticancer potential of pyrrole (1, 2, a) pyrazine 1, 4, dione, hexahydro 3-(2-methyl propyl) (PPDHMP) extracted from a new marine bacterium, Staphylococcus sp. strain MB30. Apoptosis 2016, 21, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wang, C.; Wang, L.; Chairoungdua, A.; Piyachaturawat, P.; Fu, P.; Zhu, W. New Ansamycins from the Deep-Sea-Derived Bacterium Ochrobactrum sp. OUCMDZ-2164. Mar. Drugs 2018, 16, 282. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, X.; Dai, G.; Zhang, Y.; Bian, X. Microbial chassis engineering drives heterologous production of complex secondary metabolites. Biotechnol. Adv. 2022, 59, 107966. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Zhu, T.; Liu, H.; Fang, Y.; Zhu, W.; Gu, Q. Cytotoxic Polyketides from a Marine-derived Fungus Aspergillus glaucus. J. Nat. Prod. 2008, 71, 1837–1842. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Duan, Z.; Chen, Y.; Luan, Y.; Gu, Q.; Liu, Y.-K.; Li, D. Aspergiolides A and B: Core Structural Establishment and Synthesis of Structural Analogues. J. Org. Chem. 2019, 84, 4451–4457. [Google Scholar] [CrossRef] [PubMed]
- Matulja, D.; Vranješević, F.; Kolympadi Markovic, M.; Pavelić, S.K.; Marković, D. Anticancer Activities of Marine-Derived Phenolic Compounds and Their Derivatives. Molecules 2022, 27, 1449. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, M.X.; Kongstad, K.T.; Jäger, A.K.; Staerk, D. Potential of Polygonum cuspidatum Root as an Antidiabetic Food: Dual High-Resolution α-Glucosidase and PTP1B Inhibition Profiling Combined with HPLC-HRMS and NMR for Identification of Antidiabetic Constituents. J. Agric. Food Chem. 2017, 65, 4421–4427. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Keller, N.P.; Oakley, B.R.; Stajich, J.E.; Wang, C.C.C. Manipulation of the Global Regulator mcrA Upregulates Secondary Metabolite Production in Aspergillus wentii Using CRISPR-Cas9 with In Vitro Assembled Ribonucleoproteins. ACS Chem. Biol. 2022, 17, 2828–2835. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, W.-L.; Fang, Y.-C.; Zhu, T.-J.; Gu, Q.-Q.; Zhu, W.-M. Cytotoxic Alkaloids and Antibiotic Nordammarane Triterpenoids from the Marine-Derived Fungus Aspergillus sydowi. J. Nat. Prod. 2008, 71, 985–989. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Wang, Y.; Miao, C.; Liu, P.; Hong, K.; Zhu, W. Sesquiterpenoids and Benzofuranoids from the Marine-Derived Fungus Aspergillus ustus 094102. J. Nat. Prod. 2009, 72, 1761–1767. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Lu, Z.; Fan, J.; Wang, L.; Zhu, G.; Wang, Y.; Li, X.; Hong, K.; Piyachaturawat, P.; Chairoungdua, A.; et al. Ophiobolins from the Mangrove Fungus Aspergillus ustus. J. Nat. Prod. 2017, 81, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.J.; Park, J.S.; Kim, Y.J.; Jung, J.H.; Lee, J.K.; Kwon, H.C.; Yang, H.O. Apoptosis-inducing effect of diketopiperazine disulfides produced by Aspergillus sp. KMD 901 isolated from marine sediment on HCT116 colon cancer cell lines. J. Appl. Microbiol. 2011, 110, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Li, X.-M.; Meng, L.; Li, C.-S.; Gao, S.-S.; Shang, Z.; Proksch, P.; Huang, C.-G.; Wang, B.-G. Nigerapyrones A–H, α-Pyrone Derivatives from the Marine Mangrove-Derived Endophytic Fungus Aspergillus niger MA-132. J. Nat. Prod. 2011, 74, 1787–1791. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Sun, S.; Zhou, H.; Kong, X.; Zhu, T.; Li, D.; Gu, Q. Prenylated Polyhydroxy-p-terphenyls from Aspergillus taichungensis ZHN-7-07. J. Nat. Prod. 2011, 74, 1106–1110. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zheng, J.-K.; Qu, H.-J.; Liu, P.-P.; Wang, Y.; Zhu, W.-M. A new cytotoxic indole-3-ethenamide from the halotolerant fungus Aspergillus sclerotiorum PT06-1. J. Antibiot. 2011, 64, 679–681. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Fang, Y.; Zhu, T.; Gu, Q.; Zhu, W. Gentisyl Alcohol Derivatives from the Marine-Derived Fungus Penicillium terrestre. J. Nat. Prod. 2007, 71, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Zhu, H.; Fu, P.; Wang, Y.; Zhang, Z.; Lin, H.; Liu, P.; Zhuang, Y.; Hong, K.; Zhu, W. Cytotoxic Polyphenols from the Marine-Derived Fungus Penicillium expansum. J. Nat. Prod. 2010, 73, 911–914. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.-H.; Li, X.-M.; Lv, C.-T.; Li, C.-S.; Xu, G.-M.; Huang, C.-G.; Wang, B.-G. Sulfur-Containing Cytotoxic Curvularin Macrolides from Penicillium sumatrense MA-92, a Fungus Obtained from the Rhizosphere of the Mangrove Lumnitzera racemosa. J. Nat. Prod. 2013, 76, 2145–2149. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.-H.; Li, X.-M.; Lv, C.-T.; Huang, C.-G.; Wang, B.-G. Brocazines A–F, Cytotoxic Bisthiodiketopiperazine Derivatives from Penicillium brocae MA-231, an Endophytic Fungus Derived from the Marine Mangrove Plant Avicennia marina. J. Nat. Prod. 2014, 77, 1921–1927. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.-L.; Tang, J.-X.; Bo, Y.-H.; Li, Y.-Z.; Feng, T.; Zhu, H.-W.; Yu, X.; Zhang, X.-X.; Zhang, J.-L.; Wang, W. Cytotoxic Secondary Metabolites Isolated from the Marine Alga-Associated Fungus Penicillium chrysogenum LD-201810. Mar. Drugs 2020, 18, 276. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Gu, Q.; Zhu, W.; Cui, C.; Fan, G.; Fang, Y.; Zhu, T.; Liu, H. 10-Phenyl-[12]-cytochalasins Z7, Z8, and Z9 from the Marine-Derived Fungus Spicaria elegans. J. Nat. Prod. 2006, 69, 871–875. [Google Scholar] [CrossRef] [PubMed]
- Demir, Ö.; Schmidt, K.; Schulz, B.; Stradal, T.E.B.; Surup, F. Cytochalasins from the Ash Endophytic Fungus Nemania diffusa DSM 116299. Molecules 2025, 30, 957. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Lin, Z.; Zhu, T.; Fang, Y.; Gu, Q.; Zhu, W. Novel Open-Chain Cytochalsins from the Marine-Derived Fungus Spicaria elegans. J. Nat. Prod. 2008, 71, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, Y.; Li, S.; Liu, H.; Li, D.; Liu, Z.; Zhang, W. Hawatides A–G, new polyketides from the deep-sea-derived fungus Paraconiothyrium hawaiiense FS482. Tetrahedron 2021, 93, 132303. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Liu, Z.; Li, S.; Liu, H.; Wang, Y.; Zhang, W.; Yan, H. Cytotoxic pyrone derivatives from the deep-sea-derived fungus Cladosporium halotolerans FS702. Nat. Prod. Res. 2023, 38, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, W.; Yang, Y.; Shah, M.; Peng, J.; Zhou, L.; Zhang, G.; Che, Q.; Li, J.; Zhu, T.; et al. Phenylhydrazone Alkaloids from the Deep-Sea Cold Seep Derived Fungus Talaromyces amestolkiae HDN21-0307. J. Nat. Prod. 2024, 87, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Yang, T.; Ren, X.; Liu, J.; Song, Y.; Sun, A.; Ma, J.; Wang, B.; Zhang, Y.; Huang, C.; et al. Cytotoxic Angucycline Class Glycosides from the Deep Sea Actinomycete Streptomyces lusitanus SCSIO LR32. J. Nat. Prod. 2012, 75, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Liu, G.; Li, J.; Huang, H.; Zhang, X.; Zhang, H.; Ju, J. Cytotoxic and Antibacterial Angucycline- and Prodigiosin- Analogues from the Deep-Sea Derived Streptomyces sp. SCSIO 11594. Mar. Drugs 2015, 13, 1304–1316. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.-Y.; Ren, J.-W.; Peng, A.-H.; Lin, S.-Q.; Lu, D.-D.; Du, Q.-Q.; Liu, L.; Li, X.; Li, E.-W.; Xie, W.-D. Cytotoxic, Anti-Migration, and Anti-Invasion Activities on Breast Cancer Cells of Angucycline Glycosides Isolated from a Marine-Derived Streptomyces sp. Mar. Drugs 2019, 17, 277. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhang, W.; Yang, C.; Zhang, L.; Huang, H.; Zhu, Y.; Ratnasekera, D.; Zhang, C. Discovery of Kebanmycins with Antibacterial and Cytotoxic Activities from the Mangrove-Derived Streptomyces sp. SCSIO 40068. J. Nat. Prod. 2024, 87, 1591–1600. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Kong, F.; Wang, Y.; Wang, Y.; Liu, P.; Zuo, G.; Zhu, W. Antibiotic Metabolites from the Coral-Associated Actinomycete Streptomyces sp. OUCMDZ-1703. Chin. J. Chem. 2013, 31, 100–104. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, W.; Jin, H.; Zhang, Q.; Chen, Y.; Jiang, X.; Zhang, G.; Zhang, L.; Zhang, W.; She, Z.; et al. Genome Mining of Marine-Derived Streptomyces sp. SCSIO 40010 Leads to Cytotoxic New Polycyclic Tetramate Macrolactams. Mar. Drugs 2019, 17, 663. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Tu, J.; Zhang, H.; Wei, X.; Ju, J.; Li, Q. Genome Mining and Metabolic Profiling Uncover Polycyclic Tetramate Macrolactams from Streptomyces koyangensis SCSIO 5802. Mar. Drugs 2021, 19, 440. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.-F.; Chen, M.-J.; Liang, D.-E.; Shi, L.-M.; Ying, Y.-M.; Shan, W.-G.; Li, G.-Q.; Zhan, Z.-J. Streptomyces albogriseolus SY67903 Produces Eunicellin Diterpenoids Structurally Similar to Terpenes of the Gorgonian Muricella sibogae, the Bacterial Source. J. Nat. Prod. 2020, 83, 1641–1645. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-M.; Li, H.-Y.; Hu, C.; Sheng, H.-F.; Zhang, Y.; Lin, B.-R.; Zhou, G.-X. Ergosterols from the Culture Broth of Marine Streptomyces anandii H41-59. Mar. Drugs 2016, 14, 84. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-M.; Liu, B.-L.; Zheng, X.-H.; Huang, X.-J.; Li, H.-Y.; Zhang, Y.; Zhang, T.-T.; Sun, D.-Y.; Lin, B.-R.; Zhou, G.-X. Anandins A and B, Two Rare Steroidal Alkaloids from a Marine Streptomyces anandii H41-59. Mar. Drugs 2017, 15, 355. [Google Scholar] [CrossRef] [PubMed]
- Khodamoradi, S.; Stadler, M.; Wink, J.; Surup, F. Litoralimycins A and B, New Cytotoxic Thiopeptides from Streptomonospora sp. M2. Mar. Drugs 2020, 18, 280. [Google Scholar] [CrossRef] [PubMed]
- Pettit, G.R.; Knight, J.C.; Herald, D.L.; Pettit, R.K.; Hogan, F.; Mukku, V.J.R.V.; Hamblin, J.S.; Dodson, M.J.; Chapuis, J.-C. Antineoplastic Agents. 570. Isolation and Structure Elucidation of Bacillistatins 1 and 2 from a Marine Bacillus silvestris. J. Nat. Prod. 2009, 72, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Tang, J.; Limlingan Malit, J.J.; Wang, R.; Sung, H.H.Y.; Williams, I.D.; Qian, P.-Y. Bathiapeptides: Polythiazole-Containing Peptides from a Marine Biofilm-Derived Bacillus sp. J. Nat. Prod. 2022, 85, 1751–1762. [Google Scholar] [CrossRef] [PubMed]
- Anh, C.; Kang, J.; Lee, H.-S.; Trinh, P.; Heo, C.-S.; Shin, H. New Glycosylated Secondary Metabolites from Marine-Derived Bacteria. Mar. Drugs 2022, 20, 464. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wang, F.; Luo, M.; Chen, Y.; Song, Y.; Zhang, W.; Zhang, S.; Ju, J. Halogenated Anthraquinones from the Marine-Derived Fungus Aspergillus sp. SCSIO F063. J. Nat. Prod. 2012, 75, 1346–1352. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.-K.; Trinh, P.T.H.; Lee, H.-S.; Choi, B.-W.; Kang, J.S.; Ngoc, N.T.D.; Van, T.T.T.; Shin, H.J. New Ophiobolin Derivatives from the Marine Fungus Aspergillus flocculosus and Their Cytotoxicities against Cancer Cells. Mar. Drugs 2019, 17, 346. [Google Scholar] [CrossRef] [PubMed]
- Zhuravleva, O.I.; Belousova, E.B.; Oleinikova, G.K.; Antonov, A.S.; Khudyakova, Y.V.; Rasin, A.B.; Popov, R.S.; Menchinskaya, E.S.; Trinh, P.T.H.; Yurchenko, A.N.; et al. Cytotoxic Drimane-Type Sesquiterpenes from Co-Culture of the Marine-Derived Fungi Aspergillus carneus KMM 4638 and Beauveria felina (=Isaria felina) KMM 4639. Mar. Drugs 2022, 20, 584. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Song, Y.; Chen, Y.; Huang, H.; Zhang, W.; Ju, J. Cyclic Heptapeptides, Cordyheptapeptides C–E, from the Marine-Derived Fungus Acremonium persicinum SCSIO 115 and Their Cytotoxic Activities. J. Nat. Prod. 2012, 75, 1215–1219. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Sun, Z.-H.; Liu, Z.; Chen, Y.-C.; Liu, H.-X.; Li, H.-H.; Zhang, W.-M. Dichotocejpins A–C: New Diketopiperazines from a Deep-Sea-Derived Fungus Dichotomomyces cejpii FS110. Mar. Drugs 2016, 14, 164. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-M.; Ju, G.-L.; Xiao, L.; Zhang, X.-F.; Du, F.-Y. Cyclodepsipeptides and Sesquiterpenes from Marine-Derived Fungus Trichothecium roseum and Their Biological Functions. Mar. Drugs 2018, 16, 519. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Matsushita, T.; Kondo, S.; Isoda, H.; Kigoshi, H. Structure Revision of Trichomide D by Total Synthesis. J. Nat. Prod. 2022, 85, 1850–1860. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xu, W.; Fan, R.; Zhang, J.; Li, Y.; Wang, X.; Han, S.; Liu, W.; Pan, M.; Cheng, Z. Penithoketone and Penithochromones A–L, Polyketides from the Deep-Sea-Derived Fungus Penicillium thomii YPGA3. J. Nat. Prod. 2020, 83, 2679–2685. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.-Y.; Wang, C.-Y.; Li, X.-M.; Yang, S.-Q.; Li, X.; Wang, B.-G.; Si, S.-Y.; Meng, L.-H. Cytochalasin Derivatives from the Endozoic Curvularia verruculosa CS-129, a Fungus Isolated from the Deep-Sea Squat Lobster Shinkaia crosnieri Living in the Cold Seep Environment. J. Nat. Prod. 2021, 84, 3122–3130. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Tang, X.; Shao, Z.; Li, G.; Yao, Q. Cytotoxic Epipolythiodioxopiperazines from the Deep-Sea-Derived Fungus Exophiala mesophila MCCC 3A00939. J. Nat. Prod. 2023, 86, 2342–2347. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Sun, S.; Cao, M.; Mao, M.; He, J.; Gai, Q.; Qin, Y.; Yao, X.; Lu, H.; Chen, F.; et al. Grincamycin B Functions as a Potent Inhibitor for Glioblastoma Stem Cell via Targeting RHOA and PI3K/AKT. ACS Chem. Neurosci. 2020, 11, 2256–2265. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Z.-X.; Zhao, W.-C.; Huang, H.-B.; Wang, J.-Q.; Zhang, H.; Lu, J.-Y.; Wang, R.-N.; Li, W.; Cheng, Z.; et al. Identification and characterization of isocitrate dehydrogenase 1 (IDH1) as a functional target of marine natural product grincamycin B. Acta Pharmacol. Sin. 2020, 42, 801–813. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, W.; Yang, Q.; Guan, Y.; Chen, Y.; Zhu, P.; Su, K.; Li, Q.; Hu, X.; Zang, M.; et al. Low-Level Viremia Impairs Efficacy of Immune Checkpoint Inhibitors in Unresectable Hepatocellular Carcinoma. Liver Int. 2025, 45, e70066. [Google Scholar] [CrossRef] [PubMed]
- Fidler, M.M.; Soerjomataram, I.; Bray, F. A global view on cancer incidence and national levels of the human development index. Int. J. Cancer 2016, 139, 2436–2446. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Hu, Z.-J.; Zhang, H.-J.; Li, J.-Q.; Ding, W.-J.; Ma, Z.-J. Bioactive staurosporine derivatives from the Streptomyces sp. NB-A13. Bioorg. Chem. 2019, 82, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Im, J.H.; Shin, Y.-H.; Bae, E.S.; Lee, S.K.; Oh, D.-C. Jejucarbosides B–E, Chlorinated Cycloaromatized Enediynes, from a Marine Streptomyces sp. Mar. Drugs 2023, 21, 405. [Google Scholar] [CrossRef]
- Lim, H.-J.; An, J.S.; Bae, E.S.; Cho, E.; Hwang, S.; Nam, S.-J.; Oh, K.-B.; Lee, S.K.; Oh, D.-C. Ligiamycins A and B, Decalin-Amino-Maleimides from the Co-Culture of Streptomyces sp. and Achromobacter sp. Isolated from the Marine Wharf Roach, Ligia exotica. Mar. Drugs 2022, 20, 83. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Shin, D.; Kim, S.-H.; Park, W.; Shin, Y.; Kim, W.K.; Lee, S.K.; Oh, K.-B.; Shin, J.; Oh, D.-C. Borrelidins C–E: New Antibacterial Macrolides from a Saltern-Derived Halophilic Nocardiopsis sp. Mar. Drugs 2017, 15, 166. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-S.; Li, X.-M.; Gao, S.-S.; Lu, Y.-H.; Wang, B.-G. Cytotoxic Anthranilic Acid Derivatives from Deep Sea Sediment-Derived Fungus Penicillium paneum SD-44. Mar. Drugs 2013, 11, 3068–3076. [Google Scholar] [CrossRef] [PubMed]
- Pham, G.N.; Josselin, B.; Cousseau, A.; Baratte, B.; Dayras, M.; Le Meur, C.; Debaets, S.; Weill, A.; Robert, T.; Burgaud, G.; et al. New Fusarochromanone Derivatives from the Marine Fungus Fusarium equiseti UBOCC-A-117302. Mar. Drugs 2024, 22, 444. [Google Scholar] [CrossRef] [PubMed]
- Ivanets, E.V.; Yurchenko, A.N.; Smetanina, O.F.; Rasin, A.B.; Zhuravleva, O.I.; Pivkin, M.V.; Popov, R.S.; Von Amsberg, G.; Afiyatullov, S.S.; Dyshlovoy, S.A. Asperindoles A–D and a p-Terphenyl Derivative from the Ascidian-Derived Fungus Aspergillus sp. KMM 4676. Mar. Drugs 2018, 16, 232. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Kang, J.S.; Cho, D.-Y.; Choi, D.-K.; Shin, H.J. Isolation, Structure Determination, and Semisynthesis of Diphenazine Compounds from a Deep-Sea-Derived Strain of the Fungus Cystobasidium laryngis and Their Biological Activities. J. Nat. Prod. 2022, 85, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Wang, Y.; Yang, Y.; Chen, H. Shellmycin A–D, Novel Bioactive Tetrahydroanthra-γ-Pyrone Antibiotics from Marine Streptomyces sp. Shell-016. Mar. Drugs 2020, 18, 58. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Zhang, X.; Hao, H.; Li, W.; Lu, C. Nocarbenzoxazoles A–G, Benzoxazoles Produced by Halophilic Nocardiopsis lucentensis DSM 44048. J. Nat. Prod. 2015, 78, 2123–2127. [Google Scholar] [CrossRef] [PubMed]
- Chi, L.-P.; Li, X.-M.; Li, L.; Li, X.; Wang, B.-G. Cytotoxic Thiodiketopiperazine Derivatives from the Deep Sea-Derived Fungus Epicoccum nigrum SD-388. Mar. Drugs 2020, 18, 160. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.X.; Jensen, P.R.; Williams, P.G.; Fenical, W. Isolation and Structure Assignments of Rostratins A−D, Cytotoxic Disulfides Produced by the Marine-Derived Fungus Exserohilum rostratum. J. Nat. Prod. 2004, 67, 1374–1382. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, Z.; Sun, K.; Zhu, W. Effects of High Salt Stress on Secondary Metabolite Production in the Marine-Derived Fungus Spicaria elegans. Mar. Drugs 2011, 9, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-L.; Lu, Z.-Y.; Tao, H.-W.; Zhu, T.-J.; Fang, Y.-C.; Gu, Q.-Q.; Zhu, W.-M. Isoechinulin-type alkaloids, variecolorins A-L, from halotolerant Aspergillus variecolor. J. Nat. Prod. 2007, 70, 1558–1564. [Google Scholar] [CrossRef] [PubMed]
- Ventosa, A.; de la Haba, R.R.; Sánchez-Porro, C.; Papke, R.T. Microbial diversity of hypersaline environments: A metagenomic approach. Curr. Opin. Microbiol. 2015, 25, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.; Ahmed-Cox, A.; Burns, B. Molecular Ecology of Hypersaline Microbial Mats: Current Insights and New Directions. Microorganisms 2016, 4, 6. [Google Scholar] [CrossRef] [PubMed]
- Podar, M.; Reysenbach, A.-L. New opportunities revealed by biotechnological explorations of extremophiles. Curr. Opin. Biotechnol. 2006, 17, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Schultz, J.; Modolon, F.; Peixoto, R.S.; Rosado, A.S. Shedding light on the composition of extreme microbial dark matter: Alternative approaches for culturing extremophiles. Front. Microbiol. 2023, 14, 1167718. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Jia, B.; Jeon, C.O. Identification of Trans-4-Hydroxy-L-Proline as a Compatible Solute and Its Biosynthesis and Molecular Characterization in Halobacillus halophilus. Front. Microbiol. 2017, 8, 2054. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Chen, M.; Jiang, W.; Zhang, L.; Shen, L.; Bai, Y. Functional Role and Mutational Analysis of the Phytoene Synthase from the Halophilic Euryarchaeon Haloferax volcanii in Bacterioruberin Biosynthesis. J. Agric. Food Chem. 2025, 73, 2393–2403. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Pan, B.; Kuang, X.; Chen, S.; Liu, L.; Song, Y.; Zhao, Y.; Xu, X.; Cheng, X.; Yang, J. Characterization and mechanism investigation of salt-activated methionine sulfoxide reductase A from halophiles. iScience 2024, 27, 110806. [Google Scholar] [CrossRef] [PubMed]
No | Metabolites | Classes | Microorganisms | The Tested Tumor Cells IC50 Values | Positive Control IC50 Values | Ref |
---|---|---|---|---|---|---|
19 | 21-epi-Ophiobolin O | Ophiobolin | Aspergillus ustus 094102 | A549 0.6 μM | Etoposide 0.63 μM | [50] |
22 | Nigerapyrone E | α-pyrone derivative | Aspergillus niger MA-132 | A549 43 μM | Fluorouracil 52 μM | [52] |
39 | Sumalarin A | Sulfur-containing curvularin derivative | Penicillium sumatrense MA-92 | NCI-H460 3.8 μM | 5-fluorouracil 8.5 μM | [57] |
40 | Sumalarin B | Sulfur-containing curvularin derivative | Penicillium sumatrense MA-92 | NCI-H460 4.6 μM | 5-fluorouracil 8.5 μM | [57] |
41 | Sumalarin C | Sulfur-containing curvularin derivative | Penicillium sumatrense MA-92 | NCI-H460 7.0 μM | 5-fluorouracil 8.5 μM | [57] |
42 | Brocazine A | Diketopiperazine derivative | Penicillium brocae MA-231 | NCI-H460 4.9 μM | Cefitinib 7.6 μM | [58] |
43 | Brocazine B | Diketopiperazine derivative | Penicillium brocae MA-231 | NCI-H460 4.0 μM | Cefitinib 7.6 μM | [58] |
44 | Brocazine F | Diketopiperazine derivative | Penicillium brocae MA-231 | NCI-H460 0.89 μM | Cefitinib 7.6 μM | [58] |
54 | (R)-6-((8R)-hydroxypropyl)-2-methyl-5,6-dihydro- 4H-pyran-4-one | Pyranone | Cladosporium halotolerans FS702 | A-549 0.23 μM | Doxorubicin 1.38 μM | [64] |
No | Metabolites | Classes | Microorganisms | The Tested Tumor Cells IC50 Values | Positive Control IC50 Values | Ref |
---|---|---|---|---|---|---|
56 | Grincamycin B | C-glycoside angucyclines | Streptomyces lusitanus SCSIO LR32 | MCF-7 12 μM | 5-Fluorouracil/ doxorubicin 35/6.9 μM | [66] |
57 | Grincamycin C | C-glycoside angucyclines | Streptomyces lusitanus SCSIO LR32 | MCF-7 11 μM | 5-Fluorouracil/ doxorubicin 35/6.9 μM | [66] |
58 | Grincamycin D | C-glycoside angucyclines | Streptomyces lusitanus SCSIO LR32 | MCF-7 6.1 μM | 5-Fluorouracil/ doxorubicin 35/6.9 μM | [66] |
59 | Grincamycin E | C-glycoside angucyclines | Streptomyces lusitanus SCSIO LR32 | MCF-7 8.7 μM | 5-Fluorouracil/ doxorubicin 35/6.9 μM | [66] |
60 | Grincamycin F | C-glycoside angucyclines | Streptomyces lusitanus SCSIO LR32 | MCF-7 19 μM | 5-Fluorouracil/ doxorubicin 35/6.9 μM | [66] |
61 | Marangucycline B | C-glycoside angucycline | Streptomycetes sp. SCSIO 11594 | MCF-7 0.24 μM | Cisplatin 5.26 μM | [67] |
63 | Kebanmycin A | Polycyclic xanthones | Streptomyces sp. SCSIO 40068 | MCF-7 0.12 μM | Adriamycin 0.72 μM | [69] |
68 | 10-epi-HSAF | Polycyclic tetramate macrolactam | Streptomyces sp. SCSIO 40010 | MCF-7 2.47 μM | Cisplatin 3.19 μM | [71] |
78 | Bacillistatin 2 | Cyclodepsipeptide | Bacillus silvestris | MCF-7 0.00031 μg/mL | Valinomycin 0.00100 μg/mL | [77] |
86 | (1′S)-6-O-methyl-7-chloroaverantin | Chlorinated anthraquinone | Aspergillus sp. SCSIO F063 | MCF-7 6.64 μM | Cisplatin 10.23 μM | [80] |
91 | 14,15-dehydro-6-epi-ophiobolin K | Sesterterpene | Aspergillus flocculosus 168ST-16.1 | MDA-MB-231 0.14 μM | Adriamycin 0.15 μM | [81] |
101 | Cordyheptapeptide E | Cycloheptapeptide | Acremonium persicinum SCSIO 115 | MCF-7 2.7 μM | Cisplatin 10.2 μM | [83] |
103 | Trichomide D | Cyclodepsipeptide | Trichothecium roseum | MCF-7 0.079 μM | Cisplatin 19.44 ± 1.57 μM | [85] |
No | Metabolites | Classes | Microorganisms | The Tested Tumor Cells IC50 Values | Positive Control IC50 Values | Ref |
---|---|---|---|---|---|---|
109 | 7-oxo-holyrin A | Staurosporine derivative | Streptomyces sp. NB-A13 | SW-620 2.14 μM | Staurosporine 25.1 μM | [95] |
110 | 4′N-formyl-7-oxo-holyrin A | Staurosporine derivative | Streptomyces sp. NB-A13 | SW-620 0.74 μM | Staurosporine 25.1 μM | [95] |
111 | 3′-(hydroxyl(oxiran-2-yl)methoxy)-holyrine A | Staurosporine derivative | Streptomyces sp. NB-A13 | SW-620 2.00 μM | Staurosporine 25.1 μM | [95] |
112 | 3′-epi-5′-methoxy-K252d | Staurosporine derivative | Streptomyces sp. NB-A13 | SW-620 9.54 μM | Staurosporine 25.10 μM | [95] |
113 | 7-oxo-MLR-52 | Staurosporine derivative | Streptomyces sp. NB-A13 | SW-620 0.16 μM | Staurosporine 25.10 μM | [95] |
114 | Jejucarboside E | Chlorinated polycyclic enediyne | Streptomyces sp. JJC13 | HCT 116 0.29 μM | Etoposide 0.56 μM | [96] |
116 | Borrelidin C | Macrolide | Nocardiopsis sp. strain HYJ128 | HCT116 10 μM | Etoposide 14 μM | [98] |
120 | Deacetylfusarochromene | Fusarochromanone derivative | Fusarium equiseti UBOCC-A-117302 | HCT-116 0.087 μM | Staurosporine 25.7 μM | [100] |
121 | Deacetamidofusarochrom-2′,3-diene | Fusarochromanone derivative | Fusarium equiseti UBOCC-A-117302 | HCT-116 13.730 μM | Staurosporine 25.7 μM | [100] |
123 | Phenazostatin J | Phenazine | Cystobasidium laryngis IV17-028 | NUGC-3 0.0077 μM | Adriamycin 0.15 μM | [102] |
124 | Shellmycin A | Pyrone | Streptomyces sp. shell-016 | HepG-2 4.22 µM | Cisplatin >50 µM | [103] |
125 | Shellmycin B | Pyrone | Streptomyces sp. shell-016 | HepG-2 5.67 µM | Cisplatin >50 µM | [103] |
126 | Shellmycin C | Pyrone | Streptomyces sp. shell-016 | HepG-2 11.30 µM | Cisplatin >50 µM | [103] |
127 | shellmycin D | Pyrone | Streptomyces sp. shell-016 | HepG-2 5.16 µM | Cisplatin >50 µM | [103] |
131 | Rostratin C | Polyketide | Epicoccum nigrum SD-388 | Huh7.5 4.88 μM | Sorafenib 8.2 μM | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, L.; Xu, L.; Kader, M.; Ding, T.; Lu, S.; Wang, D.; Sharma, A.R.; Zhang, Z. Salt-Adapted Microorganisms: A Promising Resource for Novel Anti-Cancer Drug Discovery. Mar. Drugs 2025, 23, 296. https://doi.org/10.3390/md23080296
Fang L, Xu L, Kader M, Ding T, Lu S, Wang D, Sharma AR, Zhang Z. Salt-Adapted Microorganisms: A Promising Resource for Novel Anti-Cancer Drug Discovery. Marine Drugs. 2025; 23(8):296. https://doi.org/10.3390/md23080296
Chicago/Turabian StyleFang, Longteng, Liping Xu, Marhaba Kader, Tingting Ding, Shiyang Lu, Dong Wang, Amit Raj Sharma, and Zhiwei Zhang. 2025. "Salt-Adapted Microorganisms: A Promising Resource for Novel Anti-Cancer Drug Discovery" Marine Drugs 23, no. 8: 296. https://doi.org/10.3390/md23080296
APA StyleFang, L., Xu, L., Kader, M., Ding, T., Lu, S., Wang, D., Sharma, A. R., & Zhang, Z. (2025). Salt-Adapted Microorganisms: A Promising Resource for Novel Anti-Cancer Drug Discovery. Marine Drugs, 23(8), 296. https://doi.org/10.3390/md23080296