Efficient Marker-Assisted Pyramiding of Xa21 and Xa23 Genes into Elite Rice Restorer Lines Confers Broad-Spectrum Resistance to Bacterial Blight
Abstract
1. Introduction
2. Results
2.1. Functional Marker Development
2.2. Xa21/Xa23 Pyramiding via MAS
2.3. Broad-Spectrum Resistance Evaluation
2.4. Agronomic Performance and Yield Stability
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Molecular Marker Development and Analysis
4.3. Assessment of Background Recovery
4.4. Bacterial Blight Resistance Analysis
4.5. Characterization of Agro-Morphological Traits
4.6. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BB | bacterial blight |
Xoo | Xanthomonas oryzae pv. oryzae |
FMAS | functional marker-assisted selection |
R | resistance |
FM | functional marker |
SNP | single nucleotide polymorphism |
CMS | cytoplasmic male sterile |
LRR | leucine-rich repeat |
MAS | marker-assisted selection |
CV | coefficient of variation |
References
- Wang, J.; Liao, Z.; Jin, X.; Liao, L.; Zhang, Y.; Zhang, R.; Zhao, X.; Qin, H.; Chen, J.; He, Y.; et al. Xanthomonas oryzae pv. oryzicola effector Tal10a directly activates rice OsHXK5 expression to facilitate pathogenesis. Plant J. 2024, 119, 2423–2436. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Li, C.; Huang, X.; Ahmed, T.; Ogunyemi, S.O.; Yu, S.; Wang, X.; Ali, H.M.; Khan, F.; Yan, C.; et al. Phage combination alleviates bacterial leaf blight of rice (Oryza sativa L.). Front. Plant Sci. 2023, 14, 1147351. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Xu, Y.; Rao, Y. Mechanism of Rice Resistance to Bacterial Leaf Blight via Phytohormones. Plants 2024, 13, 2541. [Google Scholar] [CrossRef]
- Zhang, Q. Utilization and strategy of genes for resistance to rice bacterial blight in China. Acta Phytophylacica Sin. 1995, 22, 241–245. [Google Scholar]
- He, Z.; Xin, Y.; Wang, C.; Yang, H.; Xu, Z.; Cheng, J.; Li, Z.; Ye, C.; Yin, H.; Xie, Z.; et al. Genomics-Assisted Improvement of Super High-Yield Hybrid Rice Variety “Super 1000” for Resistance to Bacterial Blight and Blast Diseases. Front. Plant Sci. 2022, 13, 881244. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Xu, J.Y.; Hou, M.S.; Ali, J.; Mou, T.M. Introgression of bacterial blight resistance genes Xa7, Xa21, Xa22 and Xa23 into hybrid rice restorer lines by molecular marker-assisted selection. Euphytica 2012, 187, 449–459. [Google Scholar] [CrossRef]
- Bimolata, W.; Kumar, A.; M, S.K.R.; Sundaram, R.M.; Laha, G.S.; Qureshi, I.A.; Ghazi, I.A.; Ali, J. Nucleotide diversity analysis of three major bacterial blight resistance genes in rice. PLoS ONE 2015, 10, e0120186. [Google Scholar] [CrossRef]
- Chen, S.; Lin, X.H.; Xu, C.G.; Zhang, Q. Improvement of bacterial blight resistance of ‘Minghui 63’, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Crop Sci. 2000, 40, 239–244. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Y.; Sun, J.; Liang, W.; Chen, X.; Wang, X.; Zhou, J.; Yu, C.; Wang, J.; Wu, S.; et al. Research progress on cloning and function of Xa genes against rice bacterial blight. Front. Plant Sci. 2022, 13, 847199. [Google Scholar] [CrossRef]
- Huang, N.; Angeles, E.R.; Domingo, J.; Magpantay, G.; Singh, S.; Zhang, G.; Kumaravadivel, N.; Bennett, J.; Khush, G.S. Pyramiding of bacterial blight resistance gene in rice: Marker-assisted selection using RFLP and PCR. Theor. Appl. Genet. 1999, 95, 313–320. [Google Scholar] [CrossRef]
- Wang, S.Q.; Li, S.C.; Wu, F.Q.; Deng, Q.M.; Wang, L.X.; He, T.H.; Li, P. Improvement of resistance of hybrid rice to bacterial blight by utilization of Xa21 gene. Southwest China J. Agric. Sci. 2006, 19, 875–878. [Google Scholar] [CrossRef]
- Ercoli, M.F.; Luu, D.D.; Rim, E.Y.; Shigenaga, A.; de Araujo, A.T., Jr.; Chern, M.; Jain, R.; Ruan, R.; Joe, A.; Stewart, V.; et al. Plant immunity: Rice XA21-mediated resistance to bacterial infection. Proc. Natl. Acad. Sci. USA 2022, 119, e2121568119. [Google Scholar] [CrossRef]
- Gautam, R.K.; Singh, P.K.; Sakthivel, K.; Venkatesan, K.; Rao, S.S.; Srikumar, M.; Vijayan, J.; Rakesh, B.; Ray, S.; Akhtar, J.; et al. Marker-assisted enhancement of bacterial blight (Xanthomonas oryzae pv. oryzae) resistance in a salt-tolerant rice variety for sustaining rice production of tropical islands. Front. Plant Sci. 2023, 14, 1221537. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, C.L.; Zhao, K.J.; Yang, W.C.; Qiao, F.; Zhou, Y.L.; Jiang, Q.X.; Liu, G.C. Development of near-isogenic line CBB23 with a new resistance gene to bacterial blight in rice and its application. Chin. J. Rice Sci. 2002, 16, 206–210. [Google Scholar]
- Wang, C.L.; Qin, T.F.; Yu, H.M.; Zhang, X.P.; Che, J.Y.; Gao, Y.; Zheng, C.K.; Yang, B.; Zhao, K.J. The broad bacterial blight resistance of rice line CBB23 is triggered by a novel transcription activator-like (TAL) effector of Xanthomonas oryzae pv. oryzae. Mol. Plant Pathol. 2014, 15, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Zampieri, E.; Volante, A.; Marè, C.; Orasen, G.; Desiderio, F.; Biselli, C.; Canella, M.; Carmagnola, L.; Milazzo, J.; Adreit, H.; et al. Marker-Assisted Pyramiding of Blast-Resistance Genes in a Elite Rice Cultivar through Forward and Background Selection. Plants 2023, 12, 757. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, C.L.; Zhao, K.J.; Zhao, Y.L.; Jiang, Q.X. The effectiveness of advanced rice lines with new resistance gene Xa23 to rice bacterial blight. Rice Genet. Newslett. 2001, 18, 71–72. [Google Scholar]
- Century, K.S.; Lagman, R.A.; Adkisson, M.; Morlan, J.; Tobias, R.; Schwartz, K.; Smith, A.; Love, J.; Ronald, P.C.; Whalen, M.C. Short communication: Developmental control of Xa21-mediated disease resistance in rice. Plant J. 1999, 20, 231–236. [Google Scholar] [CrossRef]
- Zhao, J.; Fu, J.; Li, X.; Xu, C.; Wang, S. Dissection of the factors affecting development-controlled and race-specific disease resistance conferred by leucine-rich repeat receptor kinase-type R genes in rice. Theor. Appl. Genet. 2009, 119, 231–239. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, Y.; Wang, F.; Kong, D.; Bi, J.; Zhang, F.; Luo, X.; Wang, J.; Liu, G.; Luo, L.; et al. Molecular Breeding of Water-Saving and Drought-Resistant Rice for Blast and Bacterial Blight Resistance. Plants 2022, 11, 2641. [Google Scholar] [CrossRef]
- Kumar, M.; Singh, R.P.; Jena, D.; Singh, V.; Rout, D.; Arsode, P.B.; Choudhary, M.; Singh, P.; Chahar, S.; Samantaray, S.; et al. Marker-Assisted Improvement for Durable Bacterial Blight Resistance in Aromatic Rice Cultivar HUR 917 Popular in Eastern Parts of India. Plants 2023, 12, 1363. [Google Scholar] [CrossRef]
- Ye, C.; Ishimaru, T.; Lambio, L.; Li, L.; Long, Y.; He, Z.; Htun, T.M.; Tang, S.; Su, Z. Marker-assisted pyramiding of QTLs for heat tolerance and escape upgrades heat resilience in rice (Oryza sativa L.). Theor. Appl. Genet. 2022, 135, 1345–1354. [Google Scholar] [CrossRef]
- Yasuda, N.; Mitsunaga, T.; Hayashi, K.; Koizumi, S.; Fujita, Y. Effects of Pyramiding Quantitative Resistance Genes pi21, Pi34, and Pi35 on Rice Leaf Blast Disease. Plant Dis. 2015, 99, 904–909. [Google Scholar] [CrossRef] [PubMed]
- Angeles-Shim, R.B.; Reyes, V.P.; del Valle, M.M.; Lapis, R.S.; Shim, J.; Sunohara, H.; Jena, K.K.; Ashikari, M.; Doi, K. Marker-Assisted Introgression of Quantitative Resistance Gene pi21 Confers Broad Spectrum Resistance to Rice Blast. Rice Sci. 2020, 27, 113–123. [Google Scholar] [CrossRef]
- Tomita, R.; Reyes, V.P.; Fukuta, Y.; Gichuhi, E.W.; Kikuta, M.; Menge, D.M.; Doi, K.; Makihara, D. Genetic Variation of Blast (Pyricularia oryzae Cavara) Resistance in the Longistaminata Chromosome Segment Introgression Lines (LCSILs) and Potential for Breeding Use in Kenya. Plants 2023, 12, 863. [Google Scholar] [CrossRef] [PubMed]
- Reyes, V.P. Fantastic genes: Where and how to find them? Exploiting rice genetic resources for the improvement of yield, tolerance, and resistance to a wide array of stresses in rice. Funct. Integr. Genom. 2023, 23, 238. [Google Scholar] [CrossRef]
- Francia, E.; Tacconi, G.; Crosatti, C.; Barabaschi, D.; Bulgarelli, D.; Dall’Aglio, E.; Valè, G. Marker assisted selection in crop plants. Plant Cell Tissue Organ Cult. 2005, 82, 317–342. [Google Scholar] [CrossRef]
- Reyes, V.P.; Angeles-Shim, R.B.; Mendioro, M.S.; Manuel, M.C.C.; Lapis, R.S.; Shim, J.; Sunohara, H.; Nishiuchi, S.; Kikuta, M.; Makihara, D.; et al. Marker-Assisted Introgression and Stacking of Major QTLs Controlling Grain Number (Gn1a) and Number of Primary Branching (WFP) to NERICA Cultivars. Plants 2021, 10, 844. [Google Scholar] [CrossRef] [PubMed]
- Lubberstedt, T.; Melchinger, A.E.; Fahr, S.; Klein, D.; Dally, A.; Westhoff, P. QTL mapping in testcrosses of flint lines of maize: III. Comparison across populations for forage traits. Crop Sci. 1998, 38, 1278–1289. [Google Scholar] [CrossRef]
- Bagge, M.; Xia, X.; Lübberstedt, T. Functional markers in wheat. Curr. Opin. Plant Biol. 2007, 10, 211–216. [Google Scholar] [CrossRef]
- Kage, U.; Kumar, A.; Dhokane, D.; Karre, S.; Kushalappa, A.C. Functional molecular markers for crop improvement. Crit. Rev. Biotechnol. 2016, 36, 917–930. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.H.; Liu, P.C.; Gao, L.F.; Liu, D.F.; Zhai, W.X. Generation and Genetic Analysis of Xa21 Transgenic Rice Line CX8621 Without Selectable Markers. Chin. J. Rice Sci. 2016, 30, 10–16. [Google Scholar] [CrossRef]
- Crossa, J.; Pérez-Rodríguez, P.; Cuevas, J.; Montesinos-López, O.; Jarquín, D.; de Los Campos, G.; Burgueño, J.; González-Camacho, J.M.; Pérez-Elizalde, S.; Beyene, Y.; et al. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends Plant Sci. 2017, 22, 961–975. [Google Scholar] [CrossRef]
- Peng, H.; Chen, Z.; Fang, Z.; Zhou, J.; Xia, Z.; Gao, L.; Chen, L.; Li, L.; Li, T.; et al.; Zhang, W. Rice Xa21 primed genes and pathways that are critical for combating bacterial blight infection. Sci. Rep. 2015, 5, 12165. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, X.; Wang, Y.; Liu, L.; Li, Y.; Yang, Y.; Liu, L.; Zou, L.; Chen, G. A varied AvrXa23-like TALE enables the bacterial blight pathogen to avoid being trapped by Xa23 resistance gene in rice. J. Adv. Res. 2022, 42, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; An, R.; Ren, Z.; Jiang, J.; Cai, B.; Hu, S.; Shao, G.; Jiao, G.; Xie, L.; Wang, L.; et al. Developing super rice varieties resistant to rice blast with enhanced yield and improved quality. Plant Biotechnol. J. 2025, 23, 232–234. [Google Scholar] [CrossRef]
- Xiao, W.; Yang, Q.; Huang, M.; Guo, T.; Liu, Y.; Wang, J.; Yang, G.; Zhou, J.; Yang, J.; Zhu, X.; et al. Improvement of rice blast resistance by developing monogenic lines, two-gene pyramids and three-gene pyramid through MAS. Rice 2019, 12, 78. [Google Scholar] [CrossRef]
- Quiñones, K.J.O.; Gentallan, R.P.; Timog, E.B.S.; Cruz, J.R.A.V.; Macabecha, C.G.A.; Papa, I.A.; Coronado, N.B.; Bartolome, M.C.B.; Ceribo, D.B.; Madayag, R.E.; et al. Liquid-nitrogen-free CTAB DNA extraction method from silica-dried specimens for next-generation sequencing and assembly. MethodsX 2024, 12, 102758. [Google Scholar] [CrossRef]
- Yang, C.; A, X.; Tang, C.; Dong, C.; Zhang, F.; He, C.; Sun, Y.; Yang, Y.; Yan, S.; Liu, Y.; et al. A TFAIII-Type Transcription Factor OsZFPH Regulating a Signaling Pathway Confers Resistance to Xanthomonas oryzae pv. Oryzae in Rice. Genes 2025, 16, 240. [Google Scholar] [CrossRef]
Number of F2 Populations | Genotype Xa21+−/Xa23++ | Genotype Xa21++/Xa23+− | Recombination Frequency (%) |
---|---|---|---|
624 | 3 | 2 | 0.84 |
Agronomic Trait | Variation Coefficient (CV) |
---|---|
Plant height (cm) | 2.244 |
Panicles/plant | 5.908 |
Panicle length (cm) | 3.553 |
Panicle weight (g) | 7.778 |
No. of grains/panicle | 2.952 |
Seed-setting rate (%) | 3.014 |
1000-seed weight (g) | 3.199 |
Single plant yield (g) | 7.471 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Fan, Y.; You, Y.; Wang, P.; Ling, Y.; Yin, H.; Chen, Y.; Zhou, H.; Luo, M.; Cao, B.; et al. Efficient Marker-Assisted Pyramiding of Xa21 and Xa23 Genes into Elite Rice Restorer Lines Confers Broad-Spectrum Resistance to Bacterial Blight. Plants 2025, 14, 2107. https://doi.org/10.3390/plants14142107
Li Y, Fan Y, You Y, Wang P, Ling Y, Yin H, Chen Y, Zhou H, Luo M, Cao B, et al. Efficient Marker-Assisted Pyramiding of Xa21 and Xa23 Genes into Elite Rice Restorer Lines Confers Broad-Spectrum Resistance to Bacterial Blight. Plants. 2025; 14(14):2107. https://doi.org/10.3390/plants14142107
Chicago/Turabian StyleLi, Yao, Yulong Fan, Yihang You, Ping Wang, Yuxuan Ling, Han Yin, Yinhua Chen, Hua Zhou, Mingrui Luo, Bing Cao, and et al. 2025. "Efficient Marker-Assisted Pyramiding of Xa21 and Xa23 Genes into Elite Rice Restorer Lines Confers Broad-Spectrum Resistance to Bacterial Blight" Plants 14, no. 14: 2107. https://doi.org/10.3390/plants14142107
APA StyleLi, Y., Fan, Y., You, Y., Wang, P., Ling, Y., Yin, H., Chen, Y., Zhou, H., Luo, M., Cao, B., & Xia, Z. (2025). Efficient Marker-Assisted Pyramiding of Xa21 and Xa23 Genes into Elite Rice Restorer Lines Confers Broad-Spectrum Resistance to Bacterial Blight. Plants, 14(14), 2107. https://doi.org/10.3390/plants14142107