Genome-Wide Association Study of Immune Indices in Yaks
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Determination of Immune Indicators
2.3. Genotyping and Quality Control
2.4. Population Genetic Analysis
2.5. Genome-Wide Association Analysis (GWAS)
2.6. Gene Annotation and Enrichment Analysis
3. Results
3.1. Descriptive Statistics for Immune Indicators
3.2. Whole-Genome Sequencing Data
3.3. Population Genetic Diversity Analysis
3.4. Genome-Wide Association Analysis of Immune Indicators
3.5. Functional Enrichment Analysis of Candidate Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, M.; Zhao, H.; Tang, X.; Zhao, W.; Yi, X.; Li, Q.; Sun, X. Organization and Complexity of the Yak (Bos grunniens) Immunoglobulin Loci. Front. Immunol. 2022, 13, 876509. [Google Scholar] [CrossRef] [PubMed]
- Santosa, E.K.; Sun, J.C. Cardinal features of immune memory in innate lymphocytes. Nat. Immunol. 2023, 24, 1803–1812. [Google Scholar] [CrossRef] [PubMed]
- Bray, C.; Bell, L.N.; Liang, H.; Haykal, R.; Kaiksow, F.; Mazza, J.J.; Yale, S.H. Erythrocyte Sedimentation Rate and C-reactive Protein Measurements and Their Relevance in Clinical Medicine. WMJ 2016, 115, 317–321. [Google Scholar] [PubMed]
- Liu, C.; Chu, D.; Kalantar-Zadeh, K.; George, J.; Young, H.A.; Liu, G. Cytokines: From Clinical Significance to Quantification. Adv. Sci. 2021, 8, 2004433. [Google Scholar] [CrossRef] [PubMed]
- Xavier, R.J.; Rioux, J.D. Genome-wide association studies: A new window into immune-mediated diseases. Nat. Rev. Immunol. 2008, 8, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Parkes, M.; Cortes, A.; van Heel, D.A.; Brown, M.A. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat. Rev. Genet. 2013, 14, 661–673. [Google Scholar] [CrossRef] [PubMed]
- ter Horst, R.; Jaeger, M.; van de Wijer, L.; van der Heijden, W.A.; Janssen, A.M.W.; Smeekens, S.P.; Brouwer, M.A.E.; van Cranenbroek, B.; Aguirre-Gamboa, R.; Netea-Maier, R.T.; et al. Seasonal and Nonseasonal Longitudinal Variation of Immune Function. J. Immunol. 2021, 207, 696–708. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, R.M.; Giovinazzo, S.; Barbalace, M.C.; Cristani, M.; Alibrandi, A.; Vicchio, T.M.; Giuffrida, G.; Aguennouz, M.H.; Malaguti, M.; Angeloni, C.; et al. Influence of Dietary Habits on Oxidative Stress Markers in Hashimoto’s Thyroiditis. Thyroid 2021, 31, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Krawinkel, M.B. Interaction of Nutrition and Infections Globally: An Overview. Ann. Nutr. Metab. 2013, 61, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Giefing-Kröll, C.; Berger, P.; Lepperdinger, G.; Grubeck-Loebenstein, B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell 2015, 14, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tibbs-Cortes, L.E.; Ashley, C.; Putz, A.M.; Lim, K.-S.; Dyck, M.K.; Fortin, F.; Plastow, G.S.; Dekkers, J.C.M.; Harding, J.C.S.; et al. The genetic basis of natural antibody titers of young healthy pigs and relationships with disease resilience. BMC Genom. 2020, 21, 648. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Ke, C.; Liu, L.; Gao, Y.; Xu, L.; Han, B.; Zhao, Y.; Zhang, S.; Sun, D. Genome-wide association studies for immunoglobulin concentrations in colostrum and serum in Chinese Holstein. BMC Genom. 2022, 23, 41. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, P.; Liu, R.; Zheng, M.; Sun, Y.; Wu, D.; Hu, Y.; Wen, J.; Zhao, G. The Identification of Loci for Immune Traits in Chickens Using a Genome-Wide Association Study. PLoS ONE 2015, 10, e0117269. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, W.; Lenstra, J.A.; Zheng, Z.; Wu, X.; Yang, J.; Li, B.; Yang, Y.; Qiu, Q.; Liu, H.; et al. Evolutionary origin of genomic structural variations in domestic yaks. Nat. Commun. 2023, 14, 5617. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wang, S.; Wang, Y.-F.; Li, S.; Wu, S.-X.; Yan, R.-G.; Zhang, Y.-W.; Wan, R.-D.; He, Z.; Song, R.-D.; et al. Long read genome assemblies complemented by single cell RNA-sequencing reveal genetic and cellular mechanisms underlying the adaptive evolution of yak. Nat. Commun. 2022, 13, 4887. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Zhang, G.; Ma, T.; Qian, W.; Wang, J.; Ye, Z.; Cao, C.; Hu, Q.; Kim, J.; Larkin, D.M.; et al. The yak genome and adaptation to life at high altitude. Nat. Genet. 2012, 44, 946–949. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Wang, L.; Wang, K.; Yang, Y.; Ma, T.; Wang, Z.; Zhang, X.; Ni, Z.; Hou, F.; Long, R.; et al. Yak whole-genome resequencing reveals domestication signatures and prehistoric population expansions. Nat. Commun. 2015, 6, 10283. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zeng, Z.; Li, K.; Rehman, M.U.; Nawaz, S.; Kulyar, M.F.-A.; Hu, M.; Zhang, W.; Zhang, Z.; An, M.; et al. Detection of Culex tritaeniorhynchus Giles and Novel Recombinant Strain of Lumpy Skin Disease Virus Causes High Mortality in Yaks. Viruses 2023, 15, 880. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.B.M.; Pabbineedi, S.M.; Nagaraj, S.; Bijalwan, S.; Tadakod, S.; Bhutia, Z.; Palmu, D.; Rai, S.; Bhutia, P.D.; Bhutia, P.T.; et al. Lumpy Skin Disease (LSD) in Yak (Bos grunniens): An Evidence of Species Spillover from Cattle in India. Microorganisms 2023, 11, 2823. [Google Scholar] [CrossRef] [PubMed]
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial resistance: A global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 2017, 57, 2857–2876. [Google Scholar] [CrossRef] [PubMed]
- Scott, H.M.; Acuff, G.; Bergeron, G.; Bourassa, M.W.; Gill, J.; Graham, D.W.; Kahn, L.H.; Morley, P.S.; Salois, M.J.; Simjee, S.; et al. Critically important antibiotics: Criteria and approaches for measuring and reducing their use in food animal agriculture. Ann. N. Y. Acad. Sci. 2019, 1441, 8–16. [Google Scholar] [CrossRef]
- Li, B.; Zhang, L.; Wang, L.; Wei, Y.; Guan, J.; Mei, Q.; Hao, N. Antimicrobial activity of yak beta-defensin 116 against Staphylococcus aureus and its role in gut homeostasis. Int. J. Biol. Macromol. 2023, 253, 126761. [Google Scholar] [CrossRef] [PubMed]
- Knap, P.W.; Doeschl-Wilson, A. Why breed disease-resilient livestock, and how? Genet. Sel. Evol. 2020, 52, 60. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, Y.; Shi, C.; Huang, Z.; Zhang, Y.; Li, S.; Li, Y.; Ye, J.; Yu, C.; Li, Z.; et al. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 2018, 7, gix120. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Okonechnikov, K.; Conesa, A.; García-Alcalde, F. Qualimap 2: Advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 2016, 32, 292–294. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015, 4. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A Tool for Genome-wide Complex Trait Analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Dong, S.-S.; Xu, J.-Y.; He, W.-M.; Yang, T.-L. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 2019, 35, 1786–1788. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Zhang, H.; Tang, Z.; Xu, J.; Yin, D.; Zhang, Z.; Yuan, X.; Zhu, M.; Zhao, S.; Li, X.; et al. rMVP: A Memory-efficient, Visualization-enhanced, and Parallel-accelerated Tool for Genome-wide Association Study. Genom. Proteom. Bioinform. 2021, 19, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Liu, X. Development of an Algorithm for Optimizing Genome-wide Association Analysis by Alternately Applying Fixed Effect and Random Effect Models. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2016. Available online: https://kns.cnki.net/kcms2/article/abstract?v=v1PGZ9hyqdtGZSAZE-hN4Q8jRWxrlRCdLYXpCbY7g3o-LhL9Q3_zdtAm7vGCRl9u-GbIkrXrrDjM_vBde9nk_dwZC9oSzIme7XJ543dGkQPK3vXuY3-dLYp5cZ3H1uEB66YzYCtbK016PVEwDC-snHJux8ZxKeRjDryJlSD1PyBIxvy1pyE9BACJSiSyiTgjx_YM7np9bCI=&uniplatform=NZKPT&language=CHS (accessed on 14 March 2025).
- Zhang, W.; Li, J.; Guo, Y.; Zhang, L.; Xu, L.; Gao, X.; Zhu, B.; Gao, H.; Ni, H.; Chen, Y. Multi-strategy genome-wide association studies identify the DCAF16-NCAPG region as a susceptibility locus for average daily gain in cattle. Sci. Rep. 2016, 6, 38073. [Google Scholar] [CrossRef] [PubMed]
- Jian, H.; Poetsch, A. CASZ1: Current Implications in Cardiovascular Diseases and Cancers. Biomedicines 2023, 11, 2079. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, B.A.; Duque, M.; Gírio, A.; Fragoso, R.; Oliveira, M.L.; Allen, J.R.; Martins, L.R.; Correia, N.C.; Silveira, A.B.; Veloso, A.; et al. CASZ1 upregulates PI3K-AKT-mTOR signaling and promotes T-cell acute lymphoblastic leukemia. Haematologica 2024, 109, 1713–1725. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yang, X.; Li, Z.; McMahon, C.; Sizer, C.; Barenboim-Stapleton, L.; Bliskovsky, V.; Mock, B.; Ried, T.; London, W.B.; et al. CASZ1, a candidate tumor-suppressor gene, suppresses neuroblastoma tumor growth through reprogramming gene expression. Cell Death Differ. 2011, 18, 1174–1183. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-L.; Yang, M.; Xiao, S.; Sun, B.; Li, Y.-M.; Yang, L.-Y. Downregulation of castor zinc finger 1 predicts poor prognosis and facilitates hepatocellular carcinoma progression via MAPK/ERK signaling. J. Exp. Clin. Cancer Res. 2018, 37, 45. [Google Scholar] [CrossRef] [PubMed]
- Droll, S.H.; Zhang, B.J.; Levine, M.C.; Xue, C.; Ho, P.J.; Bao, X. CASZ1 Is Essential for Skin Epidermal Terminal Differentiation. J. Investig. Dermatol. 2024, 144, 2029–2038. [Google Scholar] [CrossRef] [PubMed]
- Tinsley, E.; Bredin, P.; Toomey, S.; Hennessy, B.T.; Furney, S.J. KMT2C and KMT2D aberrations in breast cancer. Trends Cancer 2024, 10, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Xie, Y.; Cai, L.; Wang, M.; Chen, Z.; Wang, Z.; Xv, J.; Wang, Y.; Li, R.; Liu, X.; et al. Pan-cancer analysis on the role of KMT2C expression in tumor progression and immunotherapy. Oncol. Lett. 2024, 28, 444. [Google Scholar] [CrossRef] [PubMed]
- Brauer, B.; Merino-Veliz, N.; Ahumada-Marchant, C.; Arriagada, G.; Bustos, F.J. KMT2C knockout generates ASD-like behaviors in mice. Front. Cell Dev. Biol. 2023, 11, 1227723. [Google Scholar] [CrossRef] [PubMed]
- Siano, M.A.; De Maggio, I.; Petillo, R.; Cocciadiferro, D.; Agolini, E.; Majolo, M.; Novelli, A.; Della Monica, M.; Piscopo, C. De Novo Mutation in KMT2C Manifesting as Kleefstra Syndrome 2: Case Report and Literature Review. Pediatr. Rep. 2022, 14, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhen, Y.; Yin, X.; Yang, Z.; Li, X.; Wang, R.; Wen, H.; Zhong, H.; Yan, J.; Sun, Q. KMT2C Induced by FABP5P3 Aggravates Keratinocyte Hyperproliferation and Psoriasiform Skin Inflammation by Upregulating the Transcription of PIK3R3. J. Investig. Dermatol. 2023, 143, 37–47.e8. [Google Scholar] [CrossRef] [PubMed]
- Pearce, L.R.; Komander, D.; Alessi, D.R. The nuts and bolts of AGC protein kinases. Nat. Rev. Mol. Cell Biol. 2010, 11, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Briggs, K.; Wang, L.; Nagashima, K.; Zengel, J.; Tripp, R.A.; He, B. Regulation of Mumps Virus Replication and Transcription by Kinase RPS6KB1. J. Virol. 2020, 94, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.F.; Zhao, M.Y.; Chai, L.; Kukuruga, D.; Tan, M.; Stass, S.A. Amplified RPS6KB1 and CDC2 genes are potential biomarkers for aggressive HIV+/EBV+ diffuse large B-cell lymphomas. Int. J. Clin. Exp. Pathol. 2013, 6, 148. [Google Scholar] [PubMed]
- Slattery, M.L.; Lundgreen, A.; Herrick, J.S.; Wolff, R.K. Genetic variation in RPS6KA1, RPS6KA2, RPS6KB1, RPS6KB2, and PDK1 and risk of colon or rectal cancer. Mutat. Res. 2010, 706, 13. [Google Scholar] [CrossRef] [PubMed]
- Abdollah Zadeh, R.; Jalilian, N.; Sahraian, M.A.; Kasraian, Z.; Noori-Daloii, M.R. Polymorphisms of RPS6KB1 and CD86 associates with susceptibility to multiple sclerosis in Iranian population. Neurol. Res. 2017, 39, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Herndon, M.E.; Lawler, J. The cell biology of thrombospondin-1. Matrix Biol. 2000, 19, 597–614. [Google Scholar] [CrossRef] [PubMed]
- Elbitar, S.; Renard, M.; Arnaud, P.; Hanna, N.; Jacob, M.-P.; Guo, D.-C.; Tsutsui, K.; Gross, M.-S.; Kessler, K.; Tosolini, L.; et al. Pathogenic variants in THSD4, encoding the ADAMTS-like 6 protein, predispose to inherited thoracic aortic aneurysm. Genet. Med. 2021, 23, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Huang, Z.; Chen, H.-N.; Qin, S.; Chen, Y.; Jiang, J.; Zhang, Z.; Luo, M.; Ye, Q.; Xie, N.; et al. ZNF37A promotes tumor metastasis through transcriptional control of THSD4/TGF-β axis in colorectal cancer. Oncogene 2021, 40, 3394–3407. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Fan, T.; Xiao, C.; Tian, H.; Zheng, Y.; Li, C.; He, J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct. Target. Ther. 2024, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Zi, Z. Molecular Engineering of the TGF-β Signaling Pathway. J. Mol. Biol. 2019, 431, 2644–2654. [Google Scholar] [CrossRef] [PubMed]
- Hata, A.; Chen, Y.-G. TGF-β Signaling from Receptors to Smads. Cold Spring Harb. Perspect. Biol. 2016, 8, a022061. [Google Scholar] [CrossRef] [PubMed]
Trait | Mean | Max | Min | SE | CV (%) |
---|---|---|---|---|---|
IgA (μg/mL) | 1153.06 | 1669.74 | 831.48 | 11.97 | 14.23 |
IgG (mg/mL) | 2.32 | 3.68 | 0.49 | 0.04 | 22.35 |
IgM (μg/mL) | 2117.54 | 2930.52 | 1445.36 | 18.75 | 12.17 |
CRP (mg/L) | 13.55 | 18.90 | 7.30 | 0.14 | 14.03 |
HP (ng/mL) | 400.76 | 550.96 | 233.94 | 3.91 | 13.38 |
IL2 (pg/mL) | 310.08 | 438.41 | 159.40 | 3.81 | 16.92 |
IL4 (pg/mL) | 67.60 | 100.10 | 25.77 | 1.08 | 22.06 |
IL6 (pg/mL) | 431.89 | 628.51 | 231.68 | 4.70 | 14.93 |
IFN-γ (pg/mL) | 1744.09 | 2348.44 | 1193.47 | 15.68 | 12.32 |
TNF-α (pg/mL) | 81.23 | 117.10 | 53.95 | 0.84 | 14.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, D.; Ma, X.; Huang, C.; Wang, T.; Zhang, M.; Feng, F.; Wu, X.; La, Y.; Guo, X.; Yan, P.; et al. Genome-Wide Association Study of Immune Indices in Yaks. Animals 2025, 15, 2114. https://doi.org/10.3390/ani15142114
Yu D, Ma X, Huang C, Wang T, Zhang M, Feng F, Wu X, La Y, Guo X, Yan P, et al. Genome-Wide Association Study of Immune Indices in Yaks. Animals. 2025; 15(14):2114. https://doi.org/10.3390/ani15142114
Chicago/Turabian StyleYu, Daoning, Xiaoming Ma, Chun Huang, Tong Wang, Mengfan Zhang, Fen Feng, Xiaoyun Wu, Yongfu La, Xian Guo, Ping Yan, and et al. 2025. "Genome-Wide Association Study of Immune Indices in Yaks" Animals 15, no. 14: 2114. https://doi.org/10.3390/ani15142114
APA StyleYu, D., Ma, X., Huang, C., Wang, T., Zhang, M., Feng, F., Wu, X., La, Y., Guo, X., Yan, P., Zhang, D., & Liang, C. (2025). Genome-Wide Association Study of Immune Indices in Yaks. Animals, 15(14), 2114. https://doi.org/10.3390/ani15142114