Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,696)

Search Parameters:
Keywords = normalized difference indices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2045 KiB  
Article
An Analytical Method for Solar Heat Flux in Spacecraft Thermal Management Under Multidimensional Pointing Attitudes
by Xing Huang, Tinghao Li, Hua Yi, Yupeng Zhou, Feng Xu and Yatao Ren
Energies 2025, 18(15), 3956; https://doi.org/10.3390/en18153956 - 24 Jul 2025
Abstract
In order to provide a theoretical basis for the thermal analysis and management of spacecraft/payload interstellar pointing attitudes, which are used for inter-satellite communication, this paper develops an analytical method for solar heat flux under pointing attitudes. The key to solving solar heat [...] Read more.
In order to provide a theoretical basis for the thermal analysis and management of spacecraft/payload interstellar pointing attitudes, which are used for inter-satellite communication, this paper develops an analytical method for solar heat flux under pointing attitudes. The key to solving solar heat flux is calculating the angle between the sun vector and the normal vector of the object surface. Therefore, a method for calculating the included angle is proposed. Firstly, a coordinate system was constructed based on the pointing attitude. Secondly, the angle between the coordinate axis vector and solar vector variation with a true anomaly was calculated. Finally, the reaching direct solar heat flux was obtained using an analytical method or commercial software. Based on the proposed method, the direct solar heat flux of relay satellites in commonly used lunar orbits, including Halo orbits and highly elliptic orbits, was calculated. Thermal analysis on the payload of interstellar laser communication was also conducted in this paper. The calculated temperatures of each mirror ranged from 16.6 °C to 21.2 °C. The highest temperature of the sensor was 20.9 °C, with a 2.3 °C difference from the in-orbit data. The results indicate that the external heat flux analysis method proposed in this article is realistic and reasonable. Full article
Show Figures

Figure 1

18 pages, 849 KiB  
Article
Antimicrobial Activity of Greek Native Essential Oils Against Escherichia coli O157:H7 and Antibiotic Resistance Strains Harboring pNorm Plasmid, mecA, mcr-1 and blaOXA Genes
by Rafail Fokas, Zoi Anastopoulou and Apostolos Vantarakis
Antibiotics 2025, 14(8), 741; https://doi.org/10.3390/antibiotics14080741 - 24 Jul 2025
Abstract
Background/Objectives: The rapid emergence of antibiotic-resistant Escherichia coli in food and clinical environments necessitates new, clean-label antimicrobials. This study assessed eight Greek native essential oils—oregano, thyme, dittany, rosemary, peppermint, lavender, cistus and helichrysum—for activity against six genetically and phenotypically diverse E. coli strains [...] Read more.
Background/Objectives: The rapid emergence of antibiotic-resistant Escherichia coli in food and clinical environments necessitates new, clean-label antimicrobials. This study assessed eight Greek native essential oils—oregano, thyme, dittany, rosemary, peppermint, lavender, cistus and helichrysum—for activity against six genetically and phenotypically diverse E. coli strains (reference, pNorm, mecA, mcr-1, blaOXA and O157:H7). We aimed to identify oils with broad-spectrum efficacy and clarify the chemical constituents responsible. Methods: Disk-diffusion assays measured inhibition zones at dilutions from 50% to 1.56% (v/v). MIC and MBC values were determined by broth microdilution. GC–MS profiling identified dominant components, and Spearman rank-order correlations (ρ) linked composition to activity. Shapiro–Wilk tests (W = 0.706–0.913, p ≤ 0.002) indicated non-normal data, so strain comparisons used Kruskal–Wallis one-way ANOVA with Dunn’s post hoc and Bonferroni correction. Results: Oregano, thyme and dittany oils—rich in carvacrol and thymol—exhibited the strongest activity, with MIC/MBC ≤ 0.0625% (v/v) against all strains and inhibition zones > 25 mm at 50%. No strain-specific differences were detected (H = 0.30–3.85; p = 0.998–0.571; padj = 1.000). Spearman correlations confirmed that carvacrol and thymol content strongly predicted efficacy (ρ = 0.527–0.881, p < 0.001). Oils dominated by non-phenolic terpenes (rosemary, peppermint, lavender, cistus, helichrysum) showed minimal or no activity. Conclusions: Phenolic-rich EOs maintain potent, strain-independent antimicrobial effects—including against multidrug-resistant and O157:H7 strains—via a multi-target mode that overcomes classical resistance. Their low-dose efficacy and GRAS status support their use as clean-label food preservatives or adjuncts to antibiotics or bacteriophages to combat antimicrobial resistance. Full article
Show Figures

Figure 1

14 pages, 595 KiB  
Review
The Mechanical Properties of Erythrocytes Are Influenced by the Conformational State of Albumin
by Ivana Pajic-Lijakovic, Milan Milivojevic, Gregory Barshtein and Alexander Gural
Cells 2025, 14(15), 1139; https://doi.org/10.3390/cells14151139 - 24 Jul 2025
Abstract
The mechanical stability and deformability of erythrocytes are vital for their function as they traverse capillaries, where shear stress can reach up to 10 Pa under physiological conditions. Human serum albumin (HSA) is known to help maintain erythrocyte stability by influencing cell shape, [...] Read more.
The mechanical stability and deformability of erythrocytes are vital for their function as they traverse capillaries, where shear stress can reach up to 10 Pa under physiological conditions. Human serum albumin (HSA) is known to help maintain erythrocyte stability by influencing cell shape, membrane integrity, and resistance to hemolysis. However, the precise mechanisms by which albumin exerts these effects remain debated, with some studies indicating a stabilizing role and others suggesting the opposite. This review highlights that under high shear rates, albumin molecules may undergo unfolding due to normal stress differences. Such structural changes can significantly alter albumin’s interactions with the erythrocyte membrane, thereby affecting cell mechanical stability. We discuss two potential scenarios explaining how albumin influences erythrocyte mechanics under shear stress, considering both the viscoelastic properties of blood and those of the erythrocyte membrane. Based on theoretical analyses and experimental evidence from the literature, we propose that albumin’s effect on erythrocyte mechanical stability depends on (i) the transition between unfolded and folded states of the protein and (ii) the impact of shear stress on the erythrocyte membrane’s ζ-potential. Understanding these factors is essential for elucidating the complex relationship between albumin and erythrocyte mechanics in physiological and pathological conditions. Full article
(This article belongs to the Special Issue Cell Behavior Under Blood Flow)
Show Figures

Figure 1

21 pages, 3898 KiB  
Article
How Reliable Are the Spectral Vegetation Indices for the Assessment of Tree Condition and Mortality in European Temporal Forests?
by Kinga Kulesza, Paweł Hawryło, Jarosław Socha and Agata Hościło
Remote Sens. 2025, 17(15), 2549; https://doi.org/10.3390/rs17152549 - 23 Jul 2025
Abstract
The continuous monitoring of forest vegetation conditions is of the utmost importance. The commonly used tools for assessing vegetation conditions are the normalized difference vegetation index (NDVI) and its successor—the enhanced vegetation index (EVI). In this study, the NDVI and EVI were coupled [...] Read more.
The continuous monitoring of forest vegetation conditions is of the utmost importance. The commonly used tools for assessing vegetation conditions are the normalized difference vegetation index (NDVI) and its successor—the enhanced vegetation index (EVI). In this study, the NDVI and EVI were coupled with the data on the number of dead trees removed during sanitation felling in an area of 13,780 km2 during the period 2015–2022. In order to determine which satellite-borne index best represents the actual condition of vegetation in forests of the European temperate zone, the classes of the trend in changes in the NDVI and EVI were compared with the respective trends in the volume of dead trees, following the assumption that a positive trend in the spectral index values should be reflected by a negative trend in the volume of dead trees, and vice versa. The analyses were carried out for pixels within the all-species mask in the study area and for pixels representing individual tree species. NDVI is a good predictor of forest vegetation in the European temperate zone and is substantially better than EVI. Spatially, NDVI yields more pixels showing a negative slope for the trend in changes in the spectral index values, while EVI seems to overestimate the number of positive slopes. A larger number of negative slopes in the trend in changes in NDVI seems to agree with the increasing volume of dead trees in the analysed period. Comparing the detected trend class masks for spectral indices and the multi-annual course of dead trees, in 12 out of 16 cases, the slopes of the trend in changes in NDVI agree with the slopes of the trend in the volume of dead trees, while for EVI, this number is reduced to 9. In addition, NDVI reflects the condition of coniferous tree species, Scots pine and Norway spruce, substantially better. Full article
Show Figures

Figure 1

30 pages, 8706 KiB  
Article
An Integrated Risk Assessment of Rockfalls Along Highway Networks in Mountainous Regions: The Case of Guizhou, China
by Jinchen Yang, Zhiwen Xu, Mei Gong, Suhua Zhou and Minghua Huang
Appl. Sci. 2025, 15(15), 8212; https://doi.org/10.3390/app15158212 - 23 Jul 2025
Abstract
Rockfalls, among the most common natural disasters, pose risks such as traffic congestion, casualties, and substantial property damage. Guizhou Province, with China’s fourth-longest highway network, features mountainous terrain prone to frequent rockfall incidents annually. Consequently, assessing highway rockfall risks in Guizhou Province is [...] Read more.
Rockfalls, among the most common natural disasters, pose risks such as traffic congestion, casualties, and substantial property damage. Guizhou Province, with China’s fourth-longest highway network, features mountainous terrain prone to frequent rockfall incidents annually. Consequently, assessing highway rockfall risks in Guizhou Province is crucial for safeguarding the lives and travel of residents. This study evaluates highway rockfall risk through three key components: susceptibility, hazard, and vulnerability. Susceptibility was assessed using information content and logistic regression methods, considering factors such as elevation, slope, normalized difference vegetation index (NDVI), aspect, distance from fault, relief amplitude, lithology, and rock weathering index (RWI). Hazard assessment utilized a fuzzy analytic hierarchy process (AHP), focusing on average annual rainfall and daily maximum rainfall. Socioeconomic factors, including GDP, population density, and land use type, were incorporated to gauge vulnerability. Integration of these assessments via a risk matrix yielded comprehensive highway rockfall risk profiles. Results indicate a predominantly high risk across Guizhou Province, with high-risk zones covering 41.19% of the area. Spatially, the western regions exhibit higher risk levels compared to eastern areas. Notably, the Bijie region features over 70% of its highway mileage categorized as high risk or above. Logistic regression identified distance from fault lines as the most negatively correlated factor affecting highway rockfall susceptibility, whereas elevation gradient demonstrated a minimal influence. This research provides valuable insights for decision-makers in formulating highway rockfall prevention and control strategies. Full article
Show Figures

Figure 1

22 pages, 12767 KiB  
Article
Remote Sensing Evidence of Blue Carbon Stock Increase and Attribution of Its Drivers in Coastal China
by Jie Chen, Yiming Lu, Fangyuan Liu, Guoping Gao and Mengyan Xie
Remote Sens. 2025, 17(15), 2559; https://doi.org/10.3390/rs17152559 - 23 Jul 2025
Abstract
Coastal blue carbon ecosystems (traditional types such as mangroves, salt marshes, and seagrass meadows; emerging types such as tidal flats and mariculture) play pivotal roles in capturing and storing atmospheric carbon dioxide. Reliable assessment of the spatial and temporal variation and the carbon [...] Read more.
Coastal blue carbon ecosystems (traditional types such as mangroves, salt marshes, and seagrass meadows; emerging types such as tidal flats and mariculture) play pivotal roles in capturing and storing atmospheric carbon dioxide. Reliable assessment of the spatial and temporal variation and the carbon storage potential holds immense promise for mitigating climate change. Although previous field surveys and regional assessments have improved the understanding of individual habitats, most studies remain site-specific and short-term; comprehensive, multi-decadal assessments that integrate all major coastal blue carbon systems at the national scale are still scarce for China. In this study, we integrated 30 m Landsat imagery (1992–2022), processed on Google Earth Engine with a random forest classifier; province-specific, literature-derived carbon density data with quantified uncertainty (mean ± standard deviation); and the InVEST model to track coastal China’s mangroves, salt marshes, tidal flats, and mariculture to quantify their associated carbon stocks. Then the GeoDetector was applied to distinguish the natural and anthropogenic drivers of carbon stock change. Results showed rapid and divergent land use change over the past three decades, with mariculture expanded by 44%, becoming the dominant blue carbon land use; whereas tidal flats declined by 39%, mangroves and salt marshes exhibited fluctuating upward trends. National blue carbon stock rose markedly from 74 Mt C in 1992 to 194 Mt C in 2022, with Liaoning, Shandong, and Fujian holding the largest provincial stock; Jiangsu and Guangdong showed higher increasing trends. The Normalized Difference Vegetation Index (NDVI) was the primary driver of spatial variability in carbon stock change (q = 0.63), followed by precipitation and temperature. Synergistic interactions were also detected, e.g., NDVI and precipitation, enhancing the effects beyond those of single factors, which indicates that a wetter climate may boost NDVI’s carbon sequestration. These findings highlight the urgency of strengthening ecological red lines, scaling climate-smart restoration of mangroves and salt marshes, and promoting low-impact mariculture. Our workflow and driver diagnostics provide a transferable template for blue carbon monitoring and evidence-based coastal management frameworks. Full article
Show Figures

Figure 1

23 pages, 2565 KiB  
Article
Efficacy and Safety of 5-Aminolevulinic Acid Hydrochloride Combined with Sodium Ferrous Citrate in Pediatric Patients with Leigh Syndrome and Central Nervous System Disorders: An Initial Exploratory Trial with a Double-Blind Placebo-Controlled Period, Followed by an Open-Label Period and a Subsequent Long-Term Administration Study
by Yuichi Abe, Toshimitsu Hamasaki, Jun Natsume, Yukiko Mogami, Kei Murayama, Hideaki Shiraishi, Yuki Abe, Satoko Kumada, Ryuta Tanaka, Kenji Ihara, Takafumi Sakakibara, Yasushi Okazaki, Hitoshi Nakagawa, Kiwamu Takahashi, Mitsugu Yamauchi, Motowo Nakajima and Akira Ohtake
Life 2025, 15(8), 1168; https://doi.org/10.3390/life15081168 - 23 Jul 2025
Abstract
An explorative study was conducted to evaluate the efficacy and safety of 5-aminolevulinic acid hydrochloride combined with sodium ferrous citrate (SPP-004) in 10 pediatric patients with Leigh syndrome (LS) aged 3–24 months in 10 institutions between December 2014 and July 2019. The patients [...] Read more.
An explorative study was conducted to evaluate the efficacy and safety of 5-aminolevulinic acid hydrochloride combined with sodium ferrous citrate (SPP-004) in 10 pediatric patients with Leigh syndrome (LS) aged 3–24 months in 10 institutions between December 2014 and July 2019. The patients were randomized and allocated to the SPP-004 or placebo group for a 12-week double-blind period, followed by a 12-week open-label period with SPP-004 and then a long-term study of up to 180 weeks. The efficacy and safety were evaluated using the Newcastle Pediatric Mitochondrial Disease Scale (NPMDS) and adverse events (AEs), respectively. No significant differences were found between groups in NPMDS scores, but prolonged SPP-004 treatment stabilized or improved scores. During the initial double-blind phase, the serum lactate levels increased in the placebo group but not in the SPP-004 group. Over the period of prolonged treatment with SPP-004, the average serum lactate level gradually decreased to a normal level. One patient died due to heart failure, presumably due to an underlying disease. Overall, 7 out of 10 patients received SPP-004 without developing severe AEs until the termination of the long-term study. Given the severe symptoms and poor prognosis of pediatric LS, NPMDS scores were indicative of stabilization in pediatric LS patients treated with SPP-004. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

17 pages, 4216 KiB  
Article
Sugarcane Phenology Retrieval in Heterogeneous Agricultural Landscapes Based on Spatiotemporal Fusion Remote Sensing Data
by Yingpin Yang, Zhifeng Wu, Dakang Wang, Cong Wang, Xiankun Yang, Yibo Wang, Jinnian Wang, Qiting Huang, Lu Hou, Zongbin Wang and Xu Chang
Agriculture 2025, 15(15), 1578; https://doi.org/10.3390/agriculture15151578 - 23 Jul 2025
Abstract
Accurate phenological information on sugarcane is crucial for guiding precise cultivation management and enhancing sugar production. Remote sensing offers an efficient approach for large-scale phenology retrieval, but most studies have primarily focused on staple crops. The methods for retrieving the sugarcane phenology—the germination, [...] Read more.
Accurate phenological information on sugarcane is crucial for guiding precise cultivation management and enhancing sugar production. Remote sensing offers an efficient approach for large-scale phenology retrieval, but most studies have primarily focused on staple crops. The methods for retrieving the sugarcane phenology—the germination, tillering, elongation, and maturity stages—remain underexplored. This study addresses the challenge of accurately monitoring the sugarcane phenology in complex terrains by proposing an optimized strategy integrating spatiotemporal fusion data. Ground-based validation showed that the change detection method based on the Double-Logistic curve significantly outperformed the threshold-based approach, with the highest accuracy for the elongation and maturity stages achieved at the maximum slope points of the ascending and descending phases, respectively. For the germination and tillering stages with low canopy cover, a novel time-windowed change detection method was introduced, using the first local maximum of the third derivative curve (denoted as Point A) to establish a temporal buffer. The optimal retrieval models were identified as 25 days before and 20 days after Point A for germination and tillering, respectively. Among the six commonly used vegetation indices, the NDVI (normalized difference vegetation index) performed the best across all the phenological stages. Spatiotemporal fusion using the ESTARFM (Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) significantly improved the monitoring accuracy in heterogeneous agricultural landscapes, reducing the RMSE (root-mean-squared error) by 21–46%, with retrieval errors decreasing from 18.25 to 12.97 days for germination, from 8.19 to 4.41 days for tillering, from 19.17 to 10.78 days for elongation, and from 19.02 to 15.04 days for maturity, highlighting its superior accuracy. The findings provide a reliable technical solution for precision sugarcane management in heterogeneous landscapes. Full article
Show Figures

Figure 1

29 pages, 8280 KiB  
Article
Constructing an Ecological Spatial Network Optimization Framework from the Pattern–Process–Function Perspective: A Case Study in Wuhan
by An Tong, Yan Zhou, Tao Chen and Zihan Qu
Remote Sens. 2025, 17(15), 2548; https://doi.org/10.3390/rs17152548 - 22 Jul 2025
Abstract
Under the continuous disturbance of ecosystems driven by urbanization, landscape fragmentation and the disruption of ecological processes and functions are key challenges in optimizing ecological networks (EN). This study aims to examine the spatiotemporal evolution of topological patterns, ecological processes, and ecosystem services [...] Read more.
Under the continuous disturbance of ecosystems driven by urbanization, landscape fragmentation and the disruption of ecological processes and functions are key challenges in optimizing ecological networks (EN). This study aims to examine the spatiotemporal evolution of topological patterns, ecological processes, and ecosystem services (ES) in Wuhan from the “pattern–process–function” perspective. To overcome the lag in research concerning the coupling of ecological processes, functions, and spatial patterns, we explore the long-term dynamic evolution of ecosystem structure, process, and function by integrating multi-source data, including remote sensing, enabling comprehensive spatiotemporal analysis from 2000 to 2020. Addressing limitations in current EN optimization approaches, we integrate morphological spatial pattern analysis (MSPA), use circuit theory to identify EN components, and conduct spatial optimization accurately. We further assess the effectiveness of two scenario types: “pattern–function” and “pattern–process”. The results reveal a distinct “increase-then-decrease” trend in EN structural attributes: from 2000 to 2020, source areas declined from 39 (900 km2) to 37 (725 km2), while corridor numbers fluctuated before stabilizing at 89. Ecological processes and functions exhibited phased fluctuations. Among water-related indicators, water conservation (as a core function), and modified normalized difference water index (MNDWI, as a key process) predominantly drive positive correlations under the “pattern–function” and “pattern–process” scenarios, respectively. The “pattern–function” scenario strengthens core area connectivity (24% and 4% slower degradation under targeted/random attacks, respectively), enhancing resistance to general disturbances, whereas the “pattern–process” scenario increases redundancy in edge transition zones (21% slower degradation under targeted attacks), improving resilience to targeted disruptions. This complementary design results in a gradient EN structure characterized by core stability and peripheral resilience. This study pioneers an EN optimization framework that systematically integrates identification, assessment, optimization, and validation into a closed-loop workflow. Notably, it establishes a quantifiable, multi-objective decision basis for EN optimization, offering transferable guidance for green infrastructure planning and ecological restoration from a pattern–process–function perspective. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Landscape Ecology)
Show Figures

Figure 1

12 pages, 961 KiB  
Article
Changes in the Position of Anatomical Points, Cranio-Cervical Posture, and Nasopharyngeal Airspace Dimensions in Complete Denture Wearers—A Cephalometric Pilot Study
by Andrea Maria Chisnoiu, Mihaela Hedeșiu, Oana Chira, Iris Bara, Simona Iacob, Andreea Kui, Smaranda Buduru, Mihaela Păstrav, Mirela Fluerașu and Radu Chisnoiu
Dent. J. 2025, 13(8), 335; https://doi.org/10.3390/dj13080335 - 22 Jul 2025
Abstract
Objectives: The objective of this study was to evaluate changes in anatomical point position, cranio-cervical posture, and respiratory dimensions following conventional bimaxillary total prosthetic rehabilitation. Methods: A prospective, longitudinal, observational, analytical study was conducted on 12 patients, aged 55 to 75 years, [...] Read more.
Objectives: The objective of this study was to evaluate changes in anatomical point position, cranio-cervical posture, and respiratory dimensions following conventional bimaxillary total prosthetic rehabilitation. Methods: A prospective, longitudinal, observational, analytical study was conducted on 12 patients, aged 55 to 75 years, at the Department of Dental Prosthetics at the University of Medicine and Pharmacy in Cluj-Napoca. All patients had complete bimaxillary edentulism and received removable dentures as treatment. Clinical and cephalometric analyses were performed before and after prosthetic treatment to compare changes. The cephalometric analysis was based on the guidelines of Tweed and Rocabado for evaluation. Quantitative data were described using the mean and standard deviation for normal distribution and represented by bar graphs with error bars. A paired samples t-test was used to determine differences between groups, with a significance threshold of 0.05 for the bilateral p-value. Results: When analyzing changes in cranial base inclination, the corresponding angles exhibited an increase, indicating cephalic extension. A statistically significant difference in the anteroposterior diameter of the oropharyngeal lumen with and without bimaxillary complete dentures was identified (p < 0.05). For hyperdivergent patients, modifications in the position of anatomical features on cephalometry slightly reduced the VDO and had a slight compensatory effect on skeletal typology. In contrast, for hypodivergent patients, modifications to the position of anatomical landmarks also had a compensatory effect on skeletal typology, increasing the VDO. Conclusion: Changes in the position of anatomical features on cephalometry generally have a compensatory effect on skeletal typology after complete denture placement. Complete prosthetic treatment with removable dentures can significantly influence respiratory function by reducing the oropharyngeal lumen and body posture by cephalic extension and attenuation of the lordotic curvature of the cervical spine. Full article
(This article belongs to the Special Issue Women's Research in Dentistry)
Show Figures

Figure 1

21 pages, 17488 KiB  
Article
Mechanistic Study on the Inhibitory Effect of Dandelion Extract on Breast Cancer Cell Proliferation and Its Induction of Apoptosis
by Weifeng Mou, Ping Zhang, Yu Cui, Doudou Yang, Guanjie Zhao, Haijun Xu, Dandan Zhang and Yinku Liang
Biology 2025, 14(8), 910; https://doi.org/10.3390/biology14080910 - 22 Jul 2025
Viewed by 17
Abstract
This study aimed to investigate the underlying mechanisms by which dandelion extract inhibits the proliferation of breast cancer MDA-MB-231 cells. Dandelion root and leaf extracts were prepared using a heat reflux method and subjected to solvent gradient extraction to obtain fractions with different [...] Read more.
This study aimed to investigate the underlying mechanisms by which dandelion extract inhibits the proliferation of breast cancer MDA-MB-231 cells. Dandelion root and leaf extracts were prepared using a heat reflux method and subjected to solvent gradient extraction to obtain fractions with different polarities. MTT assays revealed that the ethyl acetate fraction exhibited the strongest inhibitory effect on cell proliferation. LC-MS analysis identified 12 potential active compounds, including sesquiterpenes such as Isoalantolactone and Artemisinin, which showed significantly lower toxicity toward normal mammary epithelial MCF-10A cells compared to tumor cells (p < 0.01). Mechanistic studies demonstrated that the extract induced apoptosis in a dose-dependent manner, with an apoptosis rate as high as 85.04%, and significantly arrested the cell cycle at the S and G2/M phases. Label-free quantitative proteomics identified 137 differentially expressed proteins (|FC| > 2, p < 0.05). GO enrichment analysis indicated that these proteins were mainly involved in cell cycle regulation and apoptosis. KEGG pathway analysis revealed that the antitumor effects were primarily mediated through the regulation of PI3K-Akt (hsa04151), JAK-STAT (hsa04630), and PPAR (hsa03320) signaling pathways. Moreover, differential proteins such as PI3K, AKT1S1, SIRT6, JAK1, SCD, STAT3, CASP8, STAT2, STAT6, and PAK1 showed strong correlation with the core components of the EA-2 fraction of dandelion. Molecular docking results demonstrated that these active compounds exhibited strong binding affinities with key target proteins such as PI3K and JAK1 (binding energy < −5.0 kcal/mol). This study elucidates the multi-target, multi-pathway synergistic mechanisms by which dandelion extract inhibits breast cancer, providing a theoretical basis for the development of novel antitumor agents. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Graphical abstract

23 pages, 346 KiB  
Article
Thirst for Change in Water Governance: Overcoming Challenges for Drought Resilience in Southern Europe
by Eleonora Santos
Water 2025, 17(15), 2170; https://doi.org/10.3390/w17152170 - 22 Jul 2025
Viewed by 32
Abstract
This article investigates the institutional and informational foundations of water governance in Southern Europe amid escalating climate stress. Focusing on Portugal, Spain, Italy, and Greece, it develops a multi-level analytical framework to explore how information asymmetries and governance fragmentation undermine coordinated responses to [...] Read more.
This article investigates the institutional and informational foundations of water governance in Southern Europe amid escalating climate stress. Focusing on Portugal, Spain, Italy, and Greece, it develops a multi-level analytical framework to explore how information asymmetries and governance fragmentation undermine coordinated responses to water scarcity. Integrating theories of information economics, polycentric governance, and critical institutionalism, this study applies a stylized economic model and comparative institutional analysis to assess how agents—such as farmers, utilities, regulators, and civil society—respond to varying incentives, data access, and coordination structures. Using secondary data, normalized indicators, and scenario-based simulations, the model identifies three key structural parameters—institutional friction (θi), information cost (βi), and incentive strength (αi)—as levers for governance reform. The simulations are stylized and not empirically calibrated, serving as heuristic tools rather than predictive forecasts. The results show that isolated interventions yield limited improvements, while combined reforms significantly enhance both equity and effectiveness. Climate stress simulations further reveal stark differences in institutional resilience, with Greece and Italy showing systemic fragility and Portugal emerging as comparatively robust. This study contributes a flexible, policy-relevant tool for diagnosing governance capacity and informing reform strategies while also underscoring the need for integrated, equity-oriented approaches to adaptive water governance. Full article
9 pages, 1701 KiB  
Proceeding Paper
Phenological Evaluation in Ravine Forests Through Remote Sensing and Topographic Analysis: Case of Los Nogales Nature Sanctuary, Metropolitan Region of Chile
by Jesica Garrido-Leiva, Leonardo Durán-Gárate, Dylan Craven and Waldo Pérez-Martínez
Eng. Proc. 2025, 94(1), 9; https://doi.org/10.3390/engproc2025094009 - 22 Jul 2025
Viewed by 40
Abstract
Ravine forests are key to conserving biodiversity and maintaining ecosystem processes in fragmented landscapes. Here, we evaluated the phenology of plant species in the Los Nogales Nature Sanctuary (Lo Barnechea, Chile) using Sentinel-2 images (2019–2024) and the Alos Palsar DEM (12.5 m). We [...] Read more.
Ravine forests are key to conserving biodiversity and maintaining ecosystem processes in fragmented landscapes. Here, we evaluated the phenology of plant species in the Los Nogales Nature Sanctuary (Lo Barnechea, Chile) using Sentinel-2 images (2019–2024) and the Alos Palsar DEM (12.5 m). We calculated the Normalized Difference Vegetation Index (NDVI), the Topographic Position Index (TPI), and Diurnal Anisotropic Heat (DAH) to assess vegetation dynamics across different topographic and thermal gradients. Generalized Additive Models (GAM) revealed that tree species exhibited more stable, regular seasonal NDVI trajectories, while shrubs showed moderate fluctuations, and herbaceous species displayed high interannual variability, likely reflecting sensitivity to climatic events. Spatial analysis indicated that trees predominated on steep slopes and higher elevations, herbs were concentrated in low-lying, moisture-retaining areas, and shrubs were more common in areas with higher thermal load. These findings highlight the significant role of terrain and temperature in shaping plant phenology and distribution, underscoring the utility of remote sensing and topographic indices for monitoring ecological processes in complex mountainous environments. Full article
Show Figures

Figure 1

21 pages, 3528 KiB  
Article
Confocal Laser Scanning Microscopy of Light-Independent ROS in Arabidopsis thaliana (L.) Heynh. TROL-FNR Mutants
by Ena Dumančić, Lea Vojta and Hrvoje Fulgosi
Int. J. Mol. Sci. 2025, 26(14), 7000; https://doi.org/10.3390/ijms26147000 - 21 Jul 2025
Viewed by 121
Abstract
Thylakoid rhodanese-like protein (TROL) serves as a thylakoid membrane hinge linking photosynthetic electron transport chain (PETC) complexes to nicotinamide adenine dinucleotide phosphate (NADPH) synthesis. TROL is the docking site for the flavoenzyme ferredoxin-NADP+ oxidoreductase (FNR). Our prior work indicates that the TROL-FNR [...] Read more.
Thylakoid rhodanese-like protein (TROL) serves as a thylakoid membrane hinge linking photosynthetic electron transport chain (PETC) complexes to nicotinamide adenine dinucleotide phosphate (NADPH) synthesis. TROL is the docking site for the flavoenzyme ferredoxin-NADP+ oxidoreductase (FNR). Our prior work indicates that the TROL-FNR complex maintains redox equilibrium in chloroplasts and systemically in plant cells. Improvement in the knowledge of redox regulation mechanisms is critical for engineering stress-tolerant plants in times of elevated global drought intensity. To further test this hypothesis and confirm our previous results, we monitored light-independent ROS propagation in the leaves of Arabidopsis wild type (WT), TROL knock-out (KO), and TROL ΔRHO (RHO-domain deletion mutant) mutant plants in situ by using confocal laser scanning microscopy with specific fluorescent probes for the three different ROS: O2·−, H2O2, and 1O2. Plants were grown under the conditions of normal substrate moisture and under drought stress conditions. Under the drought stress conditions, the TROL KO line showed ≈32% less O2·− while the TROL ΔRHO line showed ≈49% less H2O2 in comparison with the WT. This research confirms the role of dynamical TROL-FNR complex formation in redox equilibrium maintenance by redirecting electrons in alternative sinks under stress and also points it out as promising target for stress-tolerant plant engineering. Full article
(This article belongs to the Special Issue Molecular Insight into Oxidative Stress in Plants)
Show Figures

Figure 1

22 pages, 840 KiB  
Article
Relationship Between Family Support, C-Reactive Protein and Body Mass Index Among Outpatients with Schizophrenia
by Argyro Pachi, Athanasios Tselebis, Evgenia Kavourgia, Nikolaos Soultanis, Dimitrios Kasimis, Christos Sikaras, Spyros Baras and Ioannis Ilias
Healthcare 2025, 13(14), 1754; https://doi.org/10.3390/healthcare13141754 - 20 Jul 2025
Viewed by 264
Abstract
Background/Objectives: Schizophrenia has been associated with increased inflammatory and metabolic disturbances. Perceived family support potentially affects inflammatory and metabolic biomarkers. The aim of this study was to determine the interrelations between family support, C-reactive protein (CRP) and Body Mass Index (BMI) in a [...] Read more.
Background/Objectives: Schizophrenia has been associated with increased inflammatory and metabolic disturbances. Perceived family support potentially affects inflammatory and metabolic biomarkers. The aim of this study was to determine the interrelations between family support, C-reactive protein (CRP) and Body Mass Index (BMI) in a sample of outpatients with schizophrenia. Importantly, this study sought to elucidate the effect of perceived family support on inflammatory processes among patients with schizophrenia. Methods: In this cross-sectional correlation study, 206 outpatients with schizophrenia in clinical remission completed a standardized self-report questionnaire that assessed family support (Family Support Scale—FSS). Sociodemographic, clinical and laboratory data were also recorded. Results: Among the participants, 49.5% had detectable CRP values (≥0.11 mg/dL), whereas 14.6% had positive CRP levels (>0.6 mg/dL). There was a significant difference in CRP levels among the different BMI groups (normal weight/overweight vs. obese). For obese patients, the crude odds ratios (ORs) for detectable and positive CRP values were 1.980 (95% confidence interval (CI) [1.056, 3.713]) and 27.818 (95% CI [6.300, 122.838]), respectively. Significant positive correlations were observed among CRP, BMI and illness duration, while scores on the FSS were negatively associated with these variables. The results of binary logistic regression analysis indicated that both BMI and family support were significant factors in determining the likelihood of having positive CRP levels, with each unit increase in the BMI associated with a 17% (95% CI [0.025, 0.337]) increase in the odds, and with each unit increase in family support leading to an 8.6% (95% CI [0.018, 0.15]) decrease. A moderation analysis revealed that the association between family support and the probability of having positive CRP levels depends on the BMI value, but only for obese patients did the protective effect of family support significantly decrease the magnitude of the risk of having positive CRP (b = −0.1972, SE = 0.053, OR = 0.821, p = 0.000, 95% CI [−0.3010, −0.0934]). Conclusions: The effect of perceived family support on inflammatory responses becomes evident in cases where beyond metabolic complications, inflammatory processes have already been established. Increased perceived family support seems to protect against inflammation and, notably, the association between low perceived family support and increased inflammation is even stronger. Establishing the role of family involvement during the treatment of patients with schizophrenia through inflammatory processes is a novelty of this study, emphasizing the need to incorporate family therapy into psychiatric treatment plans. However, primary interventions are considered necessary for patients with schizophrenia in order to maintain their BMI within normal limits and avoid the subsequent nosological sequelae. Full article
Show Figures

Figure 1

Back to TopTop