Sugarcane Phenology Retrieval in Heterogeneous Agricultural Landscapes Based on Spatiotemporal Fusion Remote Sensing Data
Abstract
1. Introduction
2. Materials
2.1. CMA Observation Data
2.2. Multisource Satellite Data
3. Methods
3.1. ESTARFM Fusion for Generating High-Spatiotemporal-Resolution Time Series Data
3.2. Reconstruction of Multiple Vegetation Index Time Series
3.3. Double-Logistic Function Fitting for Vegetation Index Time Series
3.4. Phenological Metrics Extraction from Vegetation Index Time Series
3.4.1. Change Detection Method
3.4.2. Threshold-Based Method
3.5. Accuracy Assessment
4. Results
4.1. Comparison of Different Strategies for Sugarcane Phenology Retrieval
4.2. Assessment of Multiple Vegetation Indices for Phenology Retrieval
4.3. Evaluation of the Spatiotemporal Fusion for Phenology Retrieval
5. Discussions
- (1)
- Retrieval algorithm scope
- (2)
- Vegetation index selection
- (3)
- Fusion model constraints
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jaiswal, D.; De Souza, A.P.; Larsen, S.; LeBauer, D.S.; Miguez, F.E.; Sparovek, G.; Bollero, G.; Buckeridge, M.S.; Long, S.P. Brazilian sugarcane ethanol as an expandable green alternative to crude oil use. Nat. Clim. Chang. 2017, 7, 788–792. [Google Scholar] [CrossRef]
- Ajala, E.; Ighalo, J.; Ajala, M.; Adeniyi, A.; Ayanshola, A. Sugarcane bagasse: A biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresour. Bioprocess. 2021, 8, 87. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.R.; Yang, L.T. Sugarcane agriculture and sugar industry in China. Sugar Tech 2015, 17, 1–8. [Google Scholar] [CrossRef]
- Lin, H.; Chen, J.; Pei, Z.; Zhang, S.; Hu, X. Monitoring sugarcane growth using ENVISAT ASAR data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2572–2580. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Z.; Pan, B.; Lin, S.; Dong, J.; Li, X.; Yuan, W. Development of a Phenology-Based Method for Identifying Sugarcane Plantation Areas in China Using High-Resolution Satellite Datasets. Remote Sens. 2022, 14, 1274. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Hertel, T.W.; Scherer, M.; Verma, M. Response of corn markets to climate volatility under alternative energy futures. Nat. Clim. Chang. 2012, 2, 514–518. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Y.; Tong, W.; Zhou, W.; Li, J.; Xu, B.; Hu, Q. Mapping crop phenophases in reproductive growth period by satellite solar-induced chlorophyll fluorescence: A case study in mid-temperate zone in China. ISPRS J. Photogramm. Remote Sens. 2023, 205, 191–205. [Google Scholar] [CrossRef]
- De Beurs, K.M.; Henebry, G.M. Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sens. Environ. 2004, 89, 497–509. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Ma, M.; Veroustraete, F. Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China. Adv. Space Res. 2006, 37, 835–840. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Roerink, G.; Menenti, M.; Verhoef, W. Reconstructing cloudfree NDVI composites using Fourier analysis of time series. Int. J. Remote Sens. 2000, 21, 1911–1917. [Google Scholar] [CrossRef]
- Justice, C.O.; Townshend, J.R.G.; Holben, B.N.; Tucker, C.J. Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens. 1985, 6, 1271–1318. [Google Scholar] [CrossRef]
- White, M.A.; Thornton, P.E.; Running, S.W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob. Biogeochem. Cycles 1997, 11, 217–234. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Karnieli, A. Monitoring phenological cycles of desert ecosystems using NDVI and LST data derived from NOAA-AVHRR imagery. Int. J. Remote Sens. 2002, 23, 4055–4071. [Google Scholar] [CrossRef]
- Yu, F.; Price, K.P.; Ellis, J.; Shi, P. Response of seasonal vegetation development to climatic variations in eastern central Asia. Remote Sens. Environ. 2003, 87, 42–54. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- Motohka, T.; Nasahara, K.N.; Oguma, H.; Tsuchida, S. Applicability of green-red vegetation index for remote sensing of vegetation phenology. Remote Sens. 2010, 2, 2369–2387. [Google Scholar] [CrossRef]
- Wu, C.; Gonsamo, A.; Gough, C.M.; Chen, J.M.; Xu, S. Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS. Remote Sens. Environ. 2014, 147, 79–88. [Google Scholar] [CrossRef]
- Verstraete, M.M.; Gobron, N.; Aussedat, O.; Robustelli, M.; Pinty, B.; Widlowski, J.-L.; Taberner, M. An automatic procedure to identify key vegetation phenology events using the JRC-FAPAR products. Adv. Space Res. 2008, 41, 1773–1783. [Google Scholar] [CrossRef]
- Meroni, M.; Verstraete, M.M.; Rembold, F.; Urbano, F.; Kayitakire, F. A phenology-based method to derive biomass production anomalies for food security monitoring in the Horn of Africa. Int. J. Remote Sens. 2014, 35, 2472–2492. [Google Scholar] [CrossRef]
- Kang, S.; Running, S.W.; Lim, J.-H.; Zhao, M.; Park, C.-R.; Loehman, R. A regional phenology model for detecting onset of greenness in temperate mixed forests, Korea: An application of MODIS leaf area index. Remote Sens. Environ. 2003, 86, 232–242. [Google Scholar] [CrossRef]
- Hanes, J.M.; Schwartz, M.D. Modeling land surface phenology in a mixed temperate forest using MODIS measurements of leaf area index and land surface temperature. Theor. Appl. Climatol. 2011, 105, 37–50. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Liu, Q.; Zhong, B.; Wu, S.; Xia, C. Analysis of differences in phenology extracted from the enhanced vegetation index and the leaf area index. Sensors 2017, 17, 1982. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xiao, X.; Liu, L.; Wu, X.; Qin, Y.; Steiner, J.L.; Dong, J. Mapping sugarcane plantation dynamics in Guangxi, China, by time series Sentinel-1, Sentinel-2 and Landsat images. Remote Sens. Environ. 2020, 247, 111951. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Sakamoto, T.; Wardlow, B.D.; Gitelson, A.A.; Verma, S.B.; Suyker, A.E.; Arkebauer, T.J. A Two-Step Filtering approach for detecting maize and soybean phenology with time-series MODIS data. Remote Sens. Environ. 2010, 114, 2146–2159. [Google Scholar] [CrossRef]
- Sakamoto, T.; Wardlow, B.D.; Gitelson, A.A. Detecting spatiotemporal changes of corn developmental stages in the US corn belt using MODIS WDRVI data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1926–1936. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Z.; Chen, Y.; Li, Z.; Tao, F. ChinaCropPhen1km: A high-resolution crop phenological dataset for three staple crops in China during 2000–2015 based on leaf area index (LAI) products. Earth Syst. Sci. Data 2020, 12, 197–214. [Google Scholar] [CrossRef]
- Pan, Z.; Huang, J.; Zhou, Q.; Wang, L.; Cheng, Y.; Zhang, H.; Blackburn, G.A.; Yan, J.; Liu, J. Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 188–197. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.C.; Zhang, X.; Yang, Z.; Alfieri, J.G.; Kustas, W.P.; Mueller, R.; Johnson, D.M.; Prueger, J.H. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sens. Environ. 2017, 188, 9–25. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; Van Leeuwen, W. MODIS vegetation index (MOD13). Algorithm Theor. Basis Doc. 1999, 3, 295–309. [Google Scholar]
- Zhang, X.; Jayavelu, S.; Liu, L.; Friedl, M.A.; Henebry, G.M.; Liu, Y.; Schaaf, C.B.; Richardson, A.D.; Gray, J. Evaluation of land surface phenology from VIIRS data using time series of PhenoCam imagery. Agric. For. Meteorol. 2018, 256, 137–149. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Delbart, N.; Kergoat, L.; Le Toan, T.; Lhermitte, J.; Picard, G. Determination of phenological dates in boreal regions using normalized difference water index. Remote Sens. Environ. 2005, 97, 26–38. [Google Scholar] [CrossRef]
- McNairn, H.; Jiao, X.; Pacheco, A.; Sinha, A.; Tan, W.; Li, Y. Estimating canola phenology using synthetic aperture radar. Remote Sens. Environ. 2018, 219, 196–205. [Google Scholar] [CrossRef]
Phenological Stage | Retrieval Strategy | Category of Method | RMSE (Bias)/Days |
---|---|---|---|
Germination | Point A | Change detection | 30.58 (24.31) |
20 days before Point A | Time-windowed change detection | 14.62 (7.04) | |
25 days before Point A | Time-windowed change detection | 12.97 (2.04) | |
30 days before Point A | Time-windowed change detection | 13.15 (−2.96) | |
5% of the amplitude | Threshold-based | 28.00 (12.70) | |
10% of the amplitude | Threshold-based | 31.58 (22) | |
Tillering | Point A | Change detection | 22.25 (−21.89) |
20 days after Point A | Time-windowed change detection | 4.41 (−1.89) | |
25 days after Point A | Time-windowed change detection | 5.06 (3.11) | |
30 days after Point A | Time-windowed change detection | 9.04 (8.11) | |
20% of the amplitude | Threshold-based | 15.60 (−12.78) | |
30% of the amplitude | Threshold-based | 10.62 (−2.78) | |
Elongation | Point B | Change detection | 10.78 (−3.16) |
50% of the amplitude (ascending) | Threshold-based | 23.47 (8.84) | |
Maturity | Point E | Change detection | 15.04 (7.41) |
50% of the amplitude (descending) | Threshold-based | 18.50 (8.48) |
Vegetation Index | Germination | Tillering | Elongation | Maturity | Total |
---|---|---|---|---|---|
RMSE (Bias)/Days | RMSE (Bias)/Days | RMSE (Bias)/Days | RMSE (Bias)/Days | RMSE (Bias)/Days | |
NDVI | 12.97 (2.04) | 4.41 (−1.89) | 10.78 (−3.16) | 15.04 (7.41) | 12.48 (1.80) |
EVI | 17.71 (2.20) | 11.65 (−6.89) | 16.02 (−7.80) | 17.41 (−4.88) | 16.58 (−3.87) |
EVI2 | 15.58 (1.75) | 11.58 (−7.33) | 13.56 (−6.58) | 17.45 (−4.32) | 15.24 (−3.54) |
SAVI | 15.40 (0.12) | 12.34 (−8.89) | 14.29 (−8.29) | 16.13 (−1.72) | 15.01 (−3.89) |
RVI | 26.99 (18.64) | 24.21 (18.78) | 22.03 (14.45) | 19.34 (−8.70) | 23.11 (9.17) |
GRVI | 35.12 (2.35) | 43.66 (0.78) | 20.05 (2.60) | 26.71 (−2.81) | 30.44 (0.67) |
Dataset | Germination | Tillering | Elongation | Maturity | Total |
---|---|---|---|---|---|
RMSE (Bias)/Days | RMSE (Bias)/Days | RMSE (Bias)/Days | RMSE (Bias)/Days | RMSE (Bias)/Days | |
Fused | 12.97 (2.04) | 4.41 (−1.89) | 10.78 (−3.16) | 15.04 (7.41) | 12.48 (1.80) |
Unfused | 18.25 (4.79) | 8.19 (−0.5) | 19.17 (−3.35) | 19.02 (8.50) | 17.97 (3.17) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Wu, Z.; Wang, D.; Wang, C.; Yang, X.; Wang, Y.; Wang, J.; Huang, Q.; Hou, L.; Wang, Z.; et al. Sugarcane Phenology Retrieval in Heterogeneous Agricultural Landscapes Based on Spatiotemporal Fusion Remote Sensing Data. Agriculture 2025, 15, 1578. https://doi.org/10.3390/agriculture15151578
Yang Y, Wu Z, Wang D, Wang C, Yang X, Wang Y, Wang J, Huang Q, Hou L, Wang Z, et al. Sugarcane Phenology Retrieval in Heterogeneous Agricultural Landscapes Based on Spatiotemporal Fusion Remote Sensing Data. Agriculture. 2025; 15(15):1578. https://doi.org/10.3390/agriculture15151578
Chicago/Turabian StyleYang, Yingpin, Zhifeng Wu, Dakang Wang, Cong Wang, Xiankun Yang, Yibo Wang, Jinnian Wang, Qiting Huang, Lu Hou, Zongbin Wang, and et al. 2025. "Sugarcane Phenology Retrieval in Heterogeneous Agricultural Landscapes Based on Spatiotemporal Fusion Remote Sensing Data" Agriculture 15, no. 15: 1578. https://doi.org/10.3390/agriculture15151578
APA StyleYang, Y., Wu, Z., Wang, D., Wang, C., Yang, X., Wang, Y., Wang, J., Huang, Q., Hou, L., Wang, Z., & Chang, X. (2025). Sugarcane Phenology Retrieval in Heterogeneous Agricultural Landscapes Based on Spatiotemporal Fusion Remote Sensing Data. Agriculture, 15(15), 1578. https://doi.org/10.3390/agriculture15151578