Relationship Between Family Support, C-Reactive Protein and Body Mass Index Among Outpatients with Schizophrenia
Abstract
1. Introduction
2. Subjects and Methods
2.1. Research Design
2.2. Study Participants
2.3. Minimum Sample Size Calculation
2.4. Measurement Tools
2.4.1. BMI
2.4.2. CRP
2.4.3. Family Support Scale (FSS)
2.5. Statistical Analysis
3. Results
3.1. General Characteristics of Participants and Scores on Outcome Variables
3.2. Correlations Among Continuous Variables
3.3. Binary Logistic Regression Analyses
3.4. Moderated Binary Logistic Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khandaker, G.M.; Cousins, L.; Deakin, J.; Lennox, B.R.; Yolken, R.; Jones, P.B. Inflammation and immunity in schizophrenia: Implications for pathophysiology and treatment. Lancet Psychiatry 2015, 2, 258–270. [Google Scholar] [CrossRef] [PubMed]
- Müller, N.; Weidinger, E.; Leitner, B.; Schwarz, M.J. The role of inflammation in schizophrenia. Front. Neurosci. 2015, 9, 372. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.-L.; Bai, W.; Li, X.-H.; Huang, H.; Cui, X.-L.; Cheung, T.; Su, Z.-H.; Yuan, Z.; Ng, C.H.; Xiang, Y.-T. Schizophrenia and Inflammation Research: A Bibliometric Analysis. Front. Immunol. 2022, 13, 907851. [Google Scholar] [CrossRef] [PubMed]
- Fond, G.; Lançon, C.; Auquier, P.; Boyer, L. C-Reactive Protein as a Peripheral Biomarker in Schizophrenia. An Updated Systematic Review. Front. Psychiatry 2018, 9, 392. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Awan, H.A.; Aamir, A.; Diwan, M.N.; de Filippis, R.; Awan, S.; Irfan, M.; Fornaro, M.; Ventriglio, A.; Vellante, F.; et al. Role and Perspectives of Inflammation and C-Reactive Protein (CRP) in Psychosis: An Economic and Widespread Tool for Assessing the Disease. Int. J. Mol. Sci. 2021, 22, 13032. [Google Scholar] [CrossRef] [PubMed]
- Moshage, H.J.; Roelofs, H.M.J.; van Pelt, J.F.; Hazenberg, B.P.C.; van Leeuwen, M.A.; Limburg, P.C.; Aarden, L.A.; Yap, S.H. The effect of interleukin-1, interleukin-6 and its interrelationship on the synthesis of serum amyloid A and C-reactive protein in primary cultures of adult human hepatocytes. Biochem. Biophys. Res. Commun. 1988, 155, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.J.; Culpepper, N.; Rapaport, M.H. C-reactive protein levels in schizophrenia: A review and meta-analysis. Clin. Schizophr. Relat. Psychoses 2014, 7, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, B.S.; Steiner, J.; Bernstein, H.-G.; Dodd, S.; A Pasco, J.; Dean, O.M.; Nardin, P.; Gonçalves, C.-A.; Berk, M. C-reactive protein is increased in schizophrenia but is not altered by antipsychotics: Meta-analysis and implications. Mol. Psychiatry 2015, 21, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Lestra, V.; Romeo, B.; Martelli, C.; Benyamina, A.; Hamdani, N. Could CRP be a differential biomarker of illness stages in schizophrenia? A systematic review and meta-analysis. Schizophr. Res. 2022, 246, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, S.A.; Jones, P.B.; Nordstrom, T.; Timonen, M.; Mäki, P.; Miettunen, J.; Jääskeläinen, E.; Järvelin, M.R.; Stochl, J.; Murray, G.K.; et al. Serum C-reactive protein in adolescence and risk of schizophrenia in adulthood: A prospective birth cohort study. Brain Behav. Immun. 2017, 59, 253–259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Osimo, E.F.; Baxter, L.; Stochl, J.; Perry, B.I.; Metcalf, S.A.; Kunutsor, S.K.; Laukkanen, J.A.; Wium-Andersen, M.K.; Jones, P.B.; Khandaker, G.M. Longitudinal association between CRP levels and risk of psychosis: A meta-analysis of population-based cohort studies. npj Schizophr. 2021, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, F.P.; Borges, M.C.; Horta, B.L.; Bowden, J.; Davey Smith, G. Inflammatory biomarkers and risk of schizophrenia: A 2-sample Mendelian randomization study. JAMA Psychiatry 2017, 74, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Ligthart, S.; Vaez, A.; Vosa, U.; Stathopoulou, M.G.; de Vries, P.S.; Prins, B.P.; Van der Most, P.J.; Tanaka, T.; Naderi, E.; Rose, L.M.; et al. Genome analyses of >200,000 individuals identify 58 loci for chronic inflammation and highlight pathways that link inflammation and complex disorders. Am. J. Hum. Genet. 2018, 103, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Said, S.; Pazoki, R.; Karhunen, V.; Võsa, U.; Ligthart, S.; Bodinier, B.; Koskeridis, F.; Welsh, P.; Alizadeh, B.Z.; Chasman, D.I.; et al. Genetic analysis of over half a million people characterises C-reactive protein loci. Nat. Commun. 2022, 13, 2198. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.M.; Dalman, C.; Wicks, S.; Lee, B.K.; Karlsson, H. Neonatal levels of acute phase proteins and later risk of non-affective psychosis. Transl. Psychiatry 2013, 3, e228. [Google Scholar] [CrossRef] [PubMed]
- Blomström, Å.; Gardner, R.; Dalman, C.; Yolken, R.H.; Karlsson, H. Influence of maternal infections on neonatal acute phase proteins and their interaction in the development of non-affective psychosis. Transl. Psychiatry 2015, 5, e502. [Google Scholar] [CrossRef] [PubMed]
- Ligthart, S. Commentary: CRP and schizophrenia: Cause, consequence or confounding? Int. J. Epidemiol. 2019, 48, 1514–1515. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jacomb, I.; Stanton, C.; Vasudevan, R.; Powell, H.; O’DOnnell, M.; Lenroot, R.; Bruggemann, J.; Balzan, R.; Galletly, C.; Liu, D.; et al. C-Reactive Protein: Higher During Acute Psychotic Episodes and Related to Cortical Thickness in Schizophrenia and Healthy Controls. Front. Immunol. 2018, 9, 2230. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, E.; Fathian, F.; Korken, R.; Steen, V.; Jorgensen, H.; Gjestad, R.; Løberg, E.-M. The serum level of C-reactive protein (CRP) is associated with cognitive performance in acute phase psychosis. BMC Psychiatry 2016, 16, 60. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Pristach, C.; Liu, E.Y.; Freudenreich, O.; Henderson, D.C.; Goff, D.C. Elevated serum levels of C-reactive protein are associated with more severe psychopathology in a subgroup of patients with schizophrenia. Psychiatry Res. 2007, 149, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Orsolini, L.; Sarchione, F.; Vellante, F.; Fornaro, M.; Matarazzo, I.; Martinotti, G.; Valchera, A.; Di Nicola, M.; Carano, A.; Di Giannantonio, M.; et al. Protein-C Reactive as Biomarker Predictor of Schizophrenia Phases of Illness? A Systematic Review. Curr. Neuropharmacol. 2018, 16, 583–606. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Challa, F.; Seifu, D.; Sileshi, M.; Getahun, T.; Geto, Z.; Kassa, D.; Alemayehu, M.; Mesfin, M.; Fekadu, A.; Woldeamanuel, Y. Serum level of high sensitive C-reactive protein and IL - 6 markers in patients with treatment-resistant schizophrenia in Ethiopia: A comparative study. BMC Psychiatry 2021, 21, 428. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fawzi, M.H.; Fawzi, M.M.; Fawzi, M.M.; Said, N.S. C-reactive protein serum level in drug-free male Egyptian patients with schizophrenia. Psychiatry Res. 2011, 190, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, D.H.; Lee, S.; Yantis, J.; Honaker, C.; Braida, N.; Walss-Bass, C. Elevated Serum Levels of High-Sensitivity C-Reactive Proteins Are Associated with Severe Delusional Symptoms in a Subgroup of Patients with Schizophrenia. J. Clin. Psychiatry 2016, 77, 131–132. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rizo, C.; Fernandez-Egea, E.; Oliveira, C.; Justicia, A.; Bernardo, M.; Kirkpatrick, B. Inflammatory markers in antipsychotic-naïve patients with nonaffective psychosis and deficit vs. nondeficit features. Psychiatry Res. 2012, 198, 212–215, Erratum in Psychiatry Res. 2013, 210, 1329. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boozalis, T.; Teixeira, A.L.; Cho, R.Y.-J.; Okusaga, O. C-Reactive Protein Correlates with Negative Symptoms in Patients with Schizophrenia. Front. Public Health 2017, 5, 360. [Google Scholar] [CrossRef] [PubMed]
- Bulzacka, E.; Boyer, L.; Schurhoff, F.; Godin, O.; Berna, F.; Brunel, L.; Andrianarisoa, M.; Aouizerate, B.; Capdevielle, D.; Chéreau-Boudet, I.; et al. Chronic peripheral inflammation is associated with cognitive impairment in schizophrenia: Results from the multicentric FACE-SZ dataset. Schizophr. Bull. 2016, 42, 1290–1302. [Google Scholar] [CrossRef] [PubMed]
- Boozalis, T.; Devaraj, S.; Okusaga, O.O. Correlations between Body Mass Index, Plasma High-Sensitivity C-Reactive Protein and Lipids in Patients with Schizophrenia. Psychiatr. Q. 2019, 90, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Annamalai, A.; Kosir, U.; Tek, C. Prevalence of obesity and diabetes in patients with schizophrenia. World J. Diabetes 2017, 8, 390–396. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cordes, J.; Bechdolf, A.; Engelke, C.; Kahl, K.G.; Balijepalli, C.; Lösch, C.; Klosterkötter, J.; Wagner, M.; Maier, W.; Heinz, A.; et al. Prevalence of metabolic syndrome in female and male patients at risk of psychosis. Schizophr. Res. 2017, 181, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.H.; Lee, N.Y.; Kim, S.H.; Chung, I.W.; Youn, T.; Kang, U.G.; Ahn, Y.M.; You, H.Y.; Kim, Y.S. Long-term evolution of metabolic status in patients with schizophrenia stably maintained on second-generation antipsychotics. Psychiatry Investig. 2018, 15, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, N.; Yasui-Furukori, N.; Yamazaki, M.; Shimoda, K.; Mori, T.; Sugai, T.; Matsuda, H.; Suzuki, Y.; Ozeki, Y.; Okamoto, K.; et al. Predictive Utility of Body Mass Index for Metabolic Syndrome Among Patients with Schizophrenia in Japan. Neuropsychiatr. Dis. Treat. 2020, 16, 2229–2236. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Cai, Y.; Xue, X.; Li, X.; Li, Z.; Xu, C.; Xie, G.; Yu, Y. Does Schizophrenia Itself Cause Obesity? Front. Psychiatry 2022, 13, 934384. [Google Scholar] [CrossRef] [PubMed]
- Chouinard, V.A.; Pingali, S.M.; Chouinard, G.; Henderson, D.C.; Mallya, S.G.; Cypess, A.M.; Cohen, B.M.; Öngür, D. Factors associated with overweight and obesity in schizophrenia, schizoaffective and bipolar disorders. Psychiatry Res. 2016, 237, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Limosin, F.; Gasquet, I.; Leguay, D.; Azorin, J.M.; Rouillon, F. Body mass index and prevalence of obesity in a French cohort of patients with schizophrenia. Acta Psychiatr. Scand. 2008, 118, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Allison, D.B.; Casey, D.E. Antipsychotic-induced weight gain: A review of the literature. J. Clin. Psychiatry. 2001, 62 (Suppl. 7), 22–31. [Google Scholar] [PubMed]
- Aoki, R.; Saito, T.; Ninomiya, K.; Shimasaki, A.; Ashizawa, T.; Ito, K.; Ikeda, M.; Iwata, N. Shared genetic components between metabolic syndrome and schizophrenia: Genetic correlation using multipopulation data sets. Psychiatry Clin. Neurosci. 2022, 76, 361–366. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sørensen, H.J.; Gamborg, M.; Sørensen, T.I.A.; Baker, J.L.; Mortensen, E.L. Childhood body mass index and risk of schizophrenia in relation to childhood age, sex and age of first contact with schizophrenia. Eur. Psychiatry 2016, 34, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Cameron, I.M.; Hamilton, R.J.; Fernie, G.; MacGillivray, S.A. Obesity in individuals with schizophrenia: A case controlled study in Scotland. BJPsych Open 2017, 3, 254–256. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Wang, X.; Zhou, J.; Zhang, X.; Zhang, X.; Chi, J.; Lu, C.; Wang, L.; Li, S. Body mass index-specific metabolic profiles in schizophrenia: Implications for cognitive dysfunction and psychopathology. J. Neural Transm. 2025, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Li, C.; Mi, J.; Wu, J. Evaluating the distinct effects of body mass index at childhood and adulthood on adult major psychiatric disorders. Sci. Adv. 2024, 10, eadq2452. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Choi, J.; Joseph, L.; Pilote, L. Obesity and C-reactive protein in various populations: A systematic review and meta-analysis. Obes. Rev. 2013, 14, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Timpson, N.J.; Nordestgaard, B.G.; Harbord, R.M.; Zacho, J.; Frayling, T.M.; Tybjærg-Hansen, A.; Smith, G.D. C-reactive protein levels and body mass index: Elucidating direction of causation through reciprocal Mendelian randomization. Int. J. Obes. 2011, 35, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Barnes, G.T.; Yang, Q.; Tan, G.; Yang, D.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A.; et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 2003, 112, 1821–1830. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.; Bouter, L.M.; McQuillan, G.M.; Wener, M.H.; Harris, T.B. Elevated C-reactive protein levels in overweight and obese adults. JAMA 1999, 282, 2131–2135. [Google Scholar] [CrossRef] [PubMed]
- Wellen, K.E.; Hotamisligil, G.S. Obesity-induced inflammatory changes in adipose tissue. J. Clin. Investig. 2003, 112, 1785–1788. [Google Scholar] [CrossRef] [PubMed]
- Welsh, P.; Polisecki, E.; Robertson, M.; Jahn, S.; Buckley, B.M.; de Craen, A.J.; Ford, I.; Jukema, J.W.; Macfarlane, P.W.; Packard, C.J.; et al. Unraveling the directional link between adiposity and inflammation: A bidirectional Mendelian randomization approach. J. Clin. Endocrinol. Metab. 2010, 95, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.; Depp, C.; Martin, A.S.; Daly, R.E.; Glorioso, D.K.; Palmer, B.W.; Jeste, D.V. Associations of high sensitivity C-reactive protein levels in schizophrenia and comparison groups. Schizophr. Res. 2015, 168, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Van Dyne, A.; Wu, T.C.; Adamowicz, D.H.; Lee, E.E.; Tu, X.M.; Eyler, L.T. Longitudinal relationships between BMI and hs-CRP among people with schizophrenia. Schizophr. Res. 2024, 271, 337–344. [Google Scholar] [CrossRef] [PubMed]
- McWhinney, S.R.; Brosch, K.; Calhoun, V.D.; Crespo-Facorro, B.; Crossley, N.A.; Dannlowski, U.; Dickie, E.; Dietze, L.M.F.; Donohoe, G.; Du Plessis, S.; et al. Obesity and brain structure in schizophrenia—ENIGMA study in 3021 individuals. Mol. Psychiatry 2022, 27, 3731–3737, Erratum in Mol. Psychiatry 2022, 27, 3738. Erratum in Mol. Psychiatry 2024, 29, 56. [Google Scholar] [CrossRef] [PubMed]
- Nettis, M.A.; Pergola, G.; Kolliakou, A.; O’Connor, J.; Bonaccorso, S.; David, A.; Gaughran, F.; Di Forti, M.; Murray, R.M.; Marques, T.R.; et al. Metabolic-inflammatory status as predictor of clinical outcome at 1-year follow-up in patients with first episode psychosis. Psychoneuroendocrinology 2019, 99, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Crump, C.; Winkleby, M.A.; Sundquist, K.; Sundquist, J. Comorbidities mortality in persons with schizophrenia: A Swedish national cohort study. Am. J. Psychiatry 2013, 170, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Ratliff, J.C.; Palmese, L.B.; Reutenauer, E.L.; Srihari, V.H.; Tek, C. Obese schizophrenia spectrum patients have significantly higher 10-year general cardiovascular risk and vascular ages than obese individuals without severe mental illness. Psychosomatics 2013, 54, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Tsai, K.Y.; Lee, C.C.; Chou, Y.M.; Su, C.Y.; Chou, F.H. The incidence and relative risk of stroke in patients with schizophrenia: A five-year follow-up study. Schizophr. Res. 2012, 138, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Laursen, T.M.; Munk-Olsen, T.; Vestergaard, M. Life expectancy and cardio-vascular mortality in persons with schizophrenia. Curr. Opin. Psychiatry 2012, 25, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, R.; Kaser, M.; Guloksuz, S. The Link Between the Immune System, Environment, and Psychosis. Schizophr. Bull. 2017, 43, 693–697. [Google Scholar] [CrossRef] [PubMed]
- Mongan, D.; Ramesar, M.; Föcking, M.; Cannon, M.; Cotter, D. Role of inflammation in the pathogenesis of schizophrenia: A review of the evidence, proposed mechanisms and implications for treatment. Early Interv. Psychiatry 2020, 14, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.J.; Goldsmith, D.R. Evaluating the Hypothesis That Schizophrenia Is an Inflammatory Disorder. Focus 2020, 18, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Uchino, B.N. Social support and health: A review of physiological processes potentially underlying links to disease outcomes. J. Behav. Med. 2006, 29, 377–387. [Google Scholar] [CrossRef] [PubMed]
- McHugh Power, J.; Carney, S.; Hannigan, C.; Brennan, S.; Wolfe, H.; Lynch, M.; Kee, F.; Lawlor, B. Systemic inflammatory markers and sources of social support among older adults in the Memory Research Unit cohort. J. Health Psychol. 2019, 24, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Kiecolt-Glaser, J.K.; Gouin, J.P.; Hantsoo, L. Close relationships, inflammation, and health. Neurosci. Biobehav. Rev. 2010, 35, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.Y.; Lee, C.T.; Lu, H.L.; Tsai, Y.F. Living with schizophrenia: Health-related quality of life among primary family caregivers. J. Clin. Nurs. 2017, 26, 5151–5159. [Google Scholar] [CrossRef] [PubMed]
- Chronister, J.; Fitzgerald, S.; Chou, C.C. The meaning of social support for persons with serious mental illness: A family member perspective. Rehabil. Psychol. 2021, 66, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Mueser, K.T.; Deavers, F.; Penn, D.L.; Cassisi, J.E. Psychosocial treatments for schizophrenia. Annu. Rev. Clin. Psychol. 2013, 9, 465–497. [Google Scholar] [CrossRef] [PubMed]
- Verbiest, I.; Michels, N.; Tanghe, A.; Braet, C. Inflammation in obese children and adolescents: Association with psychosocial stress variables and effects of a lifestyle intervention. Brain Behav. Immun. 2021, 98, 40–47. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.R.; Loi, E.C.; Byrne, M.L.; Zalewski, M.; Casement, M.D. The Link Between Positive and Negative Parenting Behaviors and Child Inflammation: A Systematic Review. Child Psychiatry Hum. Dev. 2023, 54, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Diener, M.J.; Geenen, R.; Koelen, J.A.; Aarts, F.; Gerdes, V.E.; Brandjes, D.P.; Hinnen, C. The significance of attachment quality for obesity: A meta-analytic review. Can. J. Behav. Sci. 2016, 48, 255. [Google Scholar] [CrossRef]
- Bernard, K.; Hostinar, C.E.; Dozier, M. Longitudinal associations between attachment quality in infancy, C-reactive protein in early childhood, and BMI in middle childhood: Preliminary evidence from a CPS-referred sample. Attach. Hum. Dev. 2019, 21, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Aas, M.; Dieset, I.; Hope, S.; Hoseth, E.; Mørch, R.; Reponen, E.; Steen, N.E.; Laskemoen, J.F.; Ueland, T.; Aukrust, P.; et al. Childhood maltreatment severity is associated with elevated C-reactive protein and body mass index in adults with schizophrenia and bipolar diagnoses. Brain Behav. Immun. 2017, 65, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Peritogiannis, V.; Ninou, A.; Samakouri, M. Mortality in Schizophrenia-Spectrum Disorders: Recent Advances in Understanding and Management. Healthcare 2022, 10, 2366. [Google Scholar] [CrossRef] [PubMed]
- Yung, N.C.L.; Wong, C.S.M.; Chan, J.K.N.; Chen, E.Y.H.; Chang, W.C. Excess Mortality and Life-Years Lost in People With Schizophrenia and Other Non-affective Psychoses: An 11-Year Population-Based Cohort Study. Schizophr. Bull. 2021, 47, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Sicras-Mainar, A.; Rejas-Gutiérrez, J.; Navarro-Artieda, R.; Blanca-Tamayo, M. C-reactive protein as a marker of cardiovascular disease in patients with a schizophrenia spectrum disorder treated in routine medical practice. Eur. Psychiatry 2013, 28, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.; McEvoy, J.P.; Miller, B.J. Total and differential white blood cell counts, inflammatory markers, adipokines, and incident metabolic syndrome in phase 1 of the clinical antipsychotic trials of intervention effectiveness study. Schizophr. Res. 2019, 209, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Mori, N.; McEvoy, J.P.; Miller, B.J. Total and differential white blood cell counts, inflammatory markers, adipokines, and the metabolic syndrome in phase 1 of the clinical antipsychotic trials of intervention effectiveness study. Schizophr. Res. 2015, 169, 30–76. [Google Scholar] [CrossRef] [PubMed]
- Boyer, L.; Richieri, R.; Dassa, D.; Boucekine, M.; Fernandez, J.; Vaillant, R.; Padovani, R.; Auquier, P.; Lancon, C. Association of metabolic syndrome and inflammation with neurocognition in patients with schizophrenia. Psychiatry Res. 2013, 210, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Osimo, E.F.; Perry, B.I.; Cardinal, R.N.; Lynall, M.E.; Lewis, J.; Kudchadkar, A.; Murray, G.K.; Perez, J.; Jones, P.B.; Khandaker, G.M. Inflammatory and cardiometabolic markers at presentation with first episode psychosis and long-term clinical outcomes: A longitudinal study using electronic health records. Brain Behav. Immun. 2021, 91, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Sarandol, E.; Sarandol, A.; Mercan, S.; Eker, S.S.; Surmen-Gur, E. Antipsychotic-Treated Schizophrenia Patients Develop Inflammatory and Oxidative Responses Independently From Obesity: However, Metabolic Disturbances Arise From Schizophrenia-Related Obesity. Hum. Psychopharmacol. 2024, 39, e2913. [Google Scholar] [CrossRef] [PubMed]
- Solmi, F.; Mascarell, M.C.; Zammit, S.; Kirkbride, J.B.; Lewis, G. Polygenic risk for schizophrenia, disordered eating behaviours and body mass index in adolescents. Br. J. Psychiatry 2019, 215, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, M. Biopsychosocial factors associated with disordered eating behaviors in schizophrenia. Ann. Gen. Psychiatry 2020, 19, 67. [Google Scholar] [CrossRef] [PubMed]
- Tuncer, G.Z.; Çetinkaya Duman, Z. An examination of emotional eating behavior in individuals with a severe mental disorder. Arch. Psychiatr. Nurs. 2020, 34, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Kouidrat, Y.; Amad, A.; Stubbs, B.; Louhou, R.; Renard, N.; Diouf, M.; Lalau, J.D.; Loas, G. Disordered eating behaviors as a potential obesogenic factor in schizophrenia. Psychiatry Res. 2018, 269, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Tsofliou, F.; Casey, C.; Hughes, C. Stress and Disordered Eating Patterns. In Eating Disorders; Patel, V.B., Preedy, V.R., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Prabhakaran, S.; Nagarajan, P.; Varadharajan, N.; Menon, V. Relationship Between Quality of Life and Social Support Among Patients with Schizophrenia and Bipolar Disorder: A Cross-Sectional Study. J. Psychosoc. Rehabil. Ment. Health 2021, 8, 137–145. [Google Scholar] [CrossRef]
- Ospina, L.H.; Beck-Felts, K.; Ifrah, C.; Shagalow, S.; Lister, A.; Russo, S.J.; Gross, J.J.; Kimhy, D. Relationships among inflammation, social cognition, and social functioning in schizophrenia. Schizophr. Res. 2022, 248, 366–367. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, A.; Zampetas, D.; Durand, A.; Naassila, M.; Bralet, M.C. Relationships Between Immune-Inflammatory Features and Social Cognitive Impairments in Patients With Schizophrenia Spectrum Disorders: A Systematic Review. Brain Behav. 2025, 15, e70384. [Google Scholar] [CrossRef] [PubMed]
- Lal, C.; Ul Haq, M.S.; Jaleel, F.A.; Jawed, D.N. Correlation Between Social Support, Patient Satisfaction, and Associated Factors in Patients with Schizophrenia. Cureus 2025, 17, e81222. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, C.; Volpe, U.; Matanov, A.; Priebe, S.; Giacco, D. Social networks of patients with psychosis: A systematic review. BMC Res. Notes 2015, 8, 560. [Google Scholar] [CrossRef] [PubMed]
- Kang, H. Sample size determination and power analysis using the G*Power software. J. Educ. Eval. Health Prof. 2021, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- Yenipınar, A.; Koç, Ş.; Çanga, D.; Kaya, F. Determining Sample Size in Logistic Regression with G-Power. Black Sea J. Eng. Sci. 2019, 2, 16–22. [Google Scholar]
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O., 3rd; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L.; et al. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Tselebis, A.; Anagnostopoulou, T.; Bratis, D.; Moulou, A.; Maria, A.; Sikaras, C.; Ilias, I.; Karkanias, A.; Moussas, G.; Tzanakis, N. The 13 item Family Support Scale: Reliability and validity of the Greek translation in a sample of Greek health care professionals. Asia Pac. Fam. Med. 2011, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Ilias, I.; Tselebis, A.; Theotoka, I.; Hatzimichelakis, E. Association of perceived family support through glycemic control in native Greek patients managing diabetes with diet alone. Ethn. Dis. 2004, 14, 2. [Google Scholar] [PubMed]
- Tselebis, A.; Bratis, D.; Pachi, A.; Moussas, G.; Karkanias, A.; Harikiopoulou, M.; Theodorakopoulou, E.; Kosmas, E.; Ilias, I.; Siafakas, N.; et al. Chronic obstructive pulmonary disease: Sense of coherence and family support versus anxiety and depression. Psychiatriki 2013, 24, 109–116. (In Greek) [Google Scholar] [PubMed]
- Templeton, G.F. A Two-Step Approach for Transforming Continuous Variables to Normal: Implications and Recommendations for IS Research. Commun. Assoc. Inf. Syst. 2011, 28, 4. Available online: http://aisel.aisnet.org/cais/vol28/iss1/4 (accessed on 23 February 2025). [CrossRef]
- Firdous, S. Correlation of CRP, fasting serum triglycerides and obesity as cardiovascular risk factors. J. Coll. Physicians Surg. Pak. 2014, 24, 308–313. [Google Scholar] [PubMed]
- Wensveen, F.M.; Valentić, S.; Šestan, M.; Turk Wensveen, T.; Polić, B. The “Big Bang” in obese fat: Events initiating obesity-induced adipose tissue inflammation. Eur. J. Immunol. 2015, 45, 2446–2456. [Google Scholar] [CrossRef] [PubMed]
- Festa, A.; D’Agostino, R., Jr.; Williams, K.; Karter, A.J.; Mayer-Davis, E.J.; Tracy, R.P.; Haffner, S.M. The relation of body fat mass and distribution to markers of chronic inflammation. Int. J. Obes. 2001, 25, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, D.R.; Massa, N.; Miller, B.J.; Miller, A.H.; Duncan, E. The interaction of lipids and inflammatory markers predict negative symptom severity in patients with schizophrenia. NPJ Schizophr. 2021, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Park, J.Y.; Yu, R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-alpha and IL-6. Diabetes Res. Clin. Pract. 2005, 69, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Popa, C.; Netea, M.G.; van Riel, P.L.; van der Meer, J.W.; Stalenhoef, A.F. The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J. Lipid Res. 2007, 48, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Correll, C.U.; Stanford, A.D.; Claxton, A.; Du, Y.; Weiden, P.J. Social and functional outcomes with two doses of aripiprazole lauroxil vs placebo in patients with schizophrenia: A post-hoc analysis of a 12-week phase 3 efficacy study. Psychiatry Res. 2019, 274, 176–181. [Google Scholar] [CrossRef] [PubMed]
- El-Monshed, A.; Amr, M. Association between perceived social support and recovery among patients with schizophrenia. Int. J. Afr. Nurs. Sci. 2020, 13, 100236. [Google Scholar] [CrossRef]
- Cha, H.Y.; Yang, S.J.; Kim, S.W. Higher Dietary Inflammation in Patients with Schizophrenia: A Case-Control Study in Korea. Nutrients 2021, 13, 2033. [Google Scholar] [CrossRef] [PubMed]
- Bigseth, T.T.; Engh, J.A.; Andersen, E.; Bang-Kittilsen, G.; Egeland, J.; Falk, R.S.; Holmen, T.L.; Mordal, J.; Nielsen, J.; Ueland, T.; et al. Alterations in inflammatory markers after a 12-week exercise program in individuals with schizophrenia-a randomized controlled trial. Front. Psychiatry 2023, 14, 1175171. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.Y.; Tee, S.F.; Su, K.P. Editorial: The link between nutrition and schizophrenia. Front. Psychiatry 2022, 13, 1074120. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.C.; Schorpp, K.; Harris, K.M. Social support, social strain and inflammation: Evidence from a national longitudinal study of U.S. adults. Soc. Sci. Med. 2014, 107, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Wee, C.C.; Mukamal, K.J.; Huang, A.; Davis, R.B.; McCarthy, E.P.; Mittleman, M.A. Obesity and C-reactive protein levels among white, black, and hispanic US adults. Obesity 2008, 16, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Lear, S.A.; Chen, M.M.; Birmingham, C.L.; Frohlich, J.J. The relationship between simple anthropometric indices and C-reactive protein: Ethnic and gender differences. Metabolism 2003, 52, 1542–1546. [Google Scholar] [CrossRef] [PubMed]
- Fond, G.; Godin, O.; Llorca, P.M.; Leboyer, M. Abnormal C-reactive protein (CRP) levels in schizophrenia and schizoaffective disorders. Results from the FACE-SZ dataset. Eur. Psychiatry 2015, 30, S112. [Google Scholar] [CrossRef]
- Gough, M.; Godde, K. A multifaceted analysis of social stressors and chronic inflammation. SSM Popul. Health 2018, 6, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Guevara, J.E.; Murdock, K.W. High social strain and physical health: Examining the roles of anxious arousal, body mass index, and inflammation. Psychoneuroendocrinology 2019, 106, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Uchino, B.N.; Trettevik, R.; Kent de Grey, R.G.; Cronan, S.; Hogan, J.; Baucom, B.R.W. Social support, social integration, and inflammatory cytokines: A meta-analysis. Health Psychol. 2018, 37, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Lachman, M.E.; Schiloski, K.A. The psychosocial anti-inflammatories: Sense of control, purpose in life, and social support in relation to inflammation, functional health and chronic conditions in adulthood. J. Psychosom. Res. 2024, 187, 111957. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.; Johnson, K.A.; Parnarouskis, L.M.; Koenen, K.C.; Williams, D.R.; Gelaye, B.; Borba, C.P.C. How Early Life Adversities Influence Later Life Family Interactions for Individuals with Schizophrenia in Outpatient Treatment: A Qualitative Analysis. Community Ment. Health J. 2020, 56, 1188–1200. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, M.M.; Villena, A.; Quemada, C.; Morales-Asencio, J.M. Personal relationships during and after an initial psychotic episode. First-person experiences. J. Ment. Health 2024, 34, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, C.P.; Bennett, J.M.; Derry, H.M.; Kiecolt-Glaser, J.K. Relationships and Inflammation across the Lifespan: Social Developmental Pathways to Disease. Soc. Pers. Psychol. Compass 2011, 5, 891–903. [Google Scholar] [CrossRef] [PubMed]
- Aldersey, H.M.; Whitley, R. Family Influence in Recovery from Severe Mental Illness. Community Ment. Health J. 2015, 51, 467–476. [Google Scholar] [CrossRef] [PubMed]
- van de Vyver, M. Immunology of chronic low-grade inflammation: Relationship with metabolic function. J. Endocrinol. 2023, 257, e220271. [Google Scholar] [CrossRef] [PubMed]
- Valdearcos, M.; Xu, A.W.; Koliwad, S.K. Hypothalamic inflammation in the control of metabolic function. Annu. Rev. Physiol. 2015, 77, 131–160. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007, 56, 1761–1772. [Google Scholar] [CrossRef] [PubMed]
- Khovidhunkit, W.; Kim, M.S.; Memon, R.A.; Shigenaga, J.K.; Moser, A.H.; Feingold, K.R.; Grunfeld, C. Effects of infection and inflammation on lipid and lipoprotein metabolism: Mechanisms and consequences to the host. J. Lipid Res. 2004, 45, 1169–1196. [Google Scholar] [CrossRef] [PubMed]
- Huet, L.; Delgado, I.; Dexpert, S.; Sauvant, J.; Aouizerate, B.; Beau, C.; Forestier, D.; Ledaguenel, P.; Magne, E.; Capuron, L. Relationship between body mass index and neuropsychiatric symptoms: Evidence and inflammatory correlates. Brain Behav. Immun. 2021, 94, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Sugai, T.; Suzuki, Y.; Yamazaki, M.; Shimoda, K.; Mori, T.; Ozeki, Y.; Matsuda, H.; Sugawara, N.; Yasui-Furukori, N.; Minami, Y.; et al. High Prevalence of Obesity, Hypertension, Hyperlipidemia, and Diabetes Mellitus in Japanese Outpatients with Schizophrenia: A Nationwide Survey. PLoS ONE 2016, 11, e0166429. [Google Scholar] [CrossRef] [PubMed]
- Catapano, L.; Castle, D. Obesity in schizophrenia: What can be done about it? Australas. Psychiatry 2004, 12, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Bobes, J. Schizophrenia and overweight/obesity: Pathophysiology and medical consequences. Eur. Psychiatry 2007, 22, S94. [Google Scholar] [CrossRef]
- Chen, J.; Perera, G.; Shetty, H.; Broadbent, M.; Xu, Y.; Stewart, R. Body mass index and mortality in patients with schizophrenia spectrum disorders: A cohort study in a South London catchment area. Gen. Psychiatry 2022, 35, e100819. [Google Scholar] [CrossRef] [PubMed]
- Arango, C.; Bobes, J.; Kirkpatrick, B.; Garcia-Garcia, M.; Rejas, J. Psychopathology, coronary heart disease and metabolic syndrome in schizophrenia spectrum patients with deficit versus non-deficit schizophrenia: Findings from the CLAMORS study. Eur. Neuropsychopharmacol. 2011, 21, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Palmese, L.B.; DeGeorge, P.C.; Ratliff, J.C.; Srihari, V.H.; Wexler, B.E.; Krystal, A.D.; Tek, C. Insomnia is frequent in schizophrenia and associated with night eating and obesity. Schizophr. Res. 2011, 133, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Kolotkin, R.L.; Corey-Lisle, P.K.; Crosby, R.D.; Swanson, J.M.; Tuomari, A.V.; L’italien, G.J.; Mitchell, J.E. Impact of obesity on health-related quality of life in schizophrenia and bipolar disorder. Obesity 2008, 16, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Storch Jakobsen, A.; Speyer, H.; Nørgaard, H.C.B.; Hjorthøj, C.; Krogh, J.; Mors, O.; Nordentoft, M. Associations between clinical and psychosocial factors and metabolic and cardiovascular risk factors in overweight patients with schizophrenia spectrum disorders—Baseline and two-years findings from the CHANGE trial. Schizophr. Res. 2018, 199, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Yong, N.; Pan, J.; Li, X.; Yu, L.; Hou, X. Influencing factors of obesity in community patients with deficit schizophrenia: A cross-sectional study. Eur. J. Med. Res. 2022, 27, 90. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Yang, S.J.; Kim, H.H.; Jo, A.; Jhon, M.; Lee, J.Y.; Ryu, S.H.; Kim, J.M.; Kweon, Y.R.; Kim, S.W. Effects of Dietary Habits on General and Abdominal Obesity in Community-dwelling Patients with Schizophrenia. Clin. Psychopharmacol. Neurosci. 2023, 21, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, J.D.; Rempfer, M.V.; Brown, C.E.; Goetz, J.; Hamera, E. The prevalence of night eating syndrome and binge eating disorder among overweight and obese individuals with serious mental illness. Psychiatry Res. 2010, 175, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Anzengruber, D.; Klump, K.L.; Thornton, L.; Brandt, H.; Crawford, S.; Fichter, M.M.; Halmi, K.A.; Johnson, C.; Kaplan, A.S.; LaVia, M.; et al. Smoking in eating disorders. Eat. Behav. 2006, 7, 291–299. [Google Scholar] [CrossRef] [PubMed]
- García-Mayor, R.V.; García-Soidán, F.J. Eating disoders in type 2 diabetic people: Brief review. Diabetes Metab. Syndr. 2017, 11, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Sankaranarayanan, A.; Johnson, K.; Mammen, S.J.; Wilding, H.E.; Vasani, D.; Murali, V.; Mitchison, D.; Castle, D.J.; Hay, P. Disordered Eating among People with Schizophrenia Spectrum Disorders: A Systematic Review. Nutrients 2021, 13, 3820. [Google Scholar] [CrossRef] [PubMed]
- Tselebis, A.; Pachi, A. Primary Mental Health Care in a New Era. Healthcare 2022, 10, 2025. [Google Scholar] [CrossRef] [PubMed]
- Cooper, S.J.; Reynolds, G.P.; Barnes, T.; England, E.; Haddad, P.; Heald, A.; Holt, R.; Lingford-Hughes, A.; Osborn, D.; McGowan, O.; et al. BAP guidelines on the management of weight gain, metabolic disturbances and cardiovascular risk associated with psychosis and antipsychotic drug treatment. J. Psychopharmacol. 2016, 30, 717–748. [Google Scholar] [CrossRef] [PubMed]
- DeJongh, B.M. Clinical pearls for the monitoring and treatment of antipsychotic induced metabolic syndrome. Ment. Health Clin. 2021, 11, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Abascal, B.; Suárez-Pinilla, P.; Cobo-Corrales, C.; Crespo-Facorro, B.; Suárez-Pinilla, M. In- and outpatient lifestyle interventions on diet and exercise and their effect on physical and psychological health: A systematic review and meta-analysis of randomised controlled trials in patients with schizophrenia spectrum disorders and first episode of psychosis. Neurosci. Biobehav. Rev. 2021, 125, 535–568. [Google Scholar] [CrossRef] [PubMed]
- Mucheru, D.; Hanlon, M.C.; McEvoy, M.; Thakkinstian, A.; MacDonald-Wicks, L. Comparative efficacy of lifestyle intervention strategies targeting weight outcomes in people with psychosis: A systematic review and network meta-analysis. JBI Database Syst. Rev. Implement. Rep. 2019, 17, 1770–1825. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Abascal, B.; Suárez-Pinilla, M.; Cobo-Corrales, C.; Crespo-Facorro, B.; Suárez-Pinilla, P. Lifestyle intervention based on exercise and behavioural counselling and its effect on physical and psychological health in outpatients with schizophrenia spectrum disorders. An exploratory, pragmatic randomized clinical trial. Schizophr. Res. 2023, 261, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Naylor, A.; Flood, A.; Keegan, R. The effectiveness of physical activity interventions that include both physical activity and psychosocial strategies in people living with a severe mental illness: A systematic review and meta-analysis. Int. Rev. Sport Exerc. Psychol. 2024, 1–31. [Google Scholar] [CrossRef]
- Hahlweg, K.; Baucom, D.H. Family therapy for persons with schizophrenia: Neglected yet important. Eur. Arch. Psychiatry Clin. Neurosci. 2023, 273, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Caqueo-Urízar, A.; Rus-Calafell, M.; Urzúa, A.; Escudero, J.; Gutiérrez-Maldonado, J. The role of family therapy in the management of schizophrenia: Challenges and solutions. Neuropsychiatr. Dis. Treat. 2015, 11, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Burbach, F.R. Family therapy and schizophrenia: A brief theoretical overview and a framework for clinical practice. BJPsych Adv. 2018, 24, 225–234. [Google Scholar] [CrossRef]
Gender | Age | Illness Duration (in Years) | BMI (kg/m2) | Family Support Scale (FSS) | CRP (mg/dL) | ||
---|---|---|---|---|---|---|---|
Male | Mean | 41.36 * | 14.44 | 29.24 | 51.03 | Median | 0.17 |
N | 100 | 80 | 90 | 82 | N | 94 | |
SD | 10.79 | 11.01 | 4.22 | 10.62 | IQR | 0.30 | |
Female | Mean | 44.98 * | 14.90 | 28.44 | 48.83 | Median | 0.19 |
N | 106 | 80 | 88 | 88 | N | 88 | |
S.D. | 14.37 | 10.01 | 5.44 | 10.23 | IQR | 0.41 | |
Total | Mean | 43.22 | 13.98 | 28.85 | 49.89 | Median | 0.17 |
N | 206 | 160 | 178 | 170 | N | 182 | |
SD | 12.85 | 11.97 | 4.86 | 10.45 | IQR | 0.39 |
Pearson Correlation N: 206 | Age | Illness Duration (in Years) | BMI (kg/m2) | |
---|---|---|---|---|
Illness duration (in years) | r | 0.659 ** | ||
p | 0.000 | |||
N | 160 | |||
BMI (kg/m2) | r | 0.240 ** | 0.315 ** | |
p | 0.001 | 0.000 | ||
N | 178 | 155 | ||
Family Support Scale (FSS) | r | −0.151 | −0.250 | −0.125 |
p | 0.050 | 0.004 | 0.132 | |
N | 170 | 152 | 156 |
Spearman’s Rho N: 206 | Age | Illness Duration (in Years) | BMI (kg/m2) | Family Support Scale (FSS) | |
---|---|---|---|---|---|
CRP | rho | 0.140 | 0.038 | 0.213 ** | −0.510 ** |
p | 0.060 | 0.638 | 0.005 | 0.000 | |
N | 182 | 158 | 176 | 163 |
Dependent Variable: CRP Values ≥ 0.11 mg/dL (N: 176) | ||||||
---|---|---|---|---|---|---|
Predictor | B | SE | Wald | p | OR | 95% CL |
Constant | −0.077 | 0.196 | 0.154 | 0.695 | 0.926 | NA |
BMI < 30 kg/m2 | Ref. | Ref. | Ref. | |||
BMI ≥ 30 kg/m2 | 0.683 | 0.321 | 4.534 | 0.033 * | 1.980 | (1.056, 3.713) |
Dependent Variable: CRP Values > 0.6 mg/dL (N: 176) | ||||||
---|---|---|---|---|---|---|
Predictor | B | SE | Wald | p | OR | 95% CL |
Constant | −3.932 | 0.714 | 30.324 | 0.000 | 0.020 | NA |
BMI < 30 kg/m2 | Ref. | Ref. | Ref. | |||
BMI ≥ 30 kg/m2 | 3.326 | 0.758 | 19.262 | 0.000 ** | 27.818 | (6.300, 122.838) |
Dependent Variable: CRP Values > 0.6 mg/dL (N: 152) | ||||||
---|---|---|---|---|---|---|
Predictor | B | SE | Wald | p | OR | 95% CL |
Constant | −2.024 | 2.741 | 0.545 | 0.000 | 0.460 | NA |
Age | −0.047 | 0.049 | 0.923 | 0.337 | 0.954 | (0.866, 1.051) |
Gender (Ref. = male) | 0.552 | 0.616 | 0.805 | 0.370 | 1.738 | (0.520, 5.811) |
Illness duration | 0.088 | 0.052 | 2.817 | 0.093 | 1.092 | (0.985, 1.210) |
BMI | 0.158 | 0.068 | 5.396 | 0.020 * | 1.171 | (1.025, 1.337) |
FSS | −0.090 | 0.037 | 6.086 | 0.014 * | 0.914 | (0.850, 0.982) |
Dependent Variable: CRP Values > 0.6 mg/dL (N: 152) | ||||||||
---|---|---|---|---|---|---|---|---|
Predictor | B | SE | Wald | z | p | Exp(B) | LLCL | ULCI |
Constant | −34.5617 | 15.2349 | 5.1465 | −2.2686 | 0.0233 | −64.4215 | −4.7020 | |
FSS | 0.5624 | 0.2951 | 3.6332 | 1.9061 | 0.0566 | 1.7548 | −0.0159 | 1.1408 |
Moderator (BMI) | 1.2664 | 0.5257 | 5.8028 | 2.4089 | 0.0160 * | 3.5480 | 0.2360 | 2.2967 |
Interaction (FSS * BMI) | −0.0220 | 0.0100 | 4.8079 | −2.1927 | 0.0283 * | 0.9782 | −0.0417 | −0.0023 |
Covariates | ||||||||
Age | −0.0687 | 0.0567 | 1.4648 | −1.2103 | 0.2261 | 0.9336 | −0.1799 | 0.0425 |
Gender | 0.4568 | 0.6779 | 0.4541 | 0.6739 | 0.5004 | 1.5790 | −0.8719 | 1.7856 |
Illness duration | 0.0897 | 0.0597 | 2.2570 | 1.5023 | 0.1330 | 1.0938 | −0.0273 | 0.2067 |
BMI Level | Effect of FSS on Having Positive CRP Values | SE | z | Wald | p | LLCL | ULCI |
---|---|---|---|---|---|---|---|
Low (−1SD): 23.1927 | 0.0519 | 0.0709 | 0.7323 | 0.5362 | 0.4640 | −0.0870 | 0.1908 |
Mean: 28.2865 | −0.0602 | 0.0390 | −1.5428 | 2.3802 | 0.1229 | −0.1368 | 0.0163 |
High (+1SD): 33.3803 | −0.1724 | 0.0571 | −3.0197 | 9.1185 | 0.0025 * | −0.2842 | −0.0605 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pachi, A.; Tselebis, A.; Kavourgia, E.; Soultanis, N.; Kasimis, D.; Sikaras, C.; Baras, S.; Ilias, I. Relationship Between Family Support, C-Reactive Protein and Body Mass Index Among Outpatients with Schizophrenia. Healthcare 2025, 13, 1754. https://doi.org/10.3390/healthcare13141754
Pachi A, Tselebis A, Kavourgia E, Soultanis N, Kasimis D, Sikaras C, Baras S, Ilias I. Relationship Between Family Support, C-Reactive Protein and Body Mass Index Among Outpatients with Schizophrenia. Healthcare. 2025; 13(14):1754. https://doi.org/10.3390/healthcare13141754
Chicago/Turabian StylePachi, Argyro, Athanasios Tselebis, Evgenia Kavourgia, Nikolaos Soultanis, Dimitrios Kasimis, Christos Sikaras, Spyros Baras, and Ioannis Ilias. 2025. "Relationship Between Family Support, C-Reactive Protein and Body Mass Index Among Outpatients with Schizophrenia" Healthcare 13, no. 14: 1754. https://doi.org/10.3390/healthcare13141754
APA StylePachi, A., Tselebis, A., Kavourgia, E., Soultanis, N., Kasimis, D., Sikaras, C., Baras, S., & Ilias, I. (2025). Relationship Between Family Support, C-Reactive Protein and Body Mass Index Among Outpatients with Schizophrenia. Healthcare, 13(14), 1754. https://doi.org/10.3390/healthcare13141754