Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = non-uniform ventilation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7984 KB  
Article
Full-Scale Experimental Investigation of the Influence of Solar Radiation on the Thermal Behavior of Ventilated Façade Envelope Systems Under Hot Climate Conditions
by Nurlan Zhangabay, Aizhan Zhangabay, Akmaral Utelbayeva, Timur Tursunkululy, Rozana Zakaria and Sultan Bakhbergen
Buildings 2026, 16(1), 122; https://doi.org/10.3390/buildings16010122 - 26 Dec 2025
Viewed by 253
Abstract
The article presents the results of a comprehensive full-scale investigation of the influence of solar radiation on the thermal behavior of the exterior envelope systems of two residential buildings of different heights—a 9-storey building in Turkestan and a 25-storey building in Shymkent. The [...] Read more.
The article presents the results of a comprehensive full-scale investigation of the influence of solar radiation on the thermal behavior of the exterior envelope systems of two residential buildings of different heights—a 9-storey building in Turkestan and a 25-storey building in Shymkent. The façade systems of both buildings consist of a multilayer enclosure with a ventilated air cavity, 100 mm wide in the 9-storey building and 50 mm wide in the 25-storey building. The objective of the study was to determine the diurnal and vertical dynamics of temperature fields, analyze the thermal inertia of the materials, and assess the effect of façade geometry on heat-transfer performance. Thermographic measurements were carried out during key periods of the day (7:00, 10:00, 13:00, and 17:00), which enabled coverage of the full solar-insolation cycle. The results showed that the maximum temperatures of the external cladding reached 48–52 °C for the 9-storey building and 53–58 °C for the 25-storey building, with a vertical temperature gradient of 3–7 °C. The temperature of the interior surface varied within 28–32 °C and 29–34 °C, respectively, reflecting the influence of both solar heating and the width of the ventilation cavity on heat transfer. It was found that reducing the air-gap width intensifies natural convection and decreases the thermal inertia of the system, resulting in sharper temperature fluctuations. The study demonstrates that current design standards insufficiently account for the vertical non-uniformity of solar exposure and the aerodynamic processes within the ventilation channel. The findings can be used in the design of energy-efficient façade systems, in the refinement of regulatory methodologies, and in the development of heat-transfer models for high-rise buildings under conditions of increased solar radiation. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

15 pages, 7684 KB  
Article
Effects of Fire Source Transverse Position and Curvature Radius on the Critical Velocity and Smoke Back-Layering Length in L-Shaped Tunnels
by Wenjie Zhao, Bin Miao, Guangyan Chen, Zhuoting Xiao and Mingxing Yang
Fire 2026, 9(1), 5; https://doi.org/10.3390/fire9010005 - 21 Dec 2025
Viewed by 374
Abstract
L-shaped tunnels frequently occur in underground coal mines because of geological and operational limitations. Their complex geometry increases ventilation resistance and causes non-uniform airflow, promoting combustible gas accumulation and resulting in a greater fire risk than in straight tunnels. In this work, Fire [...] Read more.
L-shaped tunnels frequently occur in underground coal mines because of geological and operational limitations. Their complex geometry increases ventilation resistance and causes non-uniform airflow, promoting combustible gas accumulation and resulting in a greater fire risk than in straight tunnels. In this work, Fire Dynamics Simulator was employed to quantify the effects of the fire source’s transverse position, curvature radius, heat release rate, and imposed longitudinal ventilation on both the critical velocity and the extent of smoke back-layering. The analysis shows that higher heat-release rates elevate the critical velocity, whereas a centrally located fire yields the lowest value. Shifting the fire toward either sidewall or adopting a larger curvature radius results in a higher critical velocity. In addition, the extent of upstream smoke back-layering increases with curvature, peaking when the ignition point lies close to the convex sidewall. Specifically, with a ventilation velocity of 0.95 m/s and a centerline fire, the back-layering length extends from 23 m (R = 5 m) to 40 m (R = 10 m). Based on theoretical derivation and dimensional analysis, several dimensionless parameters were developed that incorporate both the transverse fire-source position and the curvature radius to modify the dimensionless heat-release rate. Finally, dimensionless predictive models for the critical velocity and back-layering length, incorporating the effects of the curvature radius and the fire transverse position, were developed. These models provide a theoretical foundation and practical framework for fire prevention and ventilation design in L-shaped tunnels. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

15 pages, 258 KB  
Review
Comparative Analysis of Recent Burn Guidelines Regarding Specific Aspects of Anesthesia and Intensive Care
by Rolf K. Gigengack, Joeri Slob, J. Seppe H. A. Koopman, Cornelis H. Van der Vlies and Stephan A. Loer
Eur. Burn J. 2025, 6(4), 57; https://doi.org/10.3390/ebj6040057 - 29 Oct 2025
Viewed by 765
Abstract
Background: Critical care for patients with severe burn injuries is challenging, particularly in the first 24–48 h. Multiple guidelines exist but their recommendations vary in content and in the level of detail. Methods: This narrative review analyzed recent (last 10 years) adult burn [...] Read more.
Background: Critical care for patients with severe burn injuries is challenging, particularly in the first 24–48 h. Multiple guidelines exist but their recommendations vary in content and in the level of detail. Methods: This narrative review analyzed recent (last 10 years) adult burn guidelines in English, Dutch and German, sourced from PubMed, Medline and official burn society publications. The review focused on airway management, mechanical ventilation, fluid resuscitation, pain management and procedural sedation. Results: All guidelines emphasize early airway assessment and timely intubation in patients at risk for loss of airway patency; however, a strategy for analyzing patients at risk is lacking. Lung-protective ventilation strategy is generally recommended. Fluid resuscitation is the cornerstone during the first phase, though recommendations for thresholds, volume and adjuncts differ. (Chronic) pain management should be multimodal, combining pharmacologic and non-pharmacologic approaches, but specifics on choice of modality are limited, also, there is no uniform strategy for procedural sedation management. Conclusion: Current guidelines offer broadly consistent recommendations for initial burn care but differ in specifics, reflecting evidence gaps. Future guidelines should address advances in airway management, fluid resuscitation endpoints, volume and adjuncts, and give a more detailed (chronic) pain strategy to improve standardization and outcomes. Full article
20 pages, 5155 KB  
Article
Model-Driven Sewage System Design and Intelligent Management of the Wuhan East Lake Deep Tunnel Drainage Project
by Deqing Jin, Tao Wang and Xianming Wu
Water 2025, 17(21), 3091; https://doi.org/10.3390/w17213091 - 29 Oct 2025
Viewed by 940
Abstract
Rapid urbanization in China has overwhelmed traditional drainage systems, resulting in frequent flooding and water pollution in densely populated urban areas. This study focuses on the East Lake core area of Wuhan, proposing a deep tunnel drainage system to improve sewage storage and [...] Read more.
Rapid urbanization in China has overwhelmed traditional drainage systems, resulting in frequent flooding and water pollution in densely populated urban areas. This study focuses on the East Lake core area of Wuhan, proposing a deep tunnel drainage system to improve sewage storage and conveyance capacity. A pilot-scale pipe model was employed to determine the critical non-silting velocity for full-pipe sewage flow. Based on projected dry-season inflows and intercepted combined sewer discharges, the design capacities for pumping stations and pretreatment facilities were defined. A three-dimensional gas–liquid two-phase numerical model was used to simulate inflow shaft hydraulics at Erlangmiao, Luobuzui, and Wudong pretreatment stations. Simulation results confirm that all shafts meet energy dissipation and ventilation requirements, with uniform flow and velocity distributions that could be obtained by a vortex-type shaft. The system not only mitigates regional environmental challenges but also shows significant social, environmental, and economic benefits. Overall project design, applied methodology, simulation study, and outcomes could provide a valuable reference to deep tunnel drainage design and research. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

17 pages, 3075 KB  
Article
Optimization of PM2.5 Pollution Control in Residential Buildings Through Mechanical Ventilation Systems Under High Outdoor PM2.5 Levels in Chinese Cities
by Wei Xie, Yuesheng Fan, Pingfang Hu and Pengfei Si
Buildings 2025, 15(16), 2838; https://doi.org/10.3390/buildings15162838 - 11 Aug 2025
Viewed by 1063
Abstract
High outdoor PM2.5 levels in Chinese cities pose significant challenges to maintaining healthy indoor air quality in residential buildings, where mechanical ventilation systems are increasingly adopted for pollution control. In this paper, to control the indoor PM2.5 concentration, a mass balance [...] Read more.
High outdoor PM2.5 levels in Chinese cities pose significant challenges to maintaining healthy indoor air quality in residential buildings, where mechanical ventilation systems are increasingly adopted for pollution control. In this paper, to control the indoor PM2.5 concentration, a mass balance equation for the non-uniform mixing model has been established to calculate the filter efficiency. This study aims to optimize PM2.5 pollution control in residential buildings through mechanical ventilation systems by evaluating the synergistic effects of filter efficiency and ventilation air flow rates under high outdoor PM2.5 conditions. Field measurements and numerical calculations were conducted to monitor indoor and outdoor PM2.5 concentrations. Results showed that, When outdoor PM2.5 concentrations remain below 100 μg/m3, an air exchange rate of 3 h−1 effectively maintains indoor PM2.5 levels below 35 μg/m3 for M6-F8 air filters. Experimental data demonstrate that when a fresh air system equipped with H10 filters operates at an outdoor PM2.5 concentration of 150 μg/m3, the corresponding optimal ventilation rate is 0.45 h−1. Increasing the mechanical ventilation rate to 1 h−1 enables the system to effectively handle higher outdoor concentrations up to 176 μg/m3. Under severe pollution scenarios with outdoor PM2.5 concentrations reaching 250 μg/m3, the air exchange rate should be further increased to 1.65 h−1 to maintain indoor PM2.5 concentrations within acceptable limits. This study provides practical insights for improving residential indoor air quality under high outdoor PM2.5 conditions in Chinese cities. Full article
Show Figures

Figure 1

18 pages, 6767 KB  
Article
Study on Air-Cooled Structure of Direct-Drive Outer-Rotor Permanent Magnet Synchronous Generator for Wind Power Generation
by Xudong Yang, Ke Li, Yiguang Chen, Haiying Lv and Jingjuan Du
Appl. Sci. 2025, 15(14), 8008; https://doi.org/10.3390/app15148008 - 18 Jul 2025
Cited by 1 | Viewed by 925
Abstract
Direct-drive permanent magnet synchronous generators (DD-PMSGs) have been widely adopted in wind power generation systems owing to their distinctive advantages, including direct-drive operation, high power density, and superior energy conversion efficiency. However, the high power density of the generator inevitably leads to heat [...] Read more.
Direct-drive permanent magnet synchronous generators (DD-PMSGs) have been widely adopted in wind power generation systems owing to their distinctive advantages, including direct-drive operation, high power density, and superior energy conversion efficiency. However, the high power density of the generator inevitably leads to heat generation issues, which affect the reliability of the generator. To address the thermal issues in the 4.5 MW direct-drive permanent magnet synchronous generator (DD-PMSG), this paper proposes a novel forced air-cooling ventilation system. Through comprehensive computational fluid dynamics (CFD) simulations and fundamental thermodynamic analysis, the cooling performance is systematically evaluated to determine the optimal width of the stator ventilation ducts. Furthermore, based on the temperature distribution of the stator and rotor, three optimization schemes for non-uniform core segments are proposed. By comparing the ventilation cooling performance under three structural schemes, the optimal structural scheme is provided for the generator. Finally, the feasibility of the heat dissipation scheme and the accuracy of the simulation calculations are verified by fabricating a prototype and setting up an experimental platform. The above conclusions and research results can provide some reference for the design of the core ventilation ducts structure of subsequent wind turbines. Full article
Show Figures

Figure 1

26 pages, 4282 KB  
Article
Optimizing Perforated Duct Systems for Energy-Efficient Ventilation in Semi-Closed Greenhouses Through Process Regulation
by Chuanqing Wang, Jianlu Fu, Qiusheng Zhang, Baoyong Sheng, Fen He, Guanshan Zhang, Xiaoming Ding and Nan Cao
Processes 2025, 13(7), 2253; https://doi.org/10.3390/pr13072253 - 15 Jul 2025
Viewed by 1398
Abstract
Traditional perforated duct designs fail to resolve the energy consumption-uniformity conflict in semi-closed greenhouses. To address this, we develop a CFD-RSM-NSGA-II framework that simultaneously minimizes velocity non-uniformity (CV-v), pressure loss (ΔP), and temperature variation (CV-t). Key parameters—hole diameter (6–10 mm), spacing (30–70 mm), [...] Read more.
Traditional perforated duct designs fail to resolve the energy consumption-uniformity conflict in semi-closed greenhouses. To address this, we develop a CFD-RSM-NSGA-II framework that simultaneously minimizes velocity non-uniformity (CV-v), pressure loss (ΔP), and temperature variation (CV-t). Key parameters—hole diameter (6–10 mm), spacing (30–70 mm), and inlet velocity (4–8 m/s)—are co-optimized. Model validation showed that the mean relative errors were 8.6% for velocity, 2.3% for temperature, and pressure deviations below 5 Pa, with the response surface model achieving an R2 of 0.9831 (p < 0.0001). Larger hole diameters improved CV-v, while wider spacings led to a decrease in uniformity. Pressure loss followed an opposite trend. Temperature variation was mostly affected by inlet velocity. Sensitivity analysis revealed that hole diameter was the most influential factor, followed by spacing and velocity, with a significant interaction between diameter and spacing. Using entropy-weighted TOPSIS coupled with NSGA-II, the optimization identified an optimal configuration (hole diameter = 9.0 mm, spacing = 65 mm, velocity = 7.0 m/s). This solution achieved a 58.8% reduction in CV-v, a 10.8% decrease in ΔP, and a 5.2% improvement in CV-t, while stabilizing inlet static pressure at 72.8 Pa. Critically, it reduced power consumption by 17.4%—directly lowering operational costs for farmers. The “larger diameter, wider spacing” strategy resolves energy-uniformity conflicts, demonstrating how integrated multi-objective process control enables efficient greenhouse ventilation. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

34 pages, 25005 KB  
Article
Indoor Transmission of Respiratory Droplets Under Different Ventilation Systems Using the Eulerian Approach for the Dispersed Phase
by Yi Feng, Dongyue Li, Daniele Marchisio, Marco Vanni and Antonio Buffo
Fluids 2025, 10(7), 185; https://doi.org/10.3390/fluids10070185 - 14 Jul 2025
Viewed by 999
Abstract
Infectious diseases can spread through virus-laden respiratory droplets exhaled into the air. Ventilation systems are crucial in indoor settings as they can dilute or eliminate these droplets, underscoring the importance of understanding their efficacy in the management of indoor infections. Within the field [...] Read more.
Infectious diseases can spread through virus-laden respiratory droplets exhaled into the air. Ventilation systems are crucial in indoor settings as they can dilute or eliminate these droplets, underscoring the importance of understanding their efficacy in the management of indoor infections. Within the field of fluid dynamics methods, the dispersed droplets may be approached through either a Lagrangian framework or an Eulerian framework. In this study, various Eulerian methodologies are systematically compared against the Eulerian–Lagrangian (E-L) approach across three different scenarios: the pseudo-single-phase model (PSPM) for assessing the transport of gaseous pollutants in an office with displacement ventilation (DV), stratum ventilation (SV), and mixing ventilation (MV); the two-fluid model (TFM) for evaluating the transport of non-evaporating particles within an office with DV and MV; and the two-fluid model-population balance equation (TFM-PBE) approach for analyzing the transport of evaporating droplets in a ward with MV. The Eulerian and Lagrangian approaches present similar agreement with the experimental data, indicating that the two approaches are comparable in accuracy. The computational cost of the E-L approach is closely related to the number of tracked droplets; therefore, the Eulerian approach is recommended when the number of droplets required by the simulation is large. Finally, the performances of DV, SV, and MV are presented and discussed. DV creates a stratified environment due to buoyant flows, which transport respiratory droplets upward. MV provides a well-mixed environment, resulting in a uniform dispersion of droplets. SV supplies fresh air directly to the breathing zone, thereby effectively reducing infection risk. Consequently, DV and SV are preferred to reduce indoor infection. Full article
(This article belongs to the Special Issue Respiratory Flows)
Show Figures

Figure 1

26 pages, 8089 KB  
Article
Thermal Resilience of Public Building Atriums Under Different States During Heatwaves
by Guangyi Zhang, Linxue Li, Yang Yu, Jinhao Liu and Qi Zhang
Buildings 2025, 15(4), 598; https://doi.org/10.3390/buildings15040598 - 14 Feb 2025
Cited by 3 | Viewed by 1558
Abstract
Under the influence of climate change, extreme heat events are becoming more frequent and intense. Understanding the response mechanisms of public building spaces, such as atriums, during extreme heat events is of great significance for developing effective design strategies to enhance the thermal [...] Read more.
Under the influence of climate change, extreme heat events are becoming more frequent and intense. Understanding the response mechanisms of public building spaces, such as atriums, during extreme heat events is of great significance for developing effective design strategies to enhance the thermal resilience of buildings. This study investigated the effect of atrium spaces on the thermal resilience of buildings during heatwaves, focusing on their ability to mitigate high temperatures under two states: closed and open. The research monitored the indoor and outdoor temperature and humidity data of the atrium of a university building in Shanghai during a typical heatwave, and used statistical methods to analyze the relationships between the thermal resilience indicators and various environmental parameters, including the indoor and outdoor temperatures and ventilation states, to evaluate the thermal performance of the atrium. The results indicate that the atrium demonstrated robust thermal resilience under both closed and open conditions. In the closed phase, the indoor temperature was, on average, approximately 7 °C lower than the outdoor temperature, with the maximum difference reaching 11 °C, and the peak temperature delay was up to 4 h. In the open phase, despite exhibiting larger thermal fluctuations and an increase in temperature non-uniformity, the thermal resilience index improved significantly, from 0.231 in the closed phase to 0.047. The analytical framework developed in this study shows great potential for understanding the thermal resilience mechanisms of buildings during extreme heat events. Additionally, the data-driven insights are invaluable for informing the design strategies of public building spaces, especially in regions prone to extreme heat. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

16 pages, 2967 KB  
Article
Study on the Effect of Non-Uniform Ventilation on Energy and Plant Growth in a Greenhouse
by Ziteng Wang, Aiqun Bao, Jialei Li, Jinhong He, Kaiwen Wang, Xinke Wang and Xianpeng Sun
Horticulturae 2025, 11(2), 166; https://doi.org/10.3390/horticulturae11020166 - 5 Feb 2025
Cited by 1 | Viewed by 2126
Abstract
The progress of local environmental regulation in protected agriculture is sluggish, particularly concerning the local air supply, which poses a significant obstacle to greenhouse energy-saving research. This study establishes a test platform for local air supply in winter and summer by integrating design [...] Read more.
The progress of local environmental regulation in protected agriculture is sluggish, particularly concerning the local air supply, which poses a significant obstacle to greenhouse energy-saving research. This study establishes a test platform for local air supply in winter and summer by integrating design principles from human settlements’ supply air bag models with crop growth requirements. By utilizing a supply air bag to direct fresh air from the air conditioning system to specific areas within the greenhouse, non-uniform ventilation is created. Research has revealed that varying air supply levels in summer exerts a significant influence on environmental conditions, crop growth, and energy efficiency. Noticeable temperature stratification and cooling effects were observed within the conditioning greenhouse. The growth of lettuce was moderately enhanced, with mid-level local air supply demonstrating superior cooling effectiveness and range compared to the other two levels. Optimal control efficacy and energy conservation were achieved through mid-level local air supply. During daytime experiments in winter, this system did not have a significant impact on the greenhouse environment; however, during nighttime experiments, it consistently provided warming effects to maintain temperatures above the minimum requirement for lettuce growth. Therefore, utilizing air supply bags at secure specific positions and implementing targeted air supply methods within cultivation areas in greenhouses can facilitate the creation of suitable local environments for crop growth while achieving energy savings. Future research in this field could focus on further refining air supply bag models to enhance energy efficiency and local environmental control effects. Full article
(This article belongs to the Special Issue Latest Advances in Horticulture Production Equipment and Technology)
Show Figures

Figure 1

25 pages, 8162 KB  
Article
Parametric Analysis of the Factors Impacting the Spatial Distribution of Particles in a Bus Environment
by Zeinab Bahman Zadeh, Bryan E. Cummings and L. James Lo
Sustainability 2025, 17(3), 1051; https://doi.org/10.3390/su17031051 - 27 Jan 2025
Viewed by 1473
Abstract
This study presents a parametric analysis of the factors impacting particle distribution within a bus environment using computational fluid dynamics (CFD) simulations, with a primary focus on the relative concentration (RC) of particles. The Novel Relative Concentration (RC) metric, which measures the deviation [...] Read more.
This study presents a parametric analysis of the factors impacting particle distribution within a bus environment using computational fluid dynamics (CFD) simulations, with a primary focus on the relative concentration (RC) of particles. The Novel Relative Concentration (RC) metric, which measures the deviation from a return concentration, was used to assess the effects of ventilation rates, the number and spatial arrangement of particle emitters, and thermal conditions. Our investigation reveals that increasing air changes per hour (ACHs) from 5.74 h−1 to 28.66 h−1 reduces the overall particle concentration by approximately 45%, but localized high concentration zones persist, with maximum RC values observed at 1.57. Scenarios with evenly distributed emitters achieved near-uniform particle distribution, with RC values averaging around 0.95, while clustered emitters resulted in localized high concentrations, with RC values exceeding 2.0. Thermal conditions were found to have a minimal effect on RC, with average values of 1.664 for cooling and 1.588 for heating, showing only a 4.68% difference. The RC metric provided clear insights into the non-uniformity of particle distribution, highlighting areas prone to higher concentrations, with some zones reaching RC values of 2.5, indicating concentrations 2.5 times higher than the well-mixed average. These findings underscore the importance of optimizing ventilation systems for both overall air exchange and uniform air distribution, offering practical implications for improving air quality and reducing the risk of airborne pathogen transmission in public transportation systems. Future research should explore real-time ventilation adjustments based on passenger load, the effects of different particle types, and the development of models incorporating human behavior and movement patterns. Full article
Show Figures

Figure 1

19 pages, 6744 KB  
Article
Fire Resistance Performance of Constrained H-Shaped Steel Columns with Uneven Vertical Temperature Distributions
by Xiaoming Wang, Wenwen Chen, Jie Li and Taochun Yang
Buildings 2024, 14(9), 2826; https://doi.org/10.3390/buildings14092826 - 8 Sep 2024
Cited by 2 | Viewed by 1557
Abstract
Steel columns, which are widely used in building frameworks and spatial structures, are susceptible to capacity degradation during fires, potentially leading to the overall collapse of buildings. Existing research on the fire resistance of steel columns assumes that the temperature loads encountered by [...] Read more.
Steel columns, which are widely used in building frameworks and spatial structures, are susceptible to capacity degradation during fires, potentially leading to the overall collapse of buildings. Existing research on the fire resistance of steel columns assumes that the temperature loads encountered by steel columns are evenly distributed vertically. However, real-world fire scenarios often feature significant vertical temperature differences. Therefore, this study comprehensively investigated these variations to derive a temperature curve that accurately represents real fire conditions. Subsequently, the fire resistance limits of steel columns were studied using this temperature curve, leading to a revised calculation formula for the critical fire resistance temperatures of steel columns. The following conclusions were drawn: (1) Nonuniform longitudinal temperature distributions are influenced by parameters such as the fire source distance, the heights of ventilation openings, and the distance between a vent and the temperature measurement point. Among them, the fire source distance has the greatest impact, with the maximum longitudinal temperature difference reaching over 500 °C. (2) Variations in the load ratio and longitudinal temperature differences alter the failure positions of steel columns, reducing their critical temperatures by up to 200 °C. (3) The revised critical fire resistance temperature formula is more accurate and safer compared with that outlined in the “Technical Code for Fire Protection of Steel Structures” (GB51249-2017). These findings offer valuable insights for the fire designs of steel columns. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

12 pages, 2944 KB  
Article
Fluctuations in Humidity Influence the Structure Formation and Swelling of Casein Microparticles
by Calvin Hohn and Ronald Gebhardt
Colloids Interfaces 2024, 8(4), 45; https://doi.org/10.3390/colloids8040045 - 14 Aug 2024
Cited by 1 | Viewed by 2008
Abstract
Caseins are a sustainable alternative to non-biodegradable materials for the production of functional microparticles. These show a characteristic swelling behavior when they are prepared from micellar casein under gentle conditions using depletion flocculation and subsequent film drying. The typical two-step swelling process is [...] Read more.
Caseins are a sustainable alternative to non-biodegradable materials for the production of functional microparticles. These show a characteristic swelling behavior when they are prepared from micellar casein under gentle conditions using depletion flocculation and subsequent film drying. The typical two-step swelling process is a result of the internal particulate network structure, which is surrounded by water channels. The seasonal and daily fluctuations in humidity during the 16 h film drying process influence the structure formation and swelling kinetics, which we analyze using system dynamics analysis. Microparticles with better and more uniform swelling properties can be produced using a drying apparatus with an integrated humidifier and ventilation system. At higher humidity levels, the casein micelles are less compressed during film drying, which facilitates the initial swelling of the microparticles. Furthermore, the more stable drying conditions in the drying apparatus result in a more homogeneous compaction of the film, which causes similar swelling rates for different microparticles. Full article
Show Figures

Graphical abstract

17 pages, 4358 KB  
Article
Distribution Characteristics and Prediction of Temperature and Relative Humidity in a South China Greenhouse
by Xinyu Wei, Bin Li, Huazhong Lu, Jiaming Guo, Zhaojie Dong, Fengxi Yang, Enli Lü and Yanhua Liu
Agronomy 2024, 14(7), 1580; https://doi.org/10.3390/agronomy14071580 - 20 Jul 2024
Cited by 4 | Viewed by 2566
Abstract
South China has a climate characteristic of high temperature and high humidity, and the temperature and relative humidity inside a Venlo greenhouse are higher than those in the atmosphere. This paper studied the effect of ventilation conditions on the spatial and temporal distribution [...] Read more.
South China has a climate characteristic of high temperature and high humidity, and the temperature and relative humidity inside a Venlo greenhouse are higher than those in the atmosphere. This paper studied the effect of ventilation conditions on the spatial and temporal distribution of temperature and relative humidity in a Venlo greenhouse. Two ventilation conditions, with and without a fan-pad system, were studied. A GA + BP neural network was applied to predict the temperature and relative humidity in fan-pad ventilation in the greenhouse. The results show that the temperature in the Venlo greenhouse ranged from 15.8 °C to 48.5 °C, and the relative humidity ranged from 24.9% to 100% during the tomato-planting cycle. The percentage of days when the temperature exceeded 35 °C was 67.3%, and the percentage of days when the average relative humidity exceeded 70% was 83.7%. The maximum temperature differences between the three heights under NV (Natural Ventilation) and FPV (Fan-pad Ventilation) conditions were 3.4 °C and 4.5 °C, respectively. The maximum relative humidity differences between the three heights under NV and FPV conditions were 8.4% and 21.7%, respectively. The maximum temperature difference in the longitudinal section under the FPV conditions was 3.2 °C, while the relative humidity was 11.4%. The cooling efficiency of the fan-pad system ranged from 16.6% to 70.2%. The non-uniform coefficients of the temperature under the FPV conditions were higher than those under the NV conditions, while the nonuniform coefficients of the relative humidity were the highest during the day. The R2, MAE, MAPE and RMSE of the temperature-testing model were 0.91, 0.94, 0.11, and 1.33, respectively, while those of relative humidity model were 0.93, 2.83, 0.10, and 3.86, respectively. The results provide a reference for the design and management of Venlo greenhouses in South China. Full article
Show Figures

Figure 1

14 pages, 3412 KB  
Article
Optimization Design of Indoor Environmental Ventilation in Buildings Based on Improved SVR-PSO Model
by Mengmeng Han, Chunxiao Zhang, Sihui Yin, Jingjing Jia and Chulsoo Kim
Sustainability 2024, 16(12), 5256; https://doi.org/10.3390/su16125256 - 20 Jun 2024
Cited by 3 | Viewed by 2142
Abstract
As the growth of society and the continuous upgrading of people’s living standards increase, people’s requirements for indoor environment are also increasing. To optimize the ventilation methods inside buildings, a numerical simulation method was used to construct numerical simulations of airflow organization and [...] Read more.
As the growth of society and the continuous upgrading of people’s living standards increase, people’s requirements for indoor environment are also increasing. To optimize the ventilation methods inside buildings, a numerical simulation method was used to construct numerical simulations of airflow organization and aerosol diffusion, and based on this model, better ventilation methods were determined. To optimize the determined better ventilation method, a multi-constraint optimization model was constructed using infection probability, thermal comfort, energy utilization coefficient, and velocity non-uniformity coefficient. The ventilation method was optimized through multi-objective constraints. To solve the optimization model, an optimized particle swarm algorithm was studied and designed. The results showed that under the “air rain” flow field, the maximum values of aerosol particles at the human body, bed surface, and outlet were 171, 769, and 19,973, respectively, while the minimum values were 4, 169, and 2197, respectively. The “air rain” flow field is a better ventilation method. The maximum and minimum values of the original non-uniformity coefficient were 0.44 and 0.08, respectively. After optimization by the particle swarm optimization algorithm, the maximum and minimum predicted non-uniformity coefficients were 0.457 and 0.08, respectively. The original value and predicted value are very close. The numerical model and algorithm constructed by the research institute are effective. The algorithm designed by the research institute can provide technical support for multi-objective optimization of indoor ventilation methods. Full article
Show Figures

Figure 1

Back to TopTop