Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (421)

Search Parameters:
Keywords = non-uniform velocity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1771 KiB  
Article
Steady Radial Diverging Flow of a Particle-Laden Fluid with Particle Migration
by C. Q. Ru
Fluids 2025, 10(8), 200; https://doi.org/10.3390/fluids10080200 - 1 Aug 2025
Abstract
The steady plane radial diverging flow of a viscous or inviscid particle-fluid suspension is studied using a novel two-fluid model. For the initial flow field with a uniform particle distribution, our results show that the relative velocity of particles with respect to the [...] Read more.
The steady plane radial diverging flow of a viscous or inviscid particle-fluid suspension is studied using a novel two-fluid model. For the initial flow field with a uniform particle distribution, our results show that the relative velocity of particles with respect to the fluid depends on their inlet velocity ratio at the entrance, the mass density ratio and the Stokes number of particles, and the particles heavier (or lighter) than the fluid will move faster (or slower) than the fluid when their inlet velocities are equal (then Stokes drag vanishes at the entrance). The relative motion of particles with respect to the fluid leads to particle migration and the non-uniform distribution of particles. An explicit expression is obtained for the steady particle distribution eventually attained due to particle migration. Our results demonstrated and confirmed that, for both light particles (gas bubbles) and heavy particles, depending on the particle-to-fluid mass density ratio, the volume fraction of particles attains its maximum or minimum value near the entrance of the radial flow and after then monotonically decreases or increases with the radial coordinate and converges to an asymptotic value determined by the particle-to-fluid inlet velocity ratio. Explicit solutions given here could help quantify the steady particle distribution in the decelerating radial flow of a particle-fluid suspension. Full article
(This article belongs to the Special Issue 10th Anniversary of Fluids—Recent Advances in Fluid Mechanics)
Show Figures

Figure 1

21 pages, 8624 KiB  
Article
Comparison of GOES16 Data with the TRACER-ESCAPE Field Campaign Dataset for Convection Characterization: A Selection of Case Studies and Lessons Learnt
by Aida Galfione, Alessandro Battaglia, Mariko Oue, Elsa Cattani and Pavlos Kollias
Remote Sens. 2025, 17(15), 2621; https://doi.org/10.3390/rs17152621 - 28 Jul 2025
Viewed by 188
Abstract
Convective updrafts are one of the main characteristics of convective clouds, responsible for the convective mass flux and the redistribution of energy and condensate in the atmosphere. During the early stages of their lifecycle, convective clouds experience rapid cloud-top ascent manifested by a [...] Read more.
Convective updrafts are one of the main characteristics of convective clouds, responsible for the convective mass flux and the redistribution of energy and condensate in the atmosphere. During the early stages of their lifecycle, convective clouds experience rapid cloud-top ascent manifested by a decrease in the geostationary IR brightness temperature (TBIR). Under the assumption that the convective cloud top behaves like a black body, the ascent rate of the convective cloud top can be estimated as (TBIRt), and it can be used to infer the near cloud-top convective updraft. The temporal resolution of the geostationary IR measurements and non-uniform beam-filling effects can influence the convective updraft estimation. However, the main shortcoming until today was the lack of independent verification of the strength of the convective updraft. Here, Doppler radar observations from the ESCAPE and TRACER field experiments provide independent estimates of the convective updraft velocity at higher spatiotemporal resolution throughout the convective core column and can be used to evaluate the updraft velocity estimates from the IR cooling rate for limited samples. Isolated convective cells were tracked with dedicated radar (RHIs and PPIs) scans throughout their lifecycle. Radial Doppler velocity measurements near the convective cloud top are used to provide estimates of convective updrafts. These data are compared with the geostationary IR and VIS channels (from the GOES satellite) to characterize the convection evolution and lifecycle based on cloud-top cooling rates. Full article
Show Figures

Figure 1

33 pages, 2542 KiB  
Article
Trapped Modes Along Periodic Structures Submerged in a Three-Layer Fluid with a Background Steady Flow
by Gonçalo A. S. Dias and Bruno M. M. Pereira
Computation 2025, 13(8), 176; https://doi.org/10.3390/computation13080176 - 22 Jul 2025
Viewed by 123
Abstract
In this study, we study the trapping of linear water waves by infinite arrays of three-dimensional fixed periodic structures in a three-layer fluid. Each layer has an independent uniform velocity field with respect to the fixed ground in addition to the internal modes [...] Read more.
In this study, we study the trapping of linear water waves by infinite arrays of three-dimensional fixed periodic structures in a three-layer fluid. Each layer has an independent uniform velocity field with respect to the fixed ground in addition to the internal modes along the interfaces between layers. Dynamical stability between velocity shear and gravitational pull constrains the layer velocities to a neighbourhood of the diagonal U1=U2=U3 in velocity space. A non-linear spectral problem results from the variational formulation. This problem can be linearized, resulting in a geometric condition (from energy minimization) that ensures the existence of trapped modes within the limits set by stability. These modes are solutions living the discrete spectrum that do not radiate energy to infinity. Symmetries reduce the global problem to solutions in the first octant of the three-dimensional velocity space. Examples are shown of configurations of obstacles which satisfy the stability and geometric conditions, depending on the values of the layer velocities. The robustness of the result of the vertical column from previous studies is confirmed in the new configurations. This allows for comparison principles (Cavalieri’s principle, etc.) to be used in determining whether trapped modes are generated. Full article
(This article belongs to the Special Issue Advances in Computational Methods for Fluid Flow)
Show Figures

Figure 1

22 pages, 7942 KiB  
Article
Research on the Influence of Impeller Oblique Cutting Angles on the Performance of Double-Suction Pumps
by Zhongsheng Wang, Xinxin Li, Jun Liu, Ji Pei, Wenjie Wang, Kuilin Wang and Hongyu Wang
Energies 2025, 18(15), 3907; https://doi.org/10.3390/en18153907 - 22 Jul 2025
Viewed by 152
Abstract
Double-suction centrifugal pumps are extensively employed in industrial applications owing to their high efficiency, low vibration, superior cavitation resistance, and operational durability. This study analyzes how impeller oblique cutting angles (0°, 6°, 9°, 12°) affect a double-suction pump at a fixed 4% trimming [...] Read more.
Double-suction centrifugal pumps are extensively employed in industrial applications owing to their high efficiency, low vibration, superior cavitation resistance, and operational durability. This study analyzes how impeller oblique cutting angles (0°, 6°, 9°, 12°) affect a double-suction pump at a fixed 4% trimming ratio and constant average post-trim diameter. Numerical simulations and tests reveal that under low-flow (0.7Qd) and design-flow conditions, the flat-cut (0°) minimizes reflux ratio and maximizes efficiency by aligning blade outlet flow with the mainstream. Increasing oblique cutting angles disrupts this alignment, elevating reflux and reducing efficiency. Conversely, at high flow (1.3Qd), the 12° bevel optimizes outlet flow, achieving peak efficiency. Pressure pulsation at the volute tongue (P11) peaks at the blade-passing frequency, with amplitudes significantly higher for 9°/12° bevels than for 0°/6°. The flat-cut suppresses wake vortices and static–rotor interaction, but oblique cutting angle choice critically influences shaft-frequency pulsation. Entropy analysis identifies the volute as the primary loss source. Larger oblique cutting angles intensify wall effects, increasing total entropy; pump chamber losses rise most sharply due to worsened outlet velocity non-uniformity and turbulent dissipation. The flat-cut yields minimal entropy at Qd. These findings provide a basis for tailoring impeller trimming to specific operational requirements. Furthermore, the systematic analysis provides critical guidance for impeller trimming strategies in other double-suction pumps and pumps as turbines in micro hydropower plants. Full article
(This article belongs to the Special Issue Optimization Design and Simulation Analysis of Hydraulic Turbine)
Show Figures

Figure 1

19 pages, 4674 KiB  
Article
Flow Field Optimization for Enhanced SCR Denitrification: A Numerical Study of the Chizhou Power Plant Retrofit
by Wendong Wang, Zongming Peng, Sanmei Zhao, Bin Li, Haihua Li, Zhongqian Ling, Maosheng Liu and Guangxue Zhang
Processes 2025, 13(7), 2304; https://doi.org/10.3390/pr13072304 - 19 Jul 2025
Viewed by 301
Abstract
Denitrification technology in thermal power plants plays a critical role in reducing nitrogen oxide (NOx) emissions, thereby improving air quality and mitigating climate change. This study conducts a numerical simulation of the SCR (Selective Catalytic Reduction) system at the Chizhou Power Plant to [...] Read more.
Denitrification technology in thermal power plants plays a critical role in reducing nitrogen oxide (NOx) emissions, thereby improving air quality and mitigating climate change. This study conducts a numerical simulation of the SCR (Selective Catalytic Reduction) system at the Chizhou Power Plant to optimize its flow field configuration. The original system exhibited severe flow non-uniformity, with local maximum velocities reaching 40 m/s and a velocity deviation coefficient of 28% at the inlet of the first catalyst layer. After optimizing the deflector design, the maximum local velocity was reduced to 21 m/s, and the velocity deviation coefficient decreased to 14.1%. These improvements significantly enhanced flow uniformity, improved catalyst efficiency, and are expected to extend equipment service life. The findings provide a practical reference for the retrofit and performance enhancement of SCR systems in similar coal-fired power plants. Full article
(This article belongs to the Special Issue Advances in Combustion Processes: Fundamentals and Applications)
Show Figures

Figure 1

26 pages, 4282 KiB  
Article
Optimizing Perforated Duct Systems for Energy-Efficient Ventilation in Semi-Closed Greenhouses Through Process Regulation
by Chuanqing Wang, Jianlu Fu, Qiusheng Zhang, Baoyong Sheng, Fen He, Guanshan Zhang, Xiaoming Ding and Nan Cao
Processes 2025, 13(7), 2253; https://doi.org/10.3390/pr13072253 - 15 Jul 2025
Viewed by 254
Abstract
Traditional perforated duct designs fail to resolve the energy consumption-uniformity conflict in semi-closed greenhouses. To address this, we develop a CFD-RSM-NSGA-II framework that simultaneously minimizes velocity non-uniformity (CV-v), pressure loss (ΔP), and temperature variation (CV-t). Key parameters—hole diameter (6–10 mm), spacing (30–70 mm), [...] Read more.
Traditional perforated duct designs fail to resolve the energy consumption-uniformity conflict in semi-closed greenhouses. To address this, we develop a CFD-RSM-NSGA-II framework that simultaneously minimizes velocity non-uniformity (CV-v), pressure loss (ΔP), and temperature variation (CV-t). Key parameters—hole diameter (6–10 mm), spacing (30–70 mm), and inlet velocity (4–8 m/s)—are co-optimized. Model validation showed that the mean relative errors were 8.6% for velocity, 2.3% for temperature, and pressure deviations below 5 Pa, with the response surface model achieving an R2 of 0.9831 (p < 0.0001). Larger hole diameters improved CV-v, while wider spacings led to a decrease in uniformity. Pressure loss followed an opposite trend. Temperature variation was mostly affected by inlet velocity. Sensitivity analysis revealed that hole diameter was the most influential factor, followed by spacing and velocity, with a significant interaction between diameter and spacing. Using entropy-weighted TOPSIS coupled with NSGA-II, the optimization identified an optimal configuration (hole diameter = 9.0 mm, spacing = 65 mm, velocity = 7.0 m/s). This solution achieved a 58.8% reduction in CV-v, a 10.8% decrease in ΔP, and a 5.2% improvement in CV-t, while stabilizing inlet static pressure at 72.8 Pa. Critically, it reduced power consumption by 17.4%—directly lowering operational costs for farmers. The “larger diameter, wider spacing” strategy resolves energy-uniformity conflicts, demonstrating how integrated multi-objective process control enables efficient greenhouse ventilation. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

37 pages, 6674 KiB  
Article
Marangoni Convection of Self-Rewetting Fluid Layers with a Deformable Interface in a Square Enclosure and Driven by Imposed Nonuniform Heat Energy Fluxes
by Bashir Elbousefi, William Schupbach and Kannan N. Premnath
Energies 2025, 18(13), 3563; https://doi.org/10.3390/en18133563 - 6 Jul 2025
Viewed by 257
Abstract
Fluids that exhibit self-rewetting properties, such as aqueous long-chain alcohol solutions, display a unique quadratic relationship between surface tension and temperature and are marked by a positive gradient. This characteristic leads to distinctive patterns of thermocapillary convection and associated interfacial dynamics, setting self-rewetting [...] Read more.
Fluids that exhibit self-rewetting properties, such as aqueous long-chain alcohol solutions, display a unique quadratic relationship between surface tension and temperature and are marked by a positive gradient. This characteristic leads to distinctive patterns of thermocapillary convection and associated interfacial dynamics, setting self-rewetting fluids apart from normal fluids (NFs). The potential to improve heat transfer using self-rewetting fluids (SRFs) is garnering interest for use in various technologies, including low-gravity conditions and microfluidic systems. Our research aims to shed light on the contrasting behaviors of SRFs in comparison to NFs regarding interfacial transport phenomena. This study focuses on the thermocapillary convection in SRF layers with a deformable interface enclosed inside a closed container modeled as a square cavity, which is subject to nonuniform heating, represented using a Gaussian profile for the heat flux variation on one of its sides, in the absence of gravity. To achieve this, we have enhanced a central-moment-based lattice Boltzmann method (LBM) utilizing three distribution functions for tracking interfaces, computing two-fluid motions with temperature-dependent surface tension and energy transport, respectively. Through numerical simulations, the impacts of several characteristic parameters, including the viscosity and thermal conductivity ratios, as well as the surface tension–temperature sensitivity parameters, on the distribution and magnitude of the thermocapillary-driven motion are examined. In contrast to that in NFs, the counter-rotating pair of vortices generated in the SRF layers, due to the surface tension gradient at the interface, is found to be directed toward the SRF layers’ hotter zones. Significant interfacial deformations are observed, especially when there are contrasts in the viscosities of the SRF layers. The thermocapillary convection is found to be enhanced if the bottom SRF layer has a higher thermal conductivity or viscosity than that of the top layer or when distributed, rather than localized, heating is applied. Furthermore, the higher the magnitude of the effect of the dimensionless quadratic surface tension sensitivity coefficient on the temperature, or of the effect of the imposed heat flux, the greater the peak interfacial velocity current generated due to the Marangoni stresses. In addition, an examination of the Nusselt number profiles reveals significant redistribution of the heat transfer rates in the SRF layers due to concomitant nonlinear thermocapillary effects. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

20 pages, 6872 KiB  
Article
The Simulation of Grouting Behavior in the Pea Gravel Filling Layer Behind a Double-Shield TBM Based on the Level Set Method
by Xinlong Li, Yulong Zhang, Dongjiao Cao, Yang Liu and Lin Chen
Appl. Sci. 2025, 15(13), 7542; https://doi.org/10.3390/app15137542 - 4 Jul 2025
Viewed by 274
Abstract
In double-shield TBM tunnel construction, grouting plays a vital role in consolidating the gravel backfill and maintaining the integrity of the segmental lining. To investigate the permeation behavior of grout within the pea gravel layer, a fluid dynamics model was developed in this [...] Read more.
In double-shield TBM tunnel construction, grouting plays a vital role in consolidating the gravel backfill and maintaining the integrity of the segmental lining. To investigate the permeation behavior of grout within the pea gravel layer, a fluid dynamics model was developed in this study. The model directly simulates the flow of grout through the porous medium by solving the Navier–Stokes equations and employs the level set method to track the evolving interface between the grout and air phases. Unlike conventional continuum approaches, this model incorporates particle-scale heterogeneity, allowing for a more realistic analysis of grout infiltration through the non-uniform pore structures formed by gravel packing. Three different grouting port positions and two boundary conditions are considered in the simulation. The results indicate that under pressure boundary conditions, the grout flow rate increases rapidly in the initial stage, and then decreases and stabilizes, with the flow rate peak increasing as the grout port moves upward. Under velocity boundary conditions, the injection pressure grows slowly in the early stage but accelerates with time. Additionally, the rate of pressure change is faster when the grout port is located lower in the backfilling layer. Through theoretical analysis, the existing analytical formula was extended by introducing a gravitational correction term. When the grouting port is near the upper part of the tunnel, the analytical solution aligns well with the numerical simulation results, but as the grout port moves downward, the discrepancy between the two increases. Full article
Show Figures

Figure 1

17 pages, 2302 KiB  
Article
Temporal Evolution of Small-Amplitude Internal Gravity Waves Generated by Latent Heating in an Anelastic Fluid Flow
by Amir A. M. Sayed, Amna M. Grgar and Lucy J. Campbell
AppliedMath 2025, 5(3), 80; https://doi.org/10.3390/appliedmath5030080 - 30 Jun 2025
Viewed by 176
Abstract
A two-dimensional time-dependent model is presented for upward-propagating internal gravity waves generated by an imposed thermal forcing in a layer of fluid with uniform background velocity and stable stratification under the anelastic approximation. The configuration studied is representative of a situation with deep [...] Read more.
A two-dimensional time-dependent model is presented for upward-propagating internal gravity waves generated by an imposed thermal forcing in a layer of fluid with uniform background velocity and stable stratification under the anelastic approximation. The configuration studied is representative of a situation with deep or shallow latent heating in the lower atmosphere where the amplitude of the waves is small enough to allow linearization of the model equations. Approximate asymptotic time-dependent solutions, valid for late time, are obtained for the linearized equations in the form of an infinite series of terms involving Bessel functions. The asymptotic solution approaches a steady-amplitude state in the limit of infinite time. A weakly nonlinear analysis gives a description of the temporal evolution of the zonal mean flow velocity and temperature resulting from nonlinear interaction with the waves. The linear solutions show that there is a vertical variation of the wave amplitude which depends on the relative depth of the heating to the scale height of the atmosphere. This means that, from a weakly nonlinear perspective, there is a non-zero divergence of vertical momentum flux, and hence, a non-zero drag force, even in the absence of vertical shear in the background flow. Full article
(This article belongs to the Special Issue Exploring the Role of Differential Equations in Climate Modeling)
Show Figures

Figure 1

27 pages, 10184 KiB  
Article
The Impact of Bedrock Material Conditions on the Seismic Behavior of an Earth Dam Using Experimentally Derived Spatiotemporal Parameters for Spatially Varying Ground Motion
by Paweł Boroń and Joanna Maria Dulińska
Materials 2025, 18(13), 3005; https://doi.org/10.3390/ma18133005 - 25 Jun 2025
Viewed by 317
Abstract
This study investigates the influence of bedrock material conditions on the seismic behavior of the Niedzica earth dam in southern Poland. It examines the dam’s dynamic response to a real seismic event—the 2004 Podhale earthquake—and evaluates how different foundation conditions affect structural performance [...] Read more.
This study investigates the influence of bedrock material conditions on the seismic behavior of the Niedzica earth dam in southern Poland. It examines the dam’s dynamic response to a real seismic event—the 2004 Podhale earthquake—and evaluates how different foundation conditions affect structural performance under spatially varying ground motions. A spatially varying ground motion excitation model was developed, incorporating both wave coherence loss and wave passage effects. Seismic data was collected from three monitoring stations: two located in fractured bedrock beneath the dam and one installed in the surrounding intact Carpathian flysch. From these recordings, two key spatiotemporal parameters were experimentally determined: the seismic wave velocity and the spatial scale parameter (α), which reflects the degree of signal incoherence. For the fractured bedrock beneath the dam, the wave velocity was 2800 m/s and α = 0.43; for the undisturbed flysch, it was 3540 m/s and α = 0.82. A detailed 3D finite element model of the dam was developed in ABAQUS and subjected to time history analyses under three excitation scenarios: (1) uniform input, (2) non-uniform input with coherence loss, and (3) non-uniform input including both coherence loss and wave passage effects. The results show that the dam’s seismic response is highly sensitive to the choice of spatiotemporal parameters. Using generalized values from the flysch reduced predicted shear stresses by up to 16% compared to uniform excitation. However, when the precise parameters for the fractured bedrock were applied, the reductions increased to as much as 24%. This change in response is attributed to the higher incoherence of seismic waves in fractured material, which causes greater desynchronization of ground motion across the dam’s foundation. Even small-scale geological differences—when properly reflected in the spatiotemporal model—can significantly influence seismic safety evaluations of large-scale structures. Ultimately, shifting from regional to site-specific parameters enables a more realistic assessment of dynamic stress distribution. Full article
Show Figures

Figure 1

20 pages, 1987 KiB  
Article
Genomic Anomaly Detection with Functional Data Analysis
by Ria Kanjilal, Andre Luiz Campelo dos Santos, Sandipan Paul Arnab, Michael DeGiorgio and Raquel Assis
Genes 2025, 16(6), 710; https://doi.org/10.3390/genes16060710 - 15 Jun 2025
Viewed by 745
Abstract
Background: Genetic variation provides a foundation for understanding evolution. With the rise of artificial intelligence, machine learning has emerged as a powerful tool for identifying genomic footprints of evolutionary processes through simulation-based predictive modeling. However, existing approaches require prior knowledge of the factors [...] Read more.
Background: Genetic variation provides a foundation for understanding evolution. With the rise of artificial intelligence, machine learning has emerged as a powerful tool for identifying genomic footprints of evolutionary processes through simulation-based predictive modeling. However, existing approaches require prior knowledge of the factors shaping genetic variation, whereas uncovering anomalous genomic regions regardless of their causes remains an equally important and complementary endeavor. Methods: To address this problem, we introduce ANDES (ANomaly DEtection using Summary statistics), a suite of algorithms that apply statistical techniques to extract features for unsupervised anomaly detection. A key innovation of ANDES is its ability to account for autocovariation due to linkage disequilibrium by fitting curves to contiguous windows and computing their first and second derivatives, thereby capturing the “velocity” and “acceleration” of genetic variation. These features are then used to train models that flag biologically significant or artifactual regions. Results: Application to human genomic data demonstrates that ANDES successfully detects anomalous regions that colocalize with genes under positive or balancing selection. Moreover, these analyses reveal a non-uniform distribution of anomalies, which are enriched in specific autosomes, intergenic regions, introns, and regions with low GC content, repetitive sequences, and poor mappability. Conclusions: ANDES thus offers a novel, model-agnostic framework for uncovering anomalous genomic regions in both model and non-model organisms. Full article
(This article belongs to the Section Technologies and Resources for Genetics)
Show Figures

Figure 1

12 pages, 5133 KiB  
Article
Exploring the Impact of Inlet Velocity Distribution on the Thermal Performance of a Laser Rod in a Diode Side-Pumped Amplifier
by Shuzhen Nie, Jinglan Lin, Tianzhuo Zhao and Xiaolong Liu
Photonics 2025, 12(6), 603; https://doi.org/10.3390/photonics12060603 - 12 Jun 2025
Viewed by 811
Abstract
Research on the thermal analysis of laser diode (LD) side-pumped amplifiers is a critical step in the design of high-power solid-state laser systems. Instead of adopting a standard solid modeling approach that only considers a laser rod, a fluid–structure interaction model is employed [...] Read more.
Research on the thermal analysis of laser diode (LD) side-pumped amplifiers is a critical step in the design of high-power solid-state laser systems. Instead of adopting a standard solid modeling approach that only considers a laser rod, a fluid–structure interaction model is employed for analysis using the FLUENT 2021 R1 software. This model integrates the cooling structure, coolant, and laser rod, incorporating their relevant material parameters. By considering both uniform and non-uniform inlet velocity distributions as loading conditions, the study reveals remarkably different thermal simulation results. The correlation between thermal analysis outcomes and the total inlet flow rates is calculated, while temperature and stress distributions are obtained under a varying internal heat source. It was observed that the non-uniform inlet velocity distribution has little impact on the rod’s maximum temperature but significantly influences the maximum equivalent stress. This finding underscores the necessity of accounting for non-uniform inlet distributions during the design of laser amplifiers to achieve more accurate thermal simulation results and optimize structural reliability. Full article
(This article belongs to the Special Issue Advances in Solid-State Laser Technology and Applications)
Show Figures

Figure 1

20 pages, 1843 KiB  
Article
Fractional Dynamics of Laser-Induced Heat Transfer in Metallic Thin Films: Analytical Approach
by M. A. I. Essawy, Reham A. Rezk and Ayman M. Mostafa
Fractal Fract. 2025, 9(6), 373; https://doi.org/10.3390/fractalfract9060373 - 10 Jun 2025
Viewed by 597
Abstract
This study introduces an innovative analytical solution to the time-fractional Cattaneo heat conduction equation, which models photothermal transport in metallic thin films subjected to short laser pulse irradiation. The model integrates the Caputo fractional derivative of order 0 < p ≤ 1, addressing [...] Read more.
This study introduces an innovative analytical solution to the time-fractional Cattaneo heat conduction equation, which models photothermal transport in metallic thin films subjected to short laser pulse irradiation. The model integrates the Caputo fractional derivative of order 0 < p ≤ 1, addressing non-Fourier heat conduction characterized by finite wave speed and memory effects. The equation is nondimensionalized through suitable scaling, incorporating essential elements such as a newly specified laser absorption coefficient and uniform initial and boundary conditions. A hybrid approach utilizing the finite Fourier cosine transform (FFCT) in spatial dimensions and the Laplace transform in temporal dimensions produces a closed-form solution, which is analytically inverted using the two-parameter Mittag–Leffler function. This function inherently emerges from fractional-order systems and generalizes traditional exponential relaxation, providing enhanced understanding of anomalous thermal dynamics. The resultant temperature distribution reflects the spatiotemporal progression of heat from a spatially Gaussian and temporally pulsed laser source. Parametric research indicates that elevating the fractional order and relaxation time amplifies temporal damping and diminishes thermal wave velocity. Dynamic profiles demonstrate the responsiveness of heat transfer to thermal and optical variables. The innovation resides in the meticulous analytical formulation utilizing a realistic laser source, the clear significance of the absorption parameter that enhances the temperature amplitude, the incorporation of the Mittag–Leffler function, and a comprehensive investigation of fractional photothermal effects in metallic nano-systems. This method offers a comprehensive framework for examining intricate thermal dynamics that exceed experimental capabilities, pertinent to ultrafast laser processing and nanoscale heat transfer. Full article
Show Figures

Figure 1

18 pages, 3000 KiB  
Article
Multi-Objective Trajectory Planning for Robotic Arms Based on MOPO Algorithm
by Mingqi Zhang, Jinyue Liu, Yi Wu, Tianyu Hou and Tiejun Li
Electronics 2025, 14(12), 2371; https://doi.org/10.3390/electronics14122371 - 10 Jun 2025
Viewed by 406
Abstract
This research describes a multi-objective trajectory planning method for robotic arms based on time, energy, and impact. The quintic Non-Uniform Rational B-Spline (NURBS) curve was employed to interpolate the trajectory in joint space. The quintic NURBS interpolation curve can make the trajectory become [...] Read more.
This research describes a multi-objective trajectory planning method for robotic arms based on time, energy, and impact. The quintic Non-Uniform Rational B-Spline (NURBS) curve was employed to interpolate the trajectory in joint space. The quintic NURBS interpolation curve can make the trajectory become constrained within the kinematic limits of velocity, acceleration, and jerk while also satisfying the continuity of jerk. Then, based on the Parrot Optimization (PO) algorithm, through improvements to reduce algorithmic randomness and the introduction of appropriate multi-objective strategies, the algorithm was extended to the Multi-Objective Parrot Optimization (MOPO) algorithm, which better balances global search and local convergence, thereby more effectively solving multi-objective optimization problems and reducing the impact on optimization results. Subsequently, by integrating interpolation curves, the multi-objective optimization of joint trajectories could be performed under robotic kinematic constraints based on time–energy-jerk criteria. The obtained Pareto optimal front can provide decision-makers in industrial robotic arm applications with flexible options among non-dominated solutions. Full article
Show Figures

Figure 1

23 pages, 2951 KiB  
Article
A Novel Approach to Automatically Balance Flow in Profile Extrusion Dies Through Computational Modeling
by Gabriel Wagner, João Vidal, Pierre Barbat, Jean-Marc Gonnet and João M. Nóbrega
Polymers 2025, 17(11), 1498; https://doi.org/10.3390/polym17111498 - 28 May 2025
Viewed by 561
Abstract
This work presents a novel fully automated computational framework for optimizing profile extrusion dies, aiming to achieve balanced flow at the die flow channel outlet while minimizing total pressure drop. The framework integrates non-isothermal, non-Newtonian flow modeling in OpenFOAM with a geometry parameterization [...] Read more.
This work presents a novel fully automated computational framework for optimizing profile extrusion dies, aiming to achieve balanced flow at the die flow channel outlet while minimizing total pressure drop. The framework integrates non-isothermal, non-Newtonian flow modeling in OpenFOAM with a geometry parameterization routine in FreeCAD and a Bayesian optimization algorithm from Scikit-Optimize. A custom solver was developed to account for temperature-dependent viscosity using the Bird–Carreau–Arrhenius model, incorporating viscous dissipation and a novel boundary condition to replicate the thermal regulation used in the experimental process. For optimization, the die flow channel outlet cross-section is discretized into elemental sections, enabling localized flow analysis and establishing a convergence criterion based on the total objective function value. A case study on a tire tread die demonstrates the framework’s ability to iteratively refine internal geometry by adjusting key design parameters, resulting in significant improvements in outlet velocity uniformity and reduced pressure drop. Within the searching space, the results showed an optimal objective function of 0.2001 for the best configuration, compared to 0.7333 for the worst configuration, representing an enhancement of 72.7%. The results validate the effectiveness of the proposed framework in navigating complex design spaces with minimal manual input, offering a robust and generalizable approach to extrusion die optimization. This methodology enhances process efficiency, reduces development time, and improves final product quality, particularly for complex and asymmetric die geometries commonly found in the automotive and tire manufacturing industries. Full article
Show Figures

Figure 1

Back to TopTop