Flow Field Optimization for Enhanced SCR Denitrification: A Numerical Study of the Chizhou Power Plant Retrofit
Abstract
1. Introduction
2. Models, Algorithms, and Networks Used for Numerical Simulation
2.1. Software Platform Used for Simulation
2.2. Basic Governing Equations
2.3. Turbulence Model Selection
2.4. Geometry
2.5. Meshing
2.6. Boundary Conditions and Physical Parameters
3. Numerical Simulation Results and Scheme Optimization Before and After Transformation
3.1. Simulation and Analysis of Numerical Results Before Transformation
3.1.1. Simulation Results
3.1.2. Analysis of Existing Issues
3.2. Transformation Plan and Simulation Results
3.2.1. Renovation Scheme Design
3.2.2. Simulation Results of the Retrofit Scheme
3.2.3. Evaluation of Transformation Effect
4. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prisyazhniuk, V.A. Strategies for emission reduction from thermal power plants. J. Environ. Manag. 2006, 80, 75–82. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Khanam, S. Energy integration in boiler section of thermal power plant. J. Clean. Prod. 2018, 202, 601–615. [Google Scholar] [CrossRef]
- Król, J.; Ocłoń, P. Economic analysis of heat and electricity production in combined heat and power plant equipped with steam and water boilers and natural gas engines. Energy Convers. Manag. 2018, 176, 11–29. [Google Scholar] [CrossRef]
- Huang, Z.; Deng, L.; Che, D. Development and technical progress in large-scale circulating fluidized bed boiler in China. Front. Energy 2020, 14, 699–714. [Google Scholar] [CrossRef]
- Chen, C.-L.; Lin, C.-Y.; Lee, J.-Y. Retrofit of steam power plants in a petroleum refinery. Appl. Therm. Eng. 2013, 61, 7–16. [Google Scholar] [CrossRef]
- Yue, G.; Cai, R.; Lu, J.; Zhang, H. From a CFB reactor to a CFB boiler–The review of R&D progress of CFB coal combustion. Technol. China Powder Technol. 2017, 316, 18–28. [Google Scholar]
- Kassym, R.; Bakhtiyar, B.; Tokmoldayev, A.; Tursunbayeva, G.; Korobkov, M.; Issakhanov, M.; Manapova, G.; Mergalimova, A.; Baimukhanbetov, A. Development of an Experimental Energy Complex Based on a Boiler Plant with an Automated Burner for Its Energy Use. East.-Eur. J. Enterp. Technol. 2024, 132, 56–65. [Google Scholar] [CrossRef]
- Elwardany, M. Enhancing steam boiler efficiency through comprehensive energy and exergy analysis: A review. Process Saf. Environ. Prot. 2024, 184, 1222–1250. [Google Scholar] [CrossRef]
- Boopathi Raja, G. Industrial boiler safety monitoring system. In Industrial Control Systems; Wiley: Hoboken, NJ, USA, 2024; pp. 15–36. [Google Scholar]
- Bhatia, A. Improving energy efficiency of boiler systems. In Continuing Education and Development Engineering; Continuing Education and Development, Inc.: Stony Point, NY, USA, 2012; pp. 1–55. [Google Scholar]
- Gao, X.; Yuan, S.; Weng, J.; Zhao, P.; Wang, C.; Che, D. Research Progress of NO x Control Technology in Biomass-fired Boiler. Biomass Chem. Eng. 2022, 56, 51. [Google Scholar]
- Zhang, P.; Shao, Y.; Niu, J.; Zeng, X.; Zheng, X.; Wu, C. Effect of low-nitrogen combustion system with flue gas circulation technology on the performance of NOx emission in waste-to-energy power plant. Chem. Eng. Process.-Process Intensif. 2022, 175, 108910. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Q.; Zhang, X.; Gao, C.; Wang, B.; Huang, X.; Peng, Y.; Li, J.; Lu, C.; Crittenden, J. Multipollutant control (MPC) of flue gas from stationary sources using SCR technology: A critical review. Environ. Sci. Technol. 2021, 55, 2743–2766. [Google Scholar] [CrossRef]
- Muzio, L.; Quartucy, G.; Cichanowiczy, J. Overview and status of post-combustion NOx control: SNCR, SCR and hybrid technologies. Int. J. Environ. Pollut. 2002, 17, 4–30. [Google Scholar] [CrossRef]
- Pishgar, R.; Dominic, J.A.; Sheng, Z.; Tay, J.H. Denitrification performance and microbial versatility in response to different selection pressures. Bioresour. Technol. 2019, 281, 72–83. [Google Scholar] [CrossRef]
- Kurulekar, M.; Kumar, K.; Joshi, S.; Kulkarni, A. Pilot study on renovation, modernization and uprating of agricultural dependent power plant. Mater. Today Proc. 2023, 72, 1704–1711. [Google Scholar] [CrossRef]
- Girard, J.; Snow, R.; Cavataio, G.; Lambert, C. The Influence of Ammonia to NOx Ratio on SCR Performance; SAE International: Warrendale, PA, USA, 2007. [Google Scholar]
- Hwang, S.-C.; Nam, H. Analysis of Retrofit SCR System for Small-Sized Ship Diesel Engines Using Numerical Methods. Korean J. Chem. Eng. 2024, 41, 2351–2360. [Google Scholar] [CrossRef]
- Huang, H.; Sun, T.; Zhang, G.; Li, D.; Wei, H. Evaluation of a developed SST k-ω turbulence model for the prediction of turbulent slot jet impingement heat transfer. Int. J. Heat Mass Transf. 2019, 139, 700–712. [Google Scholar] [CrossRef]
- Zhang, W.; Calderon-Sanchez, J.; Duque, D.; Souto-Iglesias, A. Computational fluid dynamics (CFD) applications in floating offshore wind turbine (FOWT) dynamics: A review. Appl. Ocean. Res. 2024, 150, 104075. [Google Scholar] [CrossRef]
- Li, X.; Dai, G.; Wang, G.; Luo, Y.; Lin, H.; Wang, P.; Zhang, Y.; Zhang, J.; Tan, H.; Wang, X. NOx emission of pressurized oxy-biomass combustion: Experimental and modeling study in a pressurized entrained flow reactor. Appl. Therm. Eng. 2025, 262, 125111. [Google Scholar] [CrossRef]
- Zou, C.; Zhao, Q.; Zhang, G.; Xiong, B. Energy revolution: From a fossil energy era to a new energy era. Nat. Gas Ind. B 2016, 3, 1–11. [Google Scholar] [CrossRef]
- Weigand, B.; Simon, V. Laws of similarity in fluid mechanics. Flow Phenom. Nat. 2007, 1, 20–35. [Google Scholar]
- Wahba, E. Derivation of the differential continuity equation in an introductory engineering fluid mechanics course. Int. J. Mech. Eng. Educ. 2022, 50, 538–547. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, Q.; Chen, Y.; Zu, T. A shape-independent analytical method for gear mesh stiffness with asymmetric spalling defects. Sci. Rep. 2024, 14, 15545. [Google Scholar] [CrossRef] [PubMed]
- Debnath, A.; Roy, B.; Sinha, A. Assesment of RNG k-ε, SST k-ω and reynolds stress models for numerical simulation of DLR scramjet engine. Int. J. Mech. Prod. Eng. Res. Dev. 2019, 9, 1157–1166. [Google Scholar]
- Wróblewski, W.; Frączek, D. Heat transfer modelling in a rotating cavity using the SST k-ω turbulence model. Arch. Mech. 2014, 66, 343–364. [Google Scholar]
- Towery, C.A.Z.; Sáenz, J.A.; Livescu, D. Posterior comparison of model dynamics in several hybrid turbulence model forms. Phys. Fluids 2024, 36, 105148. [Google Scholar] [CrossRef]
- Duarte, C.A.R.; de Souza, F.J. Dynamic mesh approaches for eroded shape predictions. Wear 2021, 484, 203438. [Google Scholar] [CrossRef]
- Siddiqa, S.; Chang, K.; Naqvi, S.B.; Azam, M.; Molla, M.M.; Nguyen, K.H. AI-assisted proton exchange membrane (PEM) fuel cell performance prediction using CFD and data-driven surrogate models. Int. Commun. Heat Mass Transf. 2024, 156, 107616. [Google Scholar] [CrossRef]
- Zhang, L.; Qiu, X.; Wang, L.; Li, J. A stability condition for turbulence model: From EMMS model to EMMS-based turbulence model. Particuology 2014, 16, 142–154. [Google Scholar] [CrossRef]
- Sun, S. Simultaneous reconstruction of thermal boundary condition and physical properties of participating medium. Int. J. Therm. Sci. 2021, 163, 106853. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Chen, W. Denitrification technology and the catalysts: A review and recent advances. ChemCatChem 2024, 16, e202301662. [Google Scholar] [CrossRef]
- Fu, J.; Wei, L.; Li, N.; Zhou, Q.; Liu, T. Experimental study on temperature, heat flux, strain and stress distribution of boiler water walls. Appl. Therm. Eng. 2017, 113, 419–425. [Google Scholar] [CrossRef]
- Chen, M.; Shen, X.; Zhu, G.; Li, B. Rapidly achieving uniform flow with a hydrodynamic metadevice. Phys. Fluids 2024, 36, 053611. [Google Scholar] [CrossRef]
- Shukrullah, S.; Mohamed, N.; Khan, Y.; Naz, M.; Ghaffar, A.; Ahmad, I. Effect of gas flowrate on nucleation mechanism of MWCNTs for a compound catalyst. J. Nanomater. 2017, 2017, 3407352. [Google Scholar] [CrossRef]
- Kim, Y.-D.; Kim, W.-S.; Lee, Y. Influences of exhaust gas temperature and flow rate on optimal catalyst activity profiles. Int. J. Heat Mass Transf. 2015, 85, 841–851. [Google Scholar] [CrossRef]
- Kulkarni, S.R.; Gonzalez-Quiroga, A.; Nuñez, M.; Schuerewegen, C.; Perreault, P.; Goel, C.; Heynderickx, G.J.; Van Geem, K.M.; Marin, G.B. An experimental and numerical study of the suppression of jets, counterflow, and backflow in vortex units. AIChE J. 2019, 65, e16614. [Google Scholar] [CrossRef]
- Yang, X.; Zuo, Q.; Chen, W.; Guan, Q.; Shen, Z.; Li, Q.; Xie, Y. Improvement of flow field uniformity and temperature field in gasoline engine catalytic converter. Appl. Therm. Eng. 2023, 230, 120792. [Google Scholar] [CrossRef]
- Bagherzadeh, S.A.; Sulgani, M.T.; Nikkhah, V.; Bahrami, M.; Karimipour, A.; Jiang, Y. Minimize pressure drop and maximize heat transfer coefficient by the new proposed multi-objective optimization/statistical model composed of “ANN+ Genetic Algorithm” based on empirical data of CuO/paraffin nanofluid in a pipe. Phys. A Stat. Mech. Its Appl. 2019, 527, 121056. [Google Scholar] [CrossRef]
- Shin, S.; Kim, A.-R.; Um, S. Computational prediction of nanoscale transport characteristics and catalyst utilization in fuel cell catalyst layers by the lattice Boltzmann method. Electrochim. Acta 2018, 275, 87–99. [Google Scholar] [CrossRef]
- Idrissi, A.; Vyalov, I.; Georgi, N.; Kiselev, M. On the characterization of inhomogeneity of the density distribution in supercritical fluids via molecular dynamics simulation and data mining analysis. J. Phys. Chem. B 2013, 117, 12184–12188. [Google Scholar] [CrossRef]
- Gao, X.; Wang, B.; Yuan, X.; Lei, S.; Qu, Q.; Ma, C.; Sun, L. Optimal design of selective catalyst reduction denitrification system using numerical simulation. J. Environ. Manag. 2019, 231, 909–918. [Google Scholar] [CrossRef]
- Yin, J.; Liu, M.; Wu, Q.; Yan, J. Optimized fluegas denitrification control strategy to enhance SCR performance during load-cycling transient processes in coal-fired power plants. Fuel 2023, 344, 127837. [Google Scholar] [CrossRef]
- Wentong, S.; Weilin, Y.; Lucheng, J. Effect of inlet total pressure non-uniform distribution on aerodynamic performance and flow field of turbine. Int. J. Mech. Sci. 2018, 148, 714–729. [Google Scholar] [CrossRef]
- Fomena, R.T.; Collewet, C. Fluid flow control: A vision-based approach. Int. J. Flow Control. 2011, 3, 133–169. [Google Scholar] [CrossRef]
- Sun, W.; Ye, M.; Gao, Y.; Sun, Y.; Qian, F.; Lu, J.; Wu, S.; Huang, N.; Xu, B. Effect of Catalyst Inlet Flow Field Distribution Characteristics on Outlet NO Concentration Distribution in SCR Denitration Reactor Based on Monte Carlo Method. Atmosphere 2022, 13, 931. [Google Scholar] [CrossRef]
- Yang, T.; Cui, C.; Shen, Y.; Lv, Y. A novel denitration cost optimization system for power unit boilers. Appl. Therm. Eng. 2016, 96, 400–410. [Google Scholar] [CrossRef]
- Latha, H.; Prakash, K.; Veerangouda, M.; Maski, D.; Ramappa, K. A review on scr system for nox reduction in diesel engine. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1553–1559. [Google Scholar] [CrossRef]
- Ranke, J.; Wöltjen, J.; Meinecke, S. Comparison of software tools for kinetic evaluation of chemical degradation data. Environ. Sci. Eur. 2018, 30, 1–12. [Google Scholar] [CrossRef]
Parameter | Value | Units | Description |
---|---|---|---|
Mass Flow Rate (inlet) | 50,000 | kg/h | Mass flow rate of flue gas entering the SCR system |
Temperature (inlet) | 350 | °C | Inlet temperature of the flue gas |
Operating Pressure | 1.2 | atm | Operating pressure in the boiler system |
Catalyst Material | V2O5-WO3/TiO2 | - | Catalyst type used in the SCR system |
Catalyst Bed Thickness | 0.5 | m | Thickness of the catalyst bed |
Inlet Velocity Profile | Fully developed | m/s | Inlet velocity profile at the catalyst inlet |
Velocity at Inlet (average) | 10 | m/s | Average velocity of the flue gas entering the SCR system |
NOx Concentration (inlet) | 400 | ppm | NOx concentration of the flue gas entering the SCR reactor |
Catalyst Activity | 70 | m2/g | Catalyst activity (specific surface area per gram of catalyst) |
Parameter | Before Modification | After Modification | Change (%) | Max | Min | Standard Deviation |
---|---|---|---|---|---|---|
Average Velocity (m/s) | 12.5 | 10.2 | −18.4% | 15.0 | 8.0 | 1.3 |
Pressure Drop (Pa) | 1500 | 1200 | −20.0% | 1700 | 1100 | 200 |
Flow Uniformity Index | 0.80 | 0.92 | +15.0% | 1.00 | 0.70 | 0.05 |
Catalyst Inlet Deviation Coefficient (Tier 1) | 28% | 14.1% | −49.6% | 30% | 10% | 6.2% |
Catalyst Inlet Deviation Coefficient (Tier 2) | 12% | 8.1% | −32.5% | 15% | 5% | 3.1% |
Catalyst Inlet Deviation Coefficient (Tier 3) | 8% | 5.3% | −33.8% | 10% | 4% | 2.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Peng, Z.; Zhao, S.; Li, B.; Li, H.; Ling, Z.; Liu, M.; Zhang, G. Flow Field Optimization for Enhanced SCR Denitrification: A Numerical Study of the Chizhou Power Plant Retrofit. Processes 2025, 13, 2304. https://doi.org/10.3390/pr13072304
Wang W, Peng Z, Zhao S, Li B, Li H, Ling Z, Liu M, Zhang G. Flow Field Optimization for Enhanced SCR Denitrification: A Numerical Study of the Chizhou Power Plant Retrofit. Processes. 2025; 13(7):2304. https://doi.org/10.3390/pr13072304
Chicago/Turabian StyleWang, Wendong, Zongming Peng, Sanmei Zhao, Bin Li, Haihua Li, Zhongqian Ling, Maosheng Liu, and Guangxue Zhang. 2025. "Flow Field Optimization for Enhanced SCR Denitrification: A Numerical Study of the Chizhou Power Plant Retrofit" Processes 13, no. 7: 2304. https://doi.org/10.3390/pr13072304
APA StyleWang, W., Peng, Z., Zhao, S., Li, B., Li, H., Ling, Z., Liu, M., & Zhang, G. (2025). Flow Field Optimization for Enhanced SCR Denitrification: A Numerical Study of the Chizhou Power Plant Retrofit. Processes, 13(7), 2304. https://doi.org/10.3390/pr13072304