Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,232)

Search Parameters:
Keywords = nitrogen emission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4088 KB  
Article
Implementing Overfire Air Technology in Coal-Fired Power Plants to Promote Environmentally Friendly Energy Generation
by Saltanat Bolegenova, Aliya Askarova, Aizhan Nugymanova, Valeriy Maximov, Symbat Bolegenova, Nariman Askarov, Shynar Ospanova and Zhanar Shortanbayeva
Energies 2026, 19(2), 347; https://doi.org/10.3390/en19020347 - 10 Jan 2026
Viewed by 68
Abstract
This paper presents a numerical study on the deployment of Overfire Air (OFA) technology in coal-fired thermal power plants in Kazakhstan to reduce harmful emissions. The simulation utilized a digital model of the combustion chamber of the BKZ-75 boiler at Shakhtinsk thermal power [...] Read more.
This paper presents a numerical study on the deployment of Overfire Air (OFA) technology in coal-fired thermal power plants in Kazakhstan to reduce harmful emissions. The simulation utilized a digital model of the combustion chamber of the BKZ-75 boiler at Shakhtinsk thermal power plant, which utilizes high-ash Karaganda coal containing 35.10% ash. During the development of two-stage combustion technology, different methods of supplying extra air via OFA injectors were examined. Various positions within the combustion chamber were evaluated for their placement: at heights of h = 0.165 m; 0.75 m; 1.375 m; 2.25 m; 2.5 m; 8 m; 9.4 m; 10 m; 11 m; and 12 m. The baseline combustion mode (OFA = 0%) and several additional air injector settings were analyzed, including OFA levels of 5%, 10%, 15%, 18%, 20%, 25%, and 30% of the total air volume. Numerical simulations generated temperature distributions along with carbon monoxide (CO) and nitrogen (NO) concentration fields, both inside and outside the combustion chamber outlet. Research indicates that the most effective reduction in pollutant emissions happens when OFA injectors are positioned at 9.4 m and supply supplementary air at an OFA rate of 18%. Under these settings, the carbon monoxide concentration at the combustion chamber outlet decreases by approximately 36%, while nitrogen oxide levels drop by 25%, compared to the baseline condition (OFA = 0%). These insights can be utilized to upgrade boiler units, promoting cleaner fuel combustion in coal-fired thermal power plants. Full article
Show Figures

Figure 1

20 pages, 1397 KB  
Article
Selection of Injection Parameters in Hydrogen SI Engines Using a Comprehensive Criterion-Based Approach
by Oleksandr Osetrov and Rainer Haas
Vehicles 2026, 8(1), 14; https://doi.org/10.3390/vehicles8010014 - 10 Jan 2026
Viewed by 58
Abstract
Direct injection in hydrogen engines enables flexible combustion control, improves engine efficiency, and reduces the risk of abnormal combustion. However, implementing this injection strategy is challenging due to the need to provide a relatively high volumetric fuel flow rate, achieve a specified degree [...] Read more.
Direct injection in hydrogen engines enables flexible combustion control, improves engine efficiency, and reduces the risk of abnormal combustion. However, implementing this injection strategy is challenging due to the need to provide a relatively high volumetric fuel flow rate, achieve a specified degree of mixture stratification, and account for the functional and technological limitations of the injection system. These challenges highlight the relevance and objectives of the present study. The mathematical model of a turbocharged engine cycle has been refined to account for the influence of injection parameters on combustion kinetics. On the basis of mathematical modeling, the injection pressure and injector area were determined to ensure the specified injection conditions. For the late injection strategy, a method was proposed to select the start of injection based on a specified value of the “relative ignition timing” criterion. Engine operation was simulated across the full range of operating modes for both early and late injection strategies. The results show that the late injection strategy increases the maximum indicated thermal efficiency by approximately 2%, reduces peak in-cylinder pressure by about 1 MPa, lowers maximum nitrogen oxide emissions by a factor of 1.4, and ensures knock-free operation across all modes compared to early injection. Full article
17 pages, 1971 KB  
Article
Heavy Knocking Suppression and NOX Emission Reduction by Means of Port Water Injection on a CFR SI Engine
by Emiliano Pipitone, Giuseppe Ingrassia and Michele Agueci
Energies 2026, 19(2), 339; https://doi.org/10.3390/en19020339 - 9 Jan 2026
Viewed by 103
Abstract
The energy transition in the transportation sector makes hydrogen a promising candidate as a fuel for internal combustion engines; however, its tendency to knock limits its use to lean mixtures, resulting in a reduction in performance. In this context, water injection represents a [...] Read more.
The energy transition in the transportation sector makes hydrogen a promising candidate as a fuel for internal combustion engines; however, its tendency to knock limits its use to lean mixtures, resulting in a reduction in performance. In this context, water injection represents a technical solution capable of reducing both the risk of knocking and the pollutant emissions of nitrogen oxide (NOx). Although several studies have been published on the benefits of water injection, its capacity to suppress high-intensity knocking phenomena was never investigated and is not traceable in the scientific literature. On account of this lack, the authors of the present paper experimentally evaluate the effectiveness of port water injection in suppressing high-intensity knock phenomena and its potential in terms of nitrogen oxide emission reduction. Differently from previous works, a highly reactive fuel (PRF60) was adopted to reproduce, as closely as possible, the knocking tendency of hydrogen. The tests were carried out on a single-cylinder CFR engine, suitably modified to allow port water injection, operating with stoichiometric air–fuel mixture (λ = 1) and at low engine speed, which constitutes the most critical condition, since it allows for heavy knocking and is less favorable for injected water evaporation. Moreover, aiming to assess the effect of spray atomization, the tests were repeated using three different water injection pressure levels. The study presented, however, is confined to the effects of port water injection on knock suppression and NOx emission reduction, while no engine performance or efficiency variation were considered. The results showed that port water injection, with water addition up to 40% by mass with respect to fuel, enables an almost complete suppression of high-intensity knocking phenomena, along with a significant reduction in NOx emissions (up to −62%). Full article
Show Figures

Figure 1

19 pages, 2882 KB  
Article
Soil Environmental Factors Dominate over Nitrifier and Denitrifier Abundances in Regulating Nitrous Oxide Emissions Following Nutrient Additions in Alpine Grassland
by Mingyuan Yin, Xiaopeng Gao, Yufeng Wu, Yanyan Li, Wennong Kuang, Lei Li and Fanjiang Zeng
Agronomy 2026, 16(2), 168; https://doi.org/10.3390/agronomy16020168 - 9 Jan 2026
Viewed by 106
Abstract
Nutrient additions including nitrogen (N) and phosphorus (P) are widely considered as an important strategy for enhancing grassland productivity. However, the effects of these nutrients additions on soil nitrous oxide (N2O) emissions and the underlying mechanisms remain debated. We conducted a [...] Read more.
Nutrient additions including nitrogen (N) and phosphorus (P) are widely considered as an important strategy for enhancing grassland productivity. However, the effects of these nutrients additions on soil nitrous oxide (N2O) emissions and the underlying mechanisms remain debated. We conducted a two-year field experiment in an alpine grassland on Kunlun Mountain in northwestern China to assess the effects of N and P additions on N2O emissions, in relation with nitrifying enzyme activity (NEA), denitrifying enzyme activity (DEA), and key functional genes abundance responsible for nitrification (amoA and Nitrobacter-like nxrA) and denitrification (narG, nirS, nirK and nosZ). Compared to the Control without nutrient addition (CK), N addition alone substantially increased cumulative N2O emission (ƩN2O) by 2.0 times. In contrast, P addition or combined N and P (N+P) addition did not significantly affect ƩN2O, though both treatments significantly increased plant aboveground biomass. Such results indicate that P addition may mitigate N-induced N2O emission, likely by reducing soil N availability through enhanced plant and microbial N uptake. Compared to CK, N or N+P addition significantly elevated NEA but did not affect DEA. Structural equation modeling (SEM) indicated that NEA was directly influenced by the gene abundances of ammonia-oxidizing bacteria (AOB) and Nitrobacter-like nxrA but not by ammonia-oxidizing archaea (AOA). However, SEM also revealed that soil environmental variables including soil temperature, pH, and water-filled pore space (WFPS) had a stronger direct influence on N2O emissions than the abundances of nitrifiers. These results demonstrate that soil environmental conditions play a more significant role than functional gene abundances in regulating N2O emissions following N and P additions in semi-arid alpine grasslands. This study highlights that the N+P application can potentially decrease N2O emissions than N addition alone, while increasing productivity in the alpine grassland ecosystems. Full article
Show Figures

Figure 1

19 pages, 1163 KB  
Article
Impact of Alternative Fuels on IMO Indicators
by José Miguel Mahía-Prados, Ignacio Arias-Fernández and Manuel Romero Gómez
Gases 2026, 6(1), 4; https://doi.org/10.3390/gases6010004 - 8 Jan 2026
Viewed by 180
Abstract
This study provides a comprehensive analysis of the impact of different marine fuels such as heavy fuel oil (HFO), methane, methanol, ammonia, or hydrogen, on energy efficiency and pollutant emissions in maritime transport, using a combined application of the Energy Efficiency Design Index [...] Read more.
This study provides a comprehensive analysis of the impact of different marine fuels such as heavy fuel oil (HFO), methane, methanol, ammonia, or hydrogen, on energy efficiency and pollutant emissions in maritime transport, using a combined application of the Energy Efficiency Design Index (EEDI), Energy Efficiency Operational Indicator (EEOI), and Carbon Intensity Indicator (CII). The results show that methane offers the most balanced alternative, reducing CO2 by more than 30% and improving energy efficiency, while methanol provides an intermediate performance, eliminating sulfur and partially reducing emissions. Ammonia and hydrogen eliminate CO2 but generate NOx (nitrogen oxides) emissions that require mitigation, demonstrating that their environmental impact is not negligible. Unlike previous studies that focus on a single fuel or only on CO2, this work considers multiple pollutants, including SOx (sulfur oxides), H2O, and N2, and evaluates the economic cost of emissions under the European Union Emissions Trading System (EU ETS). Using a representative model ship, the study highlights regulatory gaps and limitations within current standards, emphasizing the need for a global system for monitoring and enforcing emissions rules to ensure a truly sustainable and decarbonized maritime sector. This integrated approach, combining energy efficiency, emissions, and economic evaluation, provides novel insights for the scientific community, regulators, and maritime operators, distinguishing itself from previous multicriteria studies by simultaneously addressing operational performance, environmental impact, and regulatory gaps such as unaccounted NOx emissions. Full article
Show Figures

Figure 1

17 pages, 668 KB  
Article
Tannin Tolerance in Lactic Acid Bacteria Modulates Whole-Plant Sorghum Silage Quality and In Vitro Methane Mitigation
by Zhenpeng Zhu, Siqi Wang, Yili Wang and Yunhua Zhang
Agriculture 2026, 16(2), 158; https://doi.org/10.3390/agriculture16020158 - 8 Jan 2026
Viewed by 132
Abstract
Although tannins generally inhibit the growth of lactic acid bacteria, different strains vary significantly in their tolerance to this inhibitory effect. However, it remains unclear whether the differences in tannin tolerance among various lactic acid bacteria (LAB) lead to variations in the fermentation [...] Read more.
Although tannins generally inhibit the growth of lactic acid bacteria, different strains vary significantly in their tolerance to this inhibitory effect. However, it remains unclear whether the differences in tannin tolerance among various lactic acid bacteria (LAB) lead to variations in the fermentation outcomes during the silage process and in vitro fermentation. Therefore, this study investigated the correlation between the fermentation effects of LAB with varying tannin tolerances and the tannin content of sorghum. Four LAB strains (Lactococcus garvieae, LG; Lactococcus lactis, LL; Lactiplantibacillus plantarum, LP; Pediococcus pentosaceus, PP) were selected and identified from whole sorghum and mulberry leaves, and their tannin tolerance was assessed. The results demonstrated that LG exhibited the highest tolerance to sorghum tannins, followed by LL and LP, while PP displayed the lowest tolerance. Upon addition of LAB to whole sorghum for silage, LG showed the most effective ability to lower pH, reduce ammonia nitrogen content, decrease neutral detergent fiber content, diminish microbial diversity, and enhance the abundance of firmicutes. Concurrently, during in vitro fermentation, they significantly reduced rumen fluid pH and suppressed gas emissions (CH4, CO2). Conversely, PP performed poorly across all parameters. These findings suggest that the fermentation effects of LAB on sorghum silage are closely related to their tannin tolerance. Full article
Show Figures

Figure 1

17 pages, 1626 KB  
Article
Syngas Production from Liquid and Solid Fractions of Swine Manure in a 0.5 kWth Chemical Looping Gasification Unit
by Yldeney Domingos, Margarita de Las Obras Loscertales, María T. Izquierdo and Alberto Abad
Energies 2026, 19(2), 317; https://doi.org/10.3390/en19020317 - 8 Jan 2026
Viewed by 175
Abstract
Swine manure, a heterogeneous livestock waste composed of solid and liquid excreta, can be sustainably converted through Chemical Looping Gasification (CLG) to produce syngas and bioenergy. Integrated with CO2 capture, the process enables high-purity hydrogen generation and offers a potential route toward [...] Read more.
Swine manure, a heterogeneous livestock waste composed of solid and liquid excreta, can be sustainably converted through Chemical Looping Gasification (CLG) to produce syngas and bioenergy. Integrated with CO2 capture, the process enables high-purity hydrogen generation and offers a potential route toward net-negative carbon emissions. The experimental campaign was conducted at 900 °C in a continuously operated 0.5 kWth CLG unit consisting of two interconnected fluidized bed reactors (fuel and air). Ilmenite was employed as the oxygen carrier to provide the oxygen required for gasification. This study focuses on the gasification of raw swine manure, comprising both solid and liquid fractions. The solid fraction was introduced via a screw feeder, while the liquid fraction was simulated by injecting an ammonia–water solution as gasifying agents (water or ammonia + water). The effect of the liquid fraction on syngas composition, carbon conversion, and nitrogen species (N2, NH3, N2O, NO2, and NO) was evaluated at ammonia concentrations typical of swine manure (800–5600 mg/L). Results showed an average syngas composition for solid and liquid fraction feeding of ~31% CO2, 20% CO, 41% H2, 7% CH4, and 0.5% C2 hydrocarbons, with 91–96% carbon conversion. Benzene and naphthalene dominated the tar compounds. CO2 capture potential reached 60%, with nitrogen mainly converted to N2. Full article
Show Figures

Graphical abstract

25 pages, 2868 KB  
Article
Integrated Experimental and Physics-Informed Neural Networks Assessment of Emissions from Pelleted Woody Biomass
by Nicolás Gutiérrez, Marcela Muñoz-Catalán, Álvaro González-Flores, Valeria Olea, Tomás Mora-Chandia and Robinson Betancourt Astete
Processes 2026, 14(2), 220; https://doi.org/10.3390/pr14020220 - 8 Jan 2026
Viewed by 167
Abstract
Accurately predicting pollutant emission factors (EFs) from woody biomass fuels remains challenging because small-scale combustion tests are fuel-specific, time-consuming, and highly sensitive to operating conditions. This study combines controlled laboratory combustion experiments with a physics-informed artificial neural network (ANN–PINN) to estimate the emission [...] Read more.
Accurately predicting pollutant emission factors (EFs) from woody biomass fuels remains challenging because small-scale combustion tests are fuel-specific, time-consuming, and highly sensitive to operating conditions. This study combines controlled laboratory combustion experiments with a physics-informed artificial neural network (ANN–PINN) to estimate the emission factors of particulate matter (EFPM), carbon monoxide (EFCO), and nitrogen oxides (EFNOx) using only laboratory-scale fuel characterization. Three pelletized woody biomass, Pinus radiata, Acacia dealbata, and Nothofagus obliqua, were analyzed through ultimate and proximate composition, lignin content, and TGA-derived parameters and tested in a residential pellet stove under identical control setpoints, resulting in a narrow and well-defined operating regime. A medium-depth ANN–PINN was constructed by integrating mechanistic constraints, monotonicity based on known emission trends and a weak carbon balance penalty, into a feed-forward neural network trained and evaluated using Leave-One-Out Cross-Validation. The model accurately reproduced the experimental behavior of EFCO and captured structured variability in EFPM, while the limited nitrogen variability of the fuels restricted generalization for EFNOx. Sensitivities derived via automatic differentiation revealed physically coherent relationships, demonstrating that PM emissions depend jointly on fuel chemistry and aero-thermal conditions, CO emissions are dominated by mixing and temperature, and NOx formation is primarily governed by fuel-bound nitrogen. When applied to external biomass fuels characterized independently in the literature, the ANN–PINN produced physically plausible predictions, highlighting its potential as a rapid, low-cost screening tool for assessing new biomass feedstocks and supporting cleaner residential heating technologies. The integrated experimental–PINN framework provides a physically consistent and data-efficient alternative to classical empirical correlations and purely data-driven ANN models. Full article
(This article belongs to the Special Issue Clean Combustion and Emission Control Technologies)
Show Figures

Figure 1

32 pages, 3554 KB  
Review
Synthetic Strategies for Nitramines: From Energetic Materials to Atmospheric Byproducts
by Simen Gjelseth Antonsen, Claus Jørgen Nielsen, Hans Olav Hovtun Palm and Yngve Henning Stenstrøm
Reactions 2026, 7(1), 4; https://doi.org/10.3390/reactions7010004 - 7 Jan 2026
Viewed by 184
Abstract
Nitramines are nitrogen-containing organic compounds with the formula R1R2N–NO2. They are well-known as explosives and have been produced industrially for more than a century. A few nitramine-containing natural products have also been identified in recent years. Nitramines [...] Read more.
Nitramines are nitrogen-containing organic compounds with the formula R1R2N–NO2. They are well-known as explosives and have been produced industrially for more than a century. A few nitramine-containing natural products have also been identified in recent years. Nitramines have also found their way into specific synthetic procedures, usually as intermediates, and for the last decades, the implementation of amine-based carbon capture and storage (CCS) technologies to mitigate CO2 emissions from fossil fuel combustion is of particular concern since small amounts are produced. Both environmental and health implications are of particular interest, and little is known today. The need for efficient and safe synthetic procedures is, therefore, vital for further research in the field. The present review gives a detailed summary of published methods and research post-millennium. Many new as well as well-established methods are presented. Representative examples with basic conditions and yields are given. Finally, indications for future research are discussed. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2025)
Show Figures

Graphical abstract

30 pages, 4746 KB  
Article
Influence of Blending Model n-Butanol Alcoholysis Derived Advanced Biofuel Blends with Diesel on the Regulated Emissions from a Diesel Hybrid Vehicle
by Scott Wiseman, Karl Ropkins, Hu Li and Alison S. Tomlin
Energies 2026, 19(2), 308; https://doi.org/10.3390/en19020308 - 7 Jan 2026
Viewed by 131
Abstract
Decarbonisation of the transport sector, whilst reducing pollutant emissions, will likely involve the utilisation of multiple strategies, including hybridisation and the use of alternative fuels such as advanced biofuels as mandated by the EU. Alcoholysis of lignocellulosic feedstocks, using n-butanol as the [...] Read more.
Decarbonisation of the transport sector, whilst reducing pollutant emissions, will likely involve the utilisation of multiple strategies, including hybridisation and the use of alternative fuels such as advanced biofuels as mandated by the EU. Alcoholysis of lignocellulosic feedstocks, using n-butanol as the solvent, can produce such potential advanced biofuel blends. Butyl blends, consisting of n-butyl levulinate (nBL), di-n-butyl ether, and n-butanol, were selected for this study. Three butyl blends with diesel, two at 10 vol% biofuel and one at 25 vol% biofuel, were tested in a Euro 6b-compliant diesel hybrid vehicle to determine the influence of the blends on regulated emissions and fuel economy. Real Driving Emissions (RDE) were measured for three cold start tests with each fuel using a Portable Emissions Measurement System (PEMS) for carbon monoxide (CO), particle number (PN), and nitrogen oxides (NOX = NO + NO2). When using the butyl blends, there was no noticeable change in vehicle drivability and only a small fuel economy penalty of up to 5% with the biofuel blends relative to diesel. CO, NOX, and PN emissions were below or within one standard deviation of the Euro 6 not-to-exceed limits for all fuels tested. The CO and PN emissions reduced relative to diesel by up to 72% and 57%, respectively. NOX emissions increased relative to diesel by up to 25% and increased with both biofuel fraction and the amount of nBL in that fraction. The CO emitted during the cold start period was reduced by up to 52% for the 10 vol% blends but increased by 25% when using the 25 vol% blend. NOX and PN cold start emissions reduced relative to diesel for all three biofuel blends by up to 29% and 88%, respectively. It is envisaged that the butyl blends could reduce net carbon emissions without compromising or even improving air pollutant emissions, although optimisation of the after-treatment systems may be necessary to ensure emissions limits are met. Full article
(This article belongs to the Special Issue Performance and Emissions of Vehicles and Internal Combustion Engines)
Show Figures

Figure 1

18 pages, 3762 KB  
Article
A Novel Nonthermal Plasma System for Continuous On-Site Production of Nitrogen Fertilizer
by Xiaofei Philip Ye, Nathan Michalik and Joshua Hyde
AgriEngineering 2026, 8(1), 20; https://doi.org/10.3390/agriengineering8010020 - 6 Jan 2026
Viewed by 161
Abstract
Plasma-assisted nitrogen fixation is emerging as a promising alternative to the dominant industrial method of the Haber–Bosch (H–B) process, which is energy-intensive and environmentally detrimental. Nonthermal plasma technology represents a cutting-edge innovation with the potential to revolutionize nitrogen fertilizer (N-fertilizer) production, offering a [...] Read more.
Plasma-assisted nitrogen fixation is emerging as a promising alternative to the dominant industrial method of the Haber–Bosch (H–B) process, which is energy-intensive and environmentally detrimental. Nonthermal plasma technology represents a cutting-edge innovation with the potential to revolutionize nitrogen fertilizer (N-fertilizer) production, offering a more sustainable approach by operating under mild conditions, making it suitable for decentralized N-fertilizer production. Toward the goal, in this study, we demonstrate our development and test of a novel nonthermal plasma system for continuous on-site production of N-fertilizer. This technology results in a product of aqueous N-fertilizer on-site, from only air, water, and electricity without carbon emissions, directly applicable to plants, bypassing costly and hazardous multiple steps in the production and transportation of the industrial N-fertilizers. Full article
Show Figures

Figure 1

29 pages, 3359 KB  
Article
Spatiotemporal Pattern and Driving Mechanism of Agricultural Non-Point Source Pollution: A Case Study of Inner Mongolia in 2002–2023
by Jiping Qiao, Cangyu Li, Zhiyong Lv and Huaien Li
Water 2026, 18(2), 147; https://doi.org/10.3390/w18020147 - 6 Jan 2026
Viewed by 299
Abstract
Agricultural non-point source pollution (ANPSP) represents a major threat to water quality, yet its spatiotemporal dynamics in arid and semi-arid regions remain poorly quantified. This study establishes an integrated assessment framework to analyze the spatiotemporal patterns and driving mechanisms of ANPSP in Inner [...] Read more.
Agricultural non-point source pollution (ANPSP) represents a major threat to water quality, yet its spatiotemporal dynamics in arid and semi-arid regions remain poorly quantified. This study establishes an integrated assessment framework to analyze the spatiotemporal patterns and driving mechanisms of ANPSP in Inner Mongolia, China, from 2002 to 2023. Using a combination of inventory analysis, pollution load equivalence assessment, and the Tapio decoupling model, we systematically examined the evolution of four pollution sources—chemical fertilizers, livestock breeding, agricultural solid waste, and rural domestic discharge—across 12 administrative regions. These methods were sequentially applied to quantify loads, standardize impacts, and evaluate the economy–environment relationship, forming a coherent analytical chain. Key results indicate the following: (1) Pollutant loads increased consistently over the study period, with chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) rising by 24.21%, 31.67%, and 31.14%, respectively, largely driven by livestock sector expansion. (2) Spatial distribution was highly heterogeneous, with Tongliao, Chifeng, and Hulunbuir contributing 50.58–58.31% of total emissions, in contrast to minimal impacts in western regions. (3) Decoupling analysis indicated variable environment–economy relations, where fertilizer use and grain output reached strong decoupling in 2010–2011 and 2018–2019, whereas livestock pollution exhibited more unstable decoupling trajectories. A cluster-derived risk zoning scheme identified Bayannur as the only high-risk area and highlighted the need for tailored management approaches in medium- and low-risk zones. This study offers a scientific foundation for targeted ANPSP mitigation and sustainable agricultural strategy formulation in ecologically vulnerable areas. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

19 pages, 6675 KB  
Article
Silicate Agrominerals Mitigate Greenhouse Gas Emissions and Enhance Soil Carbon in Tropical Pasture of the Brazilian Cerrado
by Marcos Vinícius Araujo dos Santos, Alexsandra Duarte de Oliveira, Cícero Célio de Figueiredo, João Paulo Guimarães Soares, Giuliano Marchi, Thayná Xavier Santana, Altair César Moreira de Andrade, Daphne Heloísa de Freitas Muniz, José Ferreira Lustosa Filho, Arminda Moreira de Carvalho, Marcos Aurélio Carolino de Sá and Éder de Souza Martins
Agronomy 2026, 16(2), 138; https://doi.org/10.3390/agronomy16020138 - 6 Jan 2026
Viewed by 330
Abstract
The mitigation of greenhouse gas emissions in livestock farming is one of the main challenges for agriculture in the Cerrado biome. Among promising practices, the use of soil remineralizers (REM) stands out as a sustainable and complementary alternative to conventional fertilizers. This study [...] Read more.
The mitigation of greenhouse gas emissions in livestock farming is one of the main challenges for agriculture in the Cerrado biome. Among promising practices, the use of soil remineralizers (REM) stands out as a sustainable and complementary alternative to conventional fertilizers. This study evaluated the effects of applying REM derived from basalt and biotite schist on emissions of N2O, CO2 and CH4, the global warming potential (GWP), as well as on soil carbon and nitrogen in Urochloa brizantha cv. BRS Paiaguás pasture. The experiment was conducted in randomized blocks with five treatments (control, KCl, basalt 8.33 Mg ha−1, basalt 40 Mg ha−1, and biotite schist 151 Mg ha−1). Results indicated that KCl and high-dose basalt (40 Mg ha−1) promoted greater accumulated N2O emissions and higher GWP values. In contrast, biotite schist reduced N2O emissions and showed the lowest GWP (81.67 kg CO2 eq. ha−1), while basalt at a moderate dose (8.33 Mg ha−1) increased soil C and N stocks. It is concluded that soil remineralizers, especially those derived from biotite schist, represent viable alternatives to reduce environmental impacts and promote the sustainability of tropical agricultural systems in Cerrado biome. Full article
Show Figures

Figure 1

24 pages, 2289 KB  
Article
Inhibition by Nitrogen Addition of Moss-Mediated CH4 Uptake and CO2 Emission Under a Well-Drained Temperate Forest, Northeastern China
by Xingkai Xu, Jin Yue, Weiguo Cheng, Yuhua Kong, Shuirong Tang, Dmitriy Khoroshaev and Vladimir Shanin
Plants 2026, 15(1), 166; https://doi.org/10.3390/plants15010166 - 5 Jan 2026
Viewed by 256
Abstract
Nitrogen (N) deposition poses a multi-pronged threat to the carbon (C)-regulating services of moss understories. For forest C-cycle modeling under increasing N deposition, failure to mechanistically incorporate the moss-mediated processes risks severely overestimating the C sink potential of global forests. To explore whether [...] Read more.
Nitrogen (N) deposition poses a multi-pronged threat to the carbon (C)-regulating services of moss understories. For forest C-cycle modeling under increasing N deposition, failure to mechanistically incorporate the moss-mediated processes risks severely overestimating the C sink potential of global forests. To explore whether and how N input affects the moss-mediated CH4 and carbon dioxide (CO2) fluxes, a five-year field measurement was performed in the N manipulation experimental plots treated with 22.5 and 45 kg N ha−1 yr−1 as ammonium chloride for nine years under a well-drained temperate forest in northeastern China. In the presence of mosses, the average annual CH4 uptake and CO2 emission in all N-treated plots ranged from 0.96 to 1.48 kg C-CH4 ha−1 yr−1 and from 4.04 to 4.41 Mg C-CO2 ha−1 yr−1, respectively, with a minimum in the high-N-treated plots, which were smaller than those in the control (1.29–1.83 kg C-CH4 ha−1 yr−1 and 4.82–6.51 Mg C-CO2 ha−1 yr−1). However, no significant differences in annual cumulative CO2 and CH4 fluxes across all treatments occurred without moss cover. Based on the differences in C fluxes with and without mosses, the average annual moss-mediated CH4 uptake and CO2 emission in the control were 0.77 kg C-CH4 ha−1 yr−1 and 2.40 Mg C-CO2 ha−1 yr−1, respectively, which were larger than those in the two N treatments. The N effects on annual moss-mediated C fluxes varied with annual meteorological conditions. Soil pH, available N and C contents, and microbial activity inferred from δ13C shifts in respired CO2 were identified as the main driving factors controlling the moss-mediated CH4 and CO2 fluxes. The results highlighted that this inhibitory effect of increasing N deposition on moss-mediated C fluxes in the context of climate change should be reasonably taken into account in model studies to accurately predict C fluxes under well-drained forest ecosystems. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Graphical abstract

19 pages, 1817 KB  
Article
Volatiles Generated in the Pyrolysis of Greenhouse Vegetable Waste
by Sergio Medina, Ullrich Stahl, Fernando Gómez, Angela N. García and Antonio Marcilla
Biomass 2026, 6(1), 2; https://doi.org/10.3390/biomass6010002 - 4 Jan 2026
Viewed by 137
Abstract
Waste valorization is a necessary activity for the development of the circular economy. Pyrolysis as a waste valorization pathway has been extensively studied, as it allows for obtaining different fractions with diverse and valuable applications. The joint analysis of results generated by thermogravimetry [...] Read more.
Waste valorization is a necessary activity for the development of the circular economy. Pyrolysis as a waste valorization pathway has been extensively studied, as it allows for obtaining different fractions with diverse and valuable applications. The joint analysis of results generated by thermogravimetry (TGA) and analytical pyrolysis (Py-GC/MS) allows for the characterization of waste materials and the assessment of their potential as sources of energy, value-added chemicals and biochar, as well as providing awareness for avoiding potential harmful emissions if the process is performed without proper control or management. In the present study, these techniques were employed on three greenhouse plant residues (broccoli, tomato, and zucchini). Analytical pyrolysis was conducted at eight temperatures ranging from 100 to 800 °C, investigating the evolution of compounds grouped by their functional groups, as well as the predominant compounds of each biomass. It was concluded that the decomposition of biomass initiates between 300–400 °C, with the highest generation of volatiles occurring around 500–600 °C, where pyrolytic compounds span a wide range of molecular weights. The production of organic acids, ketones, alcohols, and furan derivatives peaks around 500 °C, whereas alkanes, alkenes, benzene derivatives, phenols, pyrroles, pyridines, and other nitrogenous compounds increase with temperature up to 700–800 °C. The broccoli biomass exhibited a higher yield of alcohols and furan derivatives, while zucchini and tomato plants, compared to broccoli, were notable for their nitrogen-containing groups (pyridines, pyrroles, and other nitrogenous compounds). Full article
Show Figures

Figure 1

Back to TopTop