Inhibition by Nitrogen Addition of Moss-Mediated CH4 Uptake and CO2 Emission Under a Well-Drained Temperate Forest, Northeastern China
Abstract
1. Introduction
2. Materials and Methods
2.1. Layout of Long-Term N Manipulation Experiment
2.2. Measurements of CO2 and CH4 Fluxes as Well as δ13C and δ18O Values of Respired CO2
2.3. Measurements of Soil Properties and DTN Concentration in Throughfall
2.4. Calculation and Statistical Analysis
3. Results
3.1. Effects of N Addition and Moss on CH4 and CO2 Fluxes Across Time Scales
3.2. Effect of N Addition on Moss-Mediated CH4 and CO2 Fluxes Across Time Scales



3.3. Relationships of Annual Cumulative Moss-Mediated CH4 and CO2 Fluxes and Meteorological Factors


3.4. Relationships Between Daily Moss-Mediated CO2 and CH4 Fluxes and Environmental Variables



4. Discussion
4.1. Interactive Effects of Mosses and N Addition on Soil CH4 Fluxes

4.2. Interactive Effects of Mosses and N Addition on Soil CO2 Fluxes
5. Conclusions and Implications
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coxson, D.S.; Mcintyre, D.D.; Vogel, H.J. Pulse release of sugars and polyols from canopy bryophytes in tropical montane rain forest Guadeloupe French West Indies. Biotropica 1992, 24, 121–133. [Google Scholar] [CrossRef]
- Bisbee, K.E.; Gower, S.T.; Norman, J.M.; Nordheim, E.V. Environmental controls on ground cover species composition and productivity in a boreal black spruce forest. Oecologia 2001, 129, 261–270. [Google Scholar] [CrossRef]
- Delucia, E.H.; Turnbull, M.H.; Walcroft, A.S.; Griffin, K.L.; Tissue, D.T.; Glenny, D.; McSeveny, T.M.; Whitehead, D. The contribution of bryophytes to the carbon exchange for a temperate rainforest. Glob. Change Biol. 2003, 9, 1158–1170. [Google Scholar] [CrossRef]
- Goulden, M.L.; Crill, P.M. Automated measurements of CO2 exchange at the moss surface of a black spruce forest. Tree Physiol. 1997, 17, 537–542. [Google Scholar] [CrossRef]
- Leppänen, S.M.; Salemaa, M.; Smolander, A.; Mäkipää, R.; Tiirola, M. Nitrogen fixation and methanotrophy in forest mosses along a N deposition gradient. Environ. Exp. Bot. 2013, 90, 62–69. [Google Scholar] [CrossRef]
- Larmola, T.; Leppänen, S.M.; Tuittila, E.S.; Aarva, M.; Merilä, P.; Fritze, H.; Tiirola, M. Methanotrophy induces nitrogen fixation during peatland development. Proc. Natl. Acad. Sci. USA 2014, 111, 734–739. [Google Scholar] [CrossRef]
- Kox, M.A.R.; Elzen, E.V.D.; Lamers, L.P.M.; Jetten, M.S.M.; van Kessel, M.A.H.J. Microbial nitrogen fixation and methane oxidation are strongly enhanced by light in Sphagnum mosses. AMB Express 2020, 10, 61. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.Q.; Liu, T.; Wu, Y.H.; Wang, G.X.; Zhu, B.; DeLuca, T.H.; Wang, Y.Q.; Luo, J. Ground bryophytes regulate net soil carbon efflux: Evidence from two subalpine ecosystems on the east edge of the Tibet Plateau. Plant Soil 2017, 417, 363–375. [Google Scholar] [CrossRef]
- Chen, N.; Yang, Z.; Yang, Y.; Chen, S.; Xie, J. Effects of moss mat on soil CO2, CH4 and N2O fluxes in Cunninghamia lanceolata plantation in mid-subtropical region. Chin. J. Ecol. 2018, 37, 1071–1080. [Google Scholar] [CrossRef]
- Li, A.D.; Deluca, T.H.; Sun, S.Q.; Zhang, J.; Wang, G.X. Bryophytes impact the fluxes of soil non-carbon dioxide greenhouse gases in a subalpine coniferous forest. Biol. Fertil. Soils 2020, 56, 1151–1163. [Google Scholar] [CrossRef]
- Standen, K.M.; Sniderhan, A.E.; Sonnentag, O.; Voigt, C.; Baltzer, J.L. Responses of boreal plant communities and forest floor carbon fluxes to experimental nutrient additions. Ecosystems 2024, 27, 462–478. [Google Scholar] [CrossRef]
- Wilson, J.A.; Coxson, D.S. Carbon flux in a subalpine spruce-fir forest: Pulse release from Hylocomium splendens feather-moss mats. Can. J. Bot. 1999, 77, 564–569. [Google Scholar] [CrossRef]
- Kip, N.; van Winden, J.F.; Pan, Y.; Bodrossy, L.; Reichart, G.J.; Smolders, A.J.P.; Jetten, M.S.M.; Damste, J.S.S.; Op den Camp, H.J.M. Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat. Geosci. 2010, 3, 617–621. [Google Scholar] [CrossRef]
- Larmola, T.; Tuittila, E.S.; Throla, M.; Nykänen, H.; Martikainen, P.J.; Yrjälä, K.; Tuomivirta, T.; Fritze, H. The role of Sphagnum mosses in the methane cycling of a boreal mire. Ecology 2010, 91, 2356–2365. [Google Scholar] [CrossRef]
- Liebner, S.; Zeyer, J.; Wagner, D.; Schubert, C.; Pfeiffer, E.M.; Knoblauch, C. Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra. J. Ecol. 2011, 99, 914–922. [Google Scholar] [CrossRef]
- Wu, H.H.; Xu, X.K.; Cheng, W.G.; Han, L. Dissolved organic matter and inorganic N jointly regulate greenhouse gases fluxes from forest soils with different moistures during a freeze-thaw period. Soil Sci. Plant Nutr. 2020, 66, 163–176. [Google Scholar] [CrossRef]
- Xu, X.K.; Duan, C.T.; Wu, H.H.; Luo, X.B.; Han, L. Effects of changes in throughfall on soil GHG fluxes under a mature temperate forest, northeastern China. J. Environ. Manag. 2021, 294, 112950. [Google Scholar] [CrossRef]
- Xu, X.K.; Inubushi, K. Effects of nitrogen sources and glucose on the consumption of ethylene and methane by temperate volcanic forest surface soils. Chin. Sci. Bull. 2007, 52, 3281–3291. [Google Scholar] [CrossRef]
- Fender, A.C.; Pfeiffer, B.; Gansert, D.; Leuschner, C.; Daniel, R.; Jungkunst, H.F. The inhibiting effect of nitrate fertilization on methane uptake of a temperate forest soil is influenced by labile carbon. Biol. Fertil. Soils 2012, 48, 621–631. [Google Scholar] [CrossRef]
- Wu, H.H.; Xu, X.K.; Duan, C.T.; Li, T.S.; Cheng, W.G. Synergistic effects of dissolved organic carbon and inorganic nitrogen on methane uptake in forest soils without and with freezing treatment. Sci. Rep. 2016, 6, 32555. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erismam, J.W.; Bekunda, M.; Cai, Z.C.; Freney, J.R.; Martinelli, A.; Seizinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed]
- Saiz, E.; Sgouridis, F.; Drijfhout, F.P.; Peichl, M.; Nilsson, M.B.; Ullah, S. Chronic atmospheric reactive nitrogen deposition suppress biological nitrogen fixation in peatlands. Environ. Sci. Technol. 2021, 55, 1310–1318. [Google Scholar] [CrossRef]
- Gunnarsson, U.; Rydin, H. Nitrogen fertilization reduces Sphagnum production in bog communities. New Phytol. 2000, 147, 527–537. [Google Scholar] [CrossRef]
- Salemaa, M.; Mäkipää, R.; Oksanen, J. Differences in the growth response of three bryophyte species to nitrogen. Environ. Pollut. 2008, 152, 82–91. [Google Scholar] [CrossRef]
- Limpens, J.; Granath, G.; Gunnarsson, U.; Aerts, R.; Bayley, S.; Bragazza, L.; Bubier, J.; Buttler, A.; van den Berg, L.J.L.; Francez, A.J.; et al. Climatic modifiers of the response to nitrogen deposition in peatforming Sphagnum mosses: A meta-analysis. New Phytol. 2011, 191, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Gundale, M.J.; Deluca, T.H.; Nordin, A. Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. Glob. Change Biol. 2011, 17, 2743–2753. [Google Scholar] [CrossRef]
- Lu, F.; Yi, B.L.; Qin, K.; Bu, Z.J. Long-term nitrogen addition eliminates the cooling effect on climate in a temperate peatland. Plants 2025, 14, 1183. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.H.; Xu, X.K.; Duan, C.T.; Li, T.S.; Cheng, W.G. Effect of vegetation type, wetting intensity, and nitrogen supply on external carbon stimulated heterotrophic respiration and microbial biomass carbon in forest soils. Sci. China Earth Sci. 2015, 58, 1446–1456. [Google Scholar] [CrossRef]
- Meng, D.Y.; Cheng, H.X.; Shao, Y.; Luo, M.; Xu, D.D.; Liu, Z.M.; Ma, L.L. Progress on the effect nitrogen on transformation of soil organic carbon. Processes 2022, 10, 2425. [Google Scholar] [CrossRef]
- Xu, X.K.; Han, L.; Luo, X.B.; Han, S.J. Synergistic effects of nitrogen amendments and ethylene on atmospheric methane uptake under a temperate old-growth forest. Adv. Atmos. Sci. 2011, 28, 843–854. [Google Scholar] [CrossRef]
- Tian, D.S.; Niu, S.L. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 2015, 10, 024019. [Google Scholar] [CrossRef]
- Meng, H.N.; Song, C.C.; Miao, Y.Q.; Mao, R.; Wang, X.W. Response of CH4 emissions to moss removal and N addition in boreal peatland of northeast China. Biogeosciences 2014, 11, 4809–4816. [Google Scholar] [CrossRef]
- Mason, K.E.; Oakley, S.; Street, L.E.; Arroniz-Crespo, M.; Jones, D.L.; DeLuca, T.H.; Ostle, N.J. Boreal forest floor greenhouse gas emissions across a Pleurozium schreberi-dominated, wildfire-disturbed chronosequence. Ecosystems 2019, 22, 1381–1392. [Google Scholar] [CrossRef]
- Mironov, V.L. Threshold behavior hidden in the growth response of peat moss Sphagnum riparium to temperature. Plants 2024, 13, 3241. [Google Scholar] [CrossRef]
- Leavitt, S.W.; Long, A. Stable-carbon isotope variability in tree foliage and wood. Ecology 1986, 67, 1002–1010. [Google Scholar] [CrossRef]
- Benner, R.; Fogel, M.L.; Sprague, E.K.; Hodson, R.E. Depletion of 13C in lignin and its implication for stable isotope studies. Nature 1987, 329, 708–710. [Google Scholar] [CrossRef]
- Gleixner, G.; Danier, H.J.; Werner, R.A.; Schmidt, H.L. Correlations between the 13C content of primary and secondary plant products in different cell compartments and that in decomposing basidiomycetes. Plant Physiol. 1993, 102, 1287–1290. [Google Scholar] [CrossRef]
- Fontaine, S.; Barot, S.; Barré, P.; Bdioui, N.; Mary, B.; Rumpel, C. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 2007, 450, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.X.; Wang, Y.P.; Baldock, J.A.; Jiang, J.; Mo, J.M.; Zhou, G.Y.; Yan, J.H. Divergent responses of soil organic carbon accumulation to 14 years of nitrogen addition in two typical subtropical forests. Sci. Total Environ. 2020, 707, 136104. [Google Scholar] [CrossRef] [PubMed]
- Min, K.; Lehmeier, C.A.; Ballantyne, F.; Billings, S.A. Carbon availability modifies temperature responses of heterotrophic microbial respiration, carbon uptake affinity, and stable carbon isotope discrimination. Front. Microbiol. 2016, 7, 2083. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.K.; Kong, Y.H.; Feng, E.P.; Yue, J.; Cheng, W.G.; Khoroshaev, D.; Kivalov, S. Effect of mosses and long-term N addition on δ13C and δ18O values of respired CO2 under a temperate forest floor. Plants 2025, 14, 2707. [Google Scholar] [CrossRef] [PubMed]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Wu, H.H.; Xu, X.K.; Cheng, W.G.; Fu, P.Q.; Li, F.Y. Antecedent soil moisture prior to freezing can affect quantity, composition and stability of soil dissolved organic matter during thaw. Sci. Rep. 2017, 7, 6380. [Google Scholar] [CrossRef]
- Xu, X.K.; Xu, T.T.; Yue, J. Effect of in situ large soil column translocation on CO2 and CH4 fluxes under two temperate forests of northeastern China. Forests 2023, 14, 1531. [Google Scholar] [CrossRef]
- Kammer, A.; Tuzson, B.; Emmenegger, L.; Knohl, A.; Mohn, J.; Hagedorn, F. Application of a quantum cascade laser-based spectrometer in a closed chamber system for real-time δ13C and δ18O measurements of soil-respired CO2. Agric. For. Meteorol. 2011, 151, 39–48. [Google Scholar] [CrossRef]
- Keeling, C.D. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim. Cosmochim. Acta 1958, 13, 322–334. [Google Scholar] [CrossRef]
- Keeling, C.D. The concentration and isotopic abundances of carbon dioxide in rural and marine air. Geochim. Cosmochim. Acta 1961, 24, 277–298. [Google Scholar] [CrossRef]
- Al-Shammary, A.A.G.; Kouzani, A.Z.; Kaynak, A.; Khoo, S.Y.; Norton, M.; Gates, W. Soil bulk density estimation methods: A review. Pedosphere 2018, 28, 581–596. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookesa, P.C.; Jenkinsona, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Wu, J.; Joergensen, R.G.; Pommerening, B.; Chaussod, R.; Brookes, P.C. Measurement of soil microbial biomass C: An automated procedure. Soil Biol. Biochem. 1990, 22, 1167–1169. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Brookes, P.C.; Powlson, D.S. Measuring soil microbial biomass. Soil Biol. Biochem. 2004, 36, 5–7. [Google Scholar] [CrossRef]
- Xu, X.K.; Luo, X.B.; Jiang, S.H.; Xu, Z.J. Biodegradation of dissolved organic carbon in soil extracts and leachates from a temperate forest stand and its relationship to ultraviolet absorbance. Chin. Sci. Bull. 2012, 57, 912–920. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Xu, X.K. Effect of freeze-thaw disturbance on soil C and N dynamics and GHG fluxes of East Asia forests: Review and future perspectives. Soil Sci. Plant Nutr. 2022, 68, 15–26. [Google Scholar] [CrossRef]
- Sun, S.Q.; Wu, Y.H.; Wang, G.X.; Zhou, J.; Yu, D.; Bing, H.J.; Luo, J. Bryophyte species richness and composition along an altitudinal gradient in Gongga mountain, China. PLoS ONE 2013, 8, e58131. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, Q.J.; Xu, Z.Z.; Du, W.X.; Yu, J.; Meng, S.W.; Zhou, H.; Qi, L.H.; Shah, S. How can the shade intolerant Korean pine survive under dense deciduous canopy? For. Ecol. Manag. 2020, 457, 117735. [Google Scholar] [CrossRef]
- Xu, X.K.; Inubushi, K. Effects of N sources and methane concentrations on methane uptake potential of a typical coniferous forest and its adjacent orchard soil. Biol. Fertil. Soils 2004, 40, 215–221. [Google Scholar] [CrossRef]
- Xu, X.K.; Inubushi, K. Responses of ethylene and methane consumption to temperature and pH in temperate volcanic forest soils. Eur. J. Soil Sci. 2009, 60, 489–498. [Google Scholar] [CrossRef]
- Nykänen, H.; Alm, J.; Silvola, J.; Tolonen, K.; Martikainen, P.J. Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Glob. Biogeochem. Cycles 1998, 12, 53–69. [Google Scholar] [CrossRef]
- Raghoebarsing, A.A.; Smolders, A.J.P.; Schmid, M.C.; Rijpstra, W.I.C.; Wolters-Arts, M.; Derksen, J.; Jetten, M.S.M.; Schouten, S.; Damsté, J.S.S.; Lamers, L.P.M.; et al. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 2005, 436, 1153–1156. [Google Scholar] [CrossRef]
- Basiliko, N.; Knowles, R.; Moore, T.R. Roles of moss species and habitat in methane consumption potential in a northern peatland. Wetlands 2004, 24, 178–185. [Google Scholar] [CrossRef]
- Zhang, J.B.; Sun, B.; Zhu, J.J.; Wang, J.K.; Pan, X.C.; Gao, T. Black soil protection and utilization based on harmonization of mountain-rive-forest-farmland-lake-grassland-sandy land ecosystems and strategic construction of ecological barrier. Bull. Chin. Acad. Sci. 2021, 36, 1155–1164. [Google Scholar]
- Deluca, T.H.; Zackrisson, O.; Nilsson, M.C.; Sellstedt, A. Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 2002, 419, 917–920. [Google Scholar] [CrossRef] [PubMed]
- Clemmensen, K.E.; Bahr, A.; Ovaskainen, O.; Dahlberg, A.; Ekblad, A.; Wallander, H.; Stenlid, J.; Finlay, R.D.; Wardle, D.A.; Lindahl, B.D. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 2013, 339, 1615–1618. [Google Scholar] [CrossRef] [PubMed]
- Keiluweit, M.; Bougoure, J.J.; Nico, P.S.; Pett-Ridge, J.; Weber, P.K.; Kleber, M. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Change 2015, 5, 588–595. [Google Scholar] [CrossRef]
- Chandregowda, M.H.; Tjoelker, M.G.; Pendall, E.; Zhang, H.; Churchill, A.C.; Power, S.A. Belowground carbon allocation, root trait plasticity, and productivity during drought and warming in a pasture grass. J. Exp. Bot. 2023, 74, 2127–2145. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Hill, B.H.; Shah, J.J.F. Ecoenzymatic stoichiometry of microbial organic nutrient acquisi-tion in soil and sediment. Nature 2009, 462, 795–798. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Shah, J.J.F. Ecoenzymatic Stoichiometry and Ecological Theory. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 313–343. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Friedel, J.K.; Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 2000, 32, 1485–1498. [Google Scholar] [CrossRef]
- Xu, X.K. Effect of changes in throughfall on soil respiration in global forest ecosystems: A meta-analysis. Forests 2023, 14, 1037. [Google Scholar] [CrossRef]
| Treatments | Cumulative CO2 Emission | Cumulative CH4 Uptake |
|---|---|---|
| (Mg C ha−1 yr−1) | (kg C ha−1 yr−1) | |
| With moss | ||
| Control | 5.44 (4.82–6.51) | 1.60 (1.29–1.83) |
| Low N | 4.41 (4.13–4.87) | 1.48 (1.12–1.79) |
| High N | 4.04 (3.78–4.28) | 0.96 (0.76–1.10) |
| Without moss | ||
| Control | 3.04 (2.52–3.51) | 0.83 (0.70–1.05) |
| Low N | 3.18 (2.91–3.52) | 1.08 (0.84–1.39) |
| High N | 3.37 (2.97–3.79) | 0.77 (0.59–0.90) |
| ANOVA analysis (p value) | ||
| Moss | 0.001 | 0.001 |
| Treatment | 0.010 | 0.000 |
| Year | 0.116 | 0.019 |
| Treatment × Year | 0.281 | 0.142 |
| Moss × Year | 0.134 | 0.056 |
| Moss × Treatment | 0.000 | 0.000 |
| Moss × Treatment × Year | 0.449 | 0.714 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xu, X.; Yue, J.; Cheng, W.; Kong, Y.; Tang, S.; Khoroshaev, D.; Shanin, V. Inhibition by Nitrogen Addition of Moss-Mediated CH4 Uptake and CO2 Emission Under a Well-Drained Temperate Forest, Northeastern China. Plants 2026, 15, 166. https://doi.org/10.3390/plants15010166
Xu X, Yue J, Cheng W, Kong Y, Tang S, Khoroshaev D, Shanin V. Inhibition by Nitrogen Addition of Moss-Mediated CH4 Uptake and CO2 Emission Under a Well-Drained Temperate Forest, Northeastern China. Plants. 2026; 15(1):166. https://doi.org/10.3390/plants15010166
Chicago/Turabian StyleXu, Xingkai, Jin Yue, Weiguo Cheng, Yuhua Kong, Shuirong Tang, Dmitriy Khoroshaev, and Vladimir Shanin. 2026. "Inhibition by Nitrogen Addition of Moss-Mediated CH4 Uptake and CO2 Emission Under a Well-Drained Temperate Forest, Northeastern China" Plants 15, no. 1: 166. https://doi.org/10.3390/plants15010166
APA StyleXu, X., Yue, J., Cheng, W., Kong, Y., Tang, S., Khoroshaev, D., & Shanin, V. (2026). Inhibition by Nitrogen Addition of Moss-Mediated CH4 Uptake and CO2 Emission Under a Well-Drained Temperate Forest, Northeastern China. Plants, 15(1), 166. https://doi.org/10.3390/plants15010166

