A Novel Nonthermal Plasma System for Continuous On-Site Production of Nitrogen Fertilizer
Abstract
1. Introduction
2. Materials and Methods
2.1. Design of Continuous NTP System for Producing Aqueous N-Fertilizer
2.2. Test of the cNTP-H2O Performance
2.3. Hydroponic Lettuce Cultivation with aN-Fertilizer
3. Results and Discussion
3.1. Progress of the Development
3.2. Characteristics of the DBD Plasma and Power Measurement
3.3. Hydroponic Lettuce Cultivation Outcome
3.4. Benchmarking and Significance
- The unique design of the cNTP-H2O system enhances interfacial reactions between water and NTP, improving mass transfer to continuously produce a liquid nitrogen fertilizer.
- While the oxidation pathway is kinetically favored, chemical pathways exist that allow for the simultaneous production of both ammonium (via the reduction pathway) and nitrate (via the oxidation pathway) from water and air using the cNTP-H2O system. The composition of the fixed nitrogen products can potentially be adjusted by altering the system’s process parameters and configuration.
- Hydrogen is the limiting reactant in the reduction pathway for ammonium production. This limitation can be addressed by supplementing with H2 gas or ethanol, and possibly methane, which can be generated on a farm site through anaerobic digestion.
- When using air as the feed gas, most of the fixed nitrogen in our product is in the form of nitrate (with less than 2% nitrite in most cases), which is directly usable by plants.
- The material of the HV electrode in contact with the reactants appears to influence performance. Therefore, adding catalysts onto the HV electrode (e.g., by coating or embedding them) could potentially alter the reaction kinetics and significantly impact the product yield.
- Because the cNTP-H2O system operates at non-equilibrium thermodynamically and steady-state kinetically, the thermodynamics and kinetics of NTP, transport processes, and chemical reactions all affect the production rate and product composition. Consequently, it is possible to further improve production rates and reduce specific electrical energy consumption by optimizing process parameters and reactor geometry/configuration within the cNTP-H2O platform.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.; Jimenez, J.M.; Hessel, V.; Gallucci, F. Recent Progress of Plasma-Assisted Nitrogen Fixation Research: A Review. Processes 2018, 6, 248. [Google Scholar] [CrossRef]
- Klimek, A.; Piercey, D. Nitrogen Fixation via Plasma-Assisted Processes: Mechanisms, Applications, and Comparative Analysis—A Comprehensive Review. Processes 2024, 12, 786. [Google Scholar] [CrossRef]
- Aceto, D.; Ambrico, P.; Esposito, F. Air cold plasmas as a new tool for nitrogen fixation in agriculture: Underlying mechanisms and current experimental insights. Front. Phys. 2024, 12, 1455481. [Google Scholar] [CrossRef]
- Hollevoet, L.; Jardali, F.; Gorbanev, Y.; Creel, J.; Bogaerts, A.; Martens, J.A. Towards Green Ammonia Synthesis through Plasma-Driven Nitrogen Oxidation and Catalytic Reduction. Angew. Chem. 2020, 59, 23825–23829. [Google Scholar] [CrossRef]
- Ye, X.P. Decarbonizing Nitrogen Fertilizer for Agriculture with Nonthermal Plasma Technology. Eng 2024, 5, 1823–1837. [Google Scholar] [CrossRef]
- Rouwenhorst, K.H.R.; Jardali, F.; Bogaerts, A.; Lefferts, L. From the Birkeland-Eyde process towards energy-efficient plasma-based NO (X) synthesis: A techno-economic analysis. Energy Environ. Sci. 2021, 14, 2520–2534. [Google Scholar] [CrossRef]
- Tsonev, I.; O’Modhrain, C.; Bogaerts, A.; Gorbanev, Y. Nitrogen Fixation by an Arc Plasma at Elevated Pressure to Increase the Energy Efficiency and Production Rate of NOx. ACS Sustain. Chem. Eng. 2023, 11, 1888–1897. [Google Scholar] [CrossRef]
- Chen, H.; Yuan, D.; Wu, A.; Lin, X.; Li, X. Review of low-temperature plasma nitrogen fixation technology. Waste Dispos. Sustain. Energy 2021, 3, 201–217. [Google Scholar] [CrossRef]
- Matassa, S.; Boeckx, P.; Boere, J.; Erisman, J.W.; Guo, M.; Manzo, R.; Meerburg, F.; Papirio, S.; Pikaar, I.; Rabaey, K.; et al. How can we possibly resolve the planet’s nitrogen dilemma? Microb. Biotechnol. 2023, 16, 15–27. [Google Scholar] [CrossRef]
- Muzammil, I.; Lee, D.H.; Dinh, D.K.; Kang, H.; Roh, S.A.; Kim, Y.-N.; Choi, S.; Jung, C.; Song, Y.-H. A novel energy efficient path for nitrogen fixation using a non-thermal arc. RSC Adv. 2021, 11, 12729–12738. [Google Scholar] [CrossRef]
- Zhao, X.; Tian, Y. Sustainable nitrogen fixation by plasma-liquid interactions. Cell Rep. Phys. Sci. 2023, 4, 101618. [Google Scholar] [CrossRef]
- Gromov, M.; Kamarinopoulou, N.; De Geyter, N.; Morent, R.; Snyders, R.; Vlachos, D.; Dimitrakellis, P.; Nikiforov, A. Plasma-assisted nitrogen fixation: The effect of water presence. Green Chem. 2022, 24, 9677–9689. [Google Scholar] [CrossRef]
- Pattyn, C.; Maira, N.; Remy, A.; Roy, N.C.; Iseni, S.; Petitjean, D.; Reniers, F. Potential of N2/O2 atmospheric pressure needle-water DC microplasmas for nitrogen fixation: Nitrite-free synthesis of nitrates. Phys. Chem. Chem. Phys. 2020, 22, 24801–24812. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; You, H.; Zhu, C.; Wang, C.; Zhang, X.; Liu, Y. Energy-Efficient, Sustainable Nitrogen Fixation in Water via In Situ Electrode-Activated Pulsed Plasma. ACS Sustain. Chem. Eng. 2025, 13, 2596–2603. [Google Scholar] [CrossRef]
- Fernandez, C.A.; Hatzell, M.C. Editors’ Choice—Economic Considerations for Low-Temperature Electrochemical Ammonia Production: Achieving Haber-Bosch Parity. J. Electrochem. Soc. 2020, 167, 143504. [Google Scholar] [CrossRef]
- Sakakura, T.; Murakami, N.; Takatsuji, Y.; Haruyama, T. Nitrogen Fixation in a Plasma/Liquid Interfacial Reaction and Its Switching between Reduction and Oxidation. J. Phys. Chem. C 2020, 124, 9401–9408. [Google Scholar] [CrossRef]
- Tsuchida, Y.; Murakami, N.; Sakakura, T.; Takatsuji, Y.; Haruyama, T. Drastically Increase in Atomic Nitrogen Production Depending on the Dielectric Constant of Beads Filled in the Discharge Space. ACS Omega 2021, 6, 29759–29764. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.; Harding, J.; Tu, X. Plasma-enhanced N2 fixation in a dielectric barrier discharge reactor: Effect of packing materials. Plasma Sources Sci. Technol. 2021, 30, 105002. [Google Scholar] [CrossRef]
- Zayed, O.; Hewedy, O.A.; Abdelmoteleb, A.; Ali, M.; Youssef, M.S.; Roumia, A.F.; Seymour, D.; Yuan, Z.C. Nitrogen Journey in Plants: From Uptake to Metabolism, Stress Response, and Microbe Interaction. Biomolecules 2023, 13, 1443. [Google Scholar] [CrossRef]
- Manley, T.C. The electric characteristics of the ozonator discharge. Trans. Electrochem. Soc. 1943, 84, 12. [Google Scholar] [CrossRef]
- In EPA; Method 353.2, Revision 2.0; Determination of Nitrate-Nitrite Nitrogen by Automated Colorimetry. United States Environmental Protection Agency: Washington, DC, USA, 1993.
- In EPA; Method 350.1, Revision 2.0; Determination of Ammonia Nitrogen by Semi-Automated Colorimetry. United States Environmental Protection Agency: Washington, DC, USA, 1993.
- Nemali, K. Nutrition Calculations for Hydroponic Crops; Purdue Extension Publication: West Lafayette, IN, USA, 2021; Available online: https://www.purdue.edu/hla/sites/cea/wp-content/uploads/sites/15/2021/01/Nutrient-calculations.pdf (accessed on 15 March 2025).
- Xia, Y.; Kwon, H.; Wander, M. Developing county-level data of nitrogen fertilizer and manure inputs for corn production in the United States. J. Clean. Prod. 2021, 309, 126957. [Google Scholar] [CrossRef]
- Ramasamy, V.; Feldman, D. U.S. Solar Photovoltaic System and Energy Storage Cost Benchmarks: Q1 2021; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2021. [CrossRef]
- LAZARD. LAZARD’S Levelized Cost of Energy Analysis—Version 15.0; Lazard: New York, NY, USA, 2021; Available online: https://www.lazard.com/research-insights/levelized-cost-of-energy-levelized-cost-of-storage-and-levelized-cost-of-hydrogen-2021/ (accessed on 12 August 2023).
- RAYmaps. How to Calculate the Surface Area Required by Solar Panels. Available online: https://www.raymaps.com/index.php/how-to-calculate-the-area-required-by-solar-panels/ (accessed on 7 September 2023).
- Vanraes, P.; Nikiforov, A.; Bogaerts, A.; Leys, C. Study of an AC dielectric barrier single micro-discharge filament over a water film. Sci. Rep. 2018, 8, 10919. [Google Scholar] [CrossRef]
- Kogelschatz, U. Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications. Plasma Chem. Plasma Process. 2003, 23, 1–46. [Google Scholar] [CrossRef]
- Gorbanev, Y.; Vervloessem, E.; Nikiforov, A.; Bogaerts, A. Nitrogen Fixation with Water Vapor by Nonequilibrium Plasma: Toward Sustainable Ammonia Production. ACS Sustain. Chem. Eng. 2020, 8, 2996–3004. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y.; Liao, H.; Tian, C.; Cui, J.; Liu, Z. Nitrogen Fixation via Catalyst-Free Water-Falling Film Dielectric Barrier Discharge Plasma: A Novel and Simple Strategy to Enhance Ammonia Selectivity. Appl. Sci. 2025, 15, 1410. [Google Scholar] [CrossRef]
- Lamichhane, P.; Pourali, N.; Rebrov, E.V.; Hessel, V. Sustainable Plasma-Catalytic Nitrogen Fixation with Pyramid Shaped μ-Electrode DBD and Titanium Dioxide. ChemistrySelect 2024, 9, e202401076. [Google Scholar] [CrossRef]
- Shao, K.; Pei, X.; Graves, D.B.; Mesbah, A. Active learning-guided exploration of parameter space of air plasmas to enhance the energy efficiency of NOx production. Plasma Sources Sci. Technol. 2022, 31, 055018. [Google Scholar] [CrossRef]
- Bu, Y.; Dong, X.; Zhang, R.; Shen, X.; Liu, Y.; Wang, S.; Takano, T.; Liu, S. Unraveling the role of urea hydrolysis in salt stress response during seed germination and seedling growth in Arabidopsis thaliana. eLife 2024, 13, e96797. [Google Scholar] [CrossRef]
- Sun, J.; Alam, D.; Daiyan, R.; Masood, H.; Zhang, T.; Zhou, R.; Cullen, P.J.; Lovell, E.C.; Jalili, A.; Amal, R. A hybrid plasma electrocatalytic process for sustainable ammonia production. Energy Environ. Sci. 2021, 14, 865–872. [Google Scholar] [CrossRef]
- Lamichhane, P.; Adhikari, B.C.; Nguyen, L.N.; Paneru, R.; Ghimire, B.; Mumtaz, S.; Lim, J.S.; Hong, Y.J.; Choi, E.H. Sustainable nitrogen fixation from synergistic effect of photo-electrochemical water splitting and atmospheric pressure N2 plasma. Plasma Sources Sci. Technol. 2020, 29, 045026. [Google Scholar] [CrossRef]
- Kumari, S.; Pishgar, S.; Schwarting, M.E.; Paxton, W.F.; Spurgeon, J.M. Synergistic plasma-assisted electrochemical reduction of nitrogen to ammonia. Chem. Commun. 2018, 54, 13347–13350. [Google Scholar] [CrossRef]
- Suryanto, B.H.R.; Wang, D.; Azofra, L.M.; Harb, M.; Cavallo, L.; Jalili, R.; Mitchell, D.R.G.; Chatti, M.; MacFarlane, D.R. MoS2 Polymorphic Engineering Enhances Selectivity in the Electrochemical Reduction of Nitrogen to Ammonia. ACS Energy Lett. 2019, 4, 430–435. [Google Scholar] [CrossRef]
- Shi, M.-M.; Bao, D.; Wulan, B.-R.; Li, Y.-H.; Zhang, Y.-F.; Yan, J.-M.; Jiang, Q. Au Sub-Nanoclusters on TiO2 toward Highly Efficient and Selective Electrocatalyst for N2 Conversion to NH3 at Ambient Conditions. Adv. Mater. 2017, 29, 1606550. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Lim, A.; Yoon, C.; Jang, J.H.; Ham, H.C.; Han, J.; Nam, S.; Kim, D.; Sung, Y.-E.; Choi, J.; et al. Electrochemical Synthesis of NH3 at Low Temperature and Atmospheric Pressure Using a γ-Fe2O3 Catalyst. ACS Sustain. Chem. Eng. 2017, 5, 10986–10995. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, L.X.; Chen, G.F.; Yang, X.; Wang, H. Ammonia Synthesis Under Ambient Conditions: Selective Electroreduction of Dinitrogen to Ammonia on Black Phosphorus Nanosheets. Angew. Chem. 2019, 58, 2612–2616. [Google Scholar] [CrossRef]
- Bao, D.; Zhang, Q.; Meng, F.-L.; Zhong, H.-X.; Shi, M.-M.; Zhang, Y.; Yan, J.-M.; Jiang, Q.; Zhang, X.-B. Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle. Adv. Mater. 2017, 29, 1604799. [Google Scholar] [CrossRef]
- Jin, H.; Li, L.; Liu, X.; Tang, C.; Xu, W.; Chen, S.; Song, L.; Zheng, Y.; Qiao, S.-Z. Nitrogen Vacancies on 2D Layered W2N3: A Stable and Efficient Active Site for Nitrogen Reduction Reaction. Adv. Mater. 2019, 31, 1902709. [Google Scholar] [CrossRef]
- Wang, J.; Yu, L.; Hu, L.; Chen, G.; Xin, H.; Feng, X. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795. [Google Scholar] [CrossRef]
- Chen, S.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D.; Centi, G. Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst. Angew. Chem. Int. Ed. 2017, 56, 2699–2703. [Google Scholar] [CrossRef]
- Li, S.-J.; Bao, D.; Shi, M.-M.; Wulan, B.-R.; Yan, J.-M.; Jiang, Q. Amorphizing of Au Nanoparticles by CeOx–RGO Hybrid Support towards Highly Efficient Electrocatalyst for N2 Reduction under Ambient Conditions. Adv. Mater. 2017, 29, 1700001. [Google Scholar] [CrossRef]
- Mukherjee, S.; Cullen, D.A.; Karakalos, S.G.; Liu, K.; Zhang, H.; Zhao, S.; Xu, H.; More, K.L.; Wang, G.; Wu, G. Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy 2018, 48, 217–226. [Google Scholar] [CrossRef]
- Lazouski, N.; Chung, M.; Williams, K.; Gala, M.L.; Manthiram, K. Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nat. Catal. 2020, 3, 463–469. [Google Scholar] [CrossRef]
- Lazouski, N.; Schiffer, Z.J.; Williams, K.; Manthiram, K. Understanding Continuous Lithium-Mediated Electrochemical Nitrogen Reduction. Joule 2019, 3, 1127–1139. [Google Scholar] [CrossRef]
- Lee, H.K.; Koh, C.S.L.; Lee, Y.H.; Liu, C.; Phang, I.Y.; Han, X.; Tsung, C.-K.; Ling, X.Y. Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach. Sci. Adv. 2018, 4, eaar3208. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Azofra, L.M.; Ali, M.; Kar, M.; Simonov, A.N.; McDonnell-Worth, C.; Sun, C.; Zhang, X.; MacFarlane, D.R. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ. Sci. 2017, 10, 2516–2520. [Google Scholar] [CrossRef]
- Andersen, S.Z.; Čolić, V.; Yang, S.; Schwalbe, J.A.; Nielander, A.C.; McEnaney, J.M.; Enemark-Rasmussen, K.; Baker, J.G.; Singh, A.R.; Rohr, B.A.; et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 2019, 570, 504–508. [Google Scholar] [CrossRef]
- Kim, K.; Yoo, C.-Y.; Kim, J.-N.; Yoon, H.C.; Han, J.-I. Electrochemical Synthesis of Ammonia from Water and Nitrogen in Ethylenediamine under Ambient Temperature and Pressure. J. Electrochem. Soc. 2016, 163, F1523. [Google Scholar] [CrossRef]
- Chen, G.-F.; Cao, X.; Wu, S.; Zeng, X.; Ding, L.-X.; Zhu, M.; Wang, H. Ammonia Electrosynthesis with High Selectivity under Ambient Conditions via a Li+ Incorporation Strategy. J. Am. Chem. Soc. 2017, 139, 9771–9774. [Google Scholar] [CrossRef]
- Lu, P.; Boehm, D.; Bourke, P.; Cullen, P.J. Achieving reactive species specificity within plasma-activated water through selective generation using air spark and glow discharges. Plasma Process. Polym. 2017, 14, 1600207. [Google Scholar] [CrossRef]
- Nakaso, T.; Harigai, T.; Kusumawan, S.A.; Shimomura, T.; Tanimoto, T.; Suda, Y.; Takikawa, H. Multi-spark discharge system for preparation of nutritious water. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2018; Volume 1929. [Google Scholar] [CrossRef]
- Ogawa, K.; Oh, J.-S.; Gaur, N.; Hong, S.-H.; Kurita, H.; Mizuno, A.; Hatta, A.; Short, R.D.; Ito, M.; Szili, E.J. Modulating the concentrations of reactive oxygen and nitrogen species and oxygen in water with helium and argon gas and plasma jets. Jpn. J. Appl. Phys. 2019, 58, SAAB01. [Google Scholar] [CrossRef]
- Tachibana, K.; Nakamura, T. Comparative study of discharge schemes for production rates and ratios of reactive oxygen and nitrogen species in plasma activated water. J. Phys. D Appl. Phys. 2019, 52, 385202. [Google Scholar] [CrossRef]
- Uchida, G.; Takenaka, K.; Takeda, K.; Ishikawa, K.; Hori, M.; Setsuhara, Y. Selective production of reactive oxygen and nitrogen species in the plasma-treated water by using a nonthermal high-frequency plasma jet. Jpn. J. Appl. Phys. 2018, 57, 0102B0104. [Google Scholar] [CrossRef]
- Vervloessem, E.; Gorbanev, Y.; Nikiforov, A.; De Geyter, N.; Bogaerts, A. Sustainable NOx production from air in pulsed plasma: Elucidating the chemistry behind the low energy consumption. Green Chem. 2022, 24, 916–929. [Google Scholar] [CrossRef]
- Peng, P.; Schiappacasse, C.; Zhou, N.; Addy, M.; Cheng, Y.; Zhang, Y.; Anderson, E.; Chen, D.; Wang, Y.; Liu, Y.; et al. Plasma in situ gas—Liquid nitrogen fixation using concentrated high-intensity electric field. J. Phys. D Appl. Phys. 2019, 52, 494001. [Google Scholar] [CrossRef]
- Toth, J.R.; Abuyazid, N.H.; Lacks, D.J.; Renner, J.N.; Sankaran, R.M. A Plasma-Water Droplet Reactor for Process-Intensified, Continuous Nitrogen Fixation at Atmospheric Pressure. ACS Sustain. Chem. Eng. 2020, 8, 14845–14854. [Google Scholar] [CrossRef]
- Hawtof, R.; Ghosh, S.; Guarr, E.; Xu, C.; Mohan Sankaran, R.; Renner, J.N. Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system. Sci. Adv. 2019, 5, eaat5778. [Google Scholar] [CrossRef]
- Indumathy, B.; Ananthanarasimhan, J.; Rao, L.; Yugeswaran, S.; Ananthapadmanabhan, P.V. Catalyst-free production of ammonia by means of interaction between a gliding arc plasma and water surface. J. Phys. D Appl. Phys. 2022, 55, 395501. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, Y.; Niu, G.; Wang, X.; Duan, Y. Direct Oxidative Nitrogen Fixation from Air and H2O by a Water Falling Film Dielectric Barrier Discharge Reactor at Ambient Pressure and Temperature. ChemSusChem 2021, 14, 1507–1511. [Google Scholar] [CrossRef]
- Peng, P.; Chen, P.; Addy, M.; Cheng, Y.; Zhang, Y.; Anderson, E.; Zhou, N.; Schiappacasse, C.; Hatzenbeller, R.; Fan, L.; et al. In situ plasma-assisted atmospheric nitrogen fixation using water and spray-type jet plasma. Chem. Commun. 2018, 54, 2886–2889. [Google Scholar] [CrossRef]
- Peng, P.; Schiappacasse, C.; Zhou, N.; Addy, M.; Cheng, Y.; Zhang, Y.; Ding, K.; Wang, Y.; Chen, P.; Ruan, R. Sustainable Non-Thermal Plasma-Assisted Nitrogen Fixation—Synergistic Catalysis. ChemSusChem 2019, 12, 3702–3712. [Google Scholar] [CrossRef]
- Kubota, Y.; Koga, K.; Ohno, M.; Hara, T. Synthesis of Ammonia through Direct Chemical Reactions between an Atmospheric Nitrogen Plasma Jet and a Liquid. Plasma Fusion Res. 2010, 5, 042. [Google Scholar] [CrossRef]
- Li, J.; Lan, C.; Nie, L.; Liu, D.; Lu, X. Distributed plasma-water-based nitrogen fixation system based on cascade discharge: Generation, regulation, and application. Chem. Eng. J. 2023, 478, 147483. [Google Scholar] [CrossRef]
- MacFarlane, D.R.; Cherepanov, P.V.; Choi, J.; Suryanto, B.H.R.; Hodgetts, R.Y.; Bakker, J.M.; Ferrero Vallana, F.M.; Simonov, A.N. A Roadmap to the Ammonia Economy. Joule 2020, 4, 1186–1205. [Google Scholar] [CrossRef]
- Chant, J. How Nitric Acid is Used in the Horticulture Industry. Available online: https://www.monarchchemicals.co.uk/Information/News-Events/795-/How-Nitric-Acid-is-used-in-the-Horticulture-Industry (accessed on 1 April 2025).
- Sander, R. Compilation of Henry’s law constants (version 5.0.0) for water as solvent. Atmos. Chem. Phys. 2023, 23, 10901–12440. [Google Scholar] [CrossRef]
- Zacharia, I.G.; Deen, W.M. Diffusivity and Solubility of Nitric Oxide in Water and Saline. Ann. Biomed. Eng. 2005, 33, 214–222. [Google Scholar] [CrossRef]
- Liu, D.X.; Liu, Z.C.; Chen, C.; Yang, A.J.; Li, D.; Rong, M.Z.; Chen, H.L.; Kong, M.G. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways. Sci. Rep. 2016, 6, 23737. [Google Scholar] [CrossRef] [PubMed]
- Bradu, C.; Kutasi, K.; Magureanu, M.; Puač, N.; Živković, S. Reactive nitrogen species in plasma-activated water: Generation, chemistry and application in agriculture. J. Phys. D Appl. Phys. 2020, 53, 223001. [Google Scholar] [CrossRef]
- Jiang, B.; Zheng, J.; Qiu, S.; Wu, M.; Zhang, Q.; Yan, Z.; Xue, Q. Review on electrical discharge plasma technology for wastewater remediation. Chem. Eng. J. 2014, 236, 348–368. [Google Scholar] [CrossRef]
- Soni, A.; Choi, J.; Brightwell, G. Plasma-Activated Water (PAW) as a Disinfection Technology for Bacterial Inactivation with a Focus on Fruit and Vegetables. Foods 2021, 10, 166. [Google Scholar] [CrossRef]






| Unit-Cell Configuration 1 | HV Electrode Material | Unit Feed Gas and Flow Rate (mL/min) 2 | Unit Feed Water Content and Flow Rate (mL/min) 3 | Total N Production Rate per Unit-Cell (μg-N/min) 4 | NH4−-N Production Rate per Unit-Cell (μg-N/min) | Total Electricity Consumption per Unit-Cell (W) 5 | Energy Efficiency (kWh/mol-N) 6 | Number of Unit-Cells for 115 lb N per Acre 7 | Electricity Cost for 115 lb N ($/Season) 8 | % Surface Area of Solar Panel 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| A: 1-stage, 2-zone | AlSi10Mg | N2/400 | DW/47 | 794.3 | 90.5 | 138 | 40.5 | 1824 | 4531 | 34.6 |
| B: 1-stage, zone-B only | AlSi10Mg | N2/400 | DW/45 | 243.9 | 16.7 | 78 | 74.6 | 5941 | 8341 | 63.7 |
| C: 1-stage, zone-A on top | SS316 | N2/400 | DW/48 | 756.0 | 70.2 | 158 | 48.8 | 1917 | 5451 | 41.6 |
| D: 1-stage, zone-B on top | SS316 | N2/400 | DW/48 | 834.2 | 15.4 | 152 | 42.5 | 1737 | 4752 | 36.3 |
| E: 1-stage, 2-zone | SS316 | N2/500 | DW (2% ethanol)/47 | 808.4 | 503.6 | 147 | 42.4 | 1792 | 4743 | 36.2 |
| F: 2-stage, 2-zone, Pd | SS316 | N2/400 | DW/48 | 1629.1 | 129.0 | 178 | 25.5 | 889 | 2850 | 21.8 |
| G: 2-stage, 2-zone, Pd | SS316 | N2/580 + H2/80 | DW/50 | 1095.0 | 865.2 | 199 | 42.4 | 1323 | 4740 | 36.2 |
| H: 2-stage, 2-zone, Pd | SS316 | Air/2302 | DW/48 | 4094.4 | 94.0 | 182 | 10.4 | 354 | 1159 | 8.8 |
| I: 2-stage, 2-zone, Pd | SS316 | Air/2302 + H2/80 | DW/50 | 3800.0 | 257.1 | 201 | 12.3 | 381 | 1380 | 10.5 |
| J: 2-stage, 2-zone, Mn | AlSi10Mg | Air/3800 | TW/95 | 8265.0 | 14.3 | 186 | 5.3 | 175 | 587 | 4.5 |
| Target 1 | Air | TW/100 | 30,000.0 | 3000.0 | 200 | 1.6 | 48 | 174 | 1.3 | |
| Target 2 | Air | TW/100 | 11,000.0 | 1100.0 | 50 | 1.1 | 132 | 119 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ye, X.P.; Michalik, N.; Hyde, J. A Novel Nonthermal Plasma System for Continuous On-Site Production of Nitrogen Fertilizer. AgriEngineering 2026, 8, 20. https://doi.org/10.3390/agriengineering8010020
Ye XP, Michalik N, Hyde J. A Novel Nonthermal Plasma System for Continuous On-Site Production of Nitrogen Fertilizer. AgriEngineering. 2026; 8(1):20. https://doi.org/10.3390/agriengineering8010020
Chicago/Turabian StyleYe, Xiaofei Philip, Nathan Michalik, and Joshua Hyde. 2026. "A Novel Nonthermal Plasma System for Continuous On-Site Production of Nitrogen Fertilizer" AgriEngineering 8, no. 1: 20. https://doi.org/10.3390/agriengineering8010020
APA StyleYe, X. P., Michalik, N., & Hyde, J. (2026). A Novel Nonthermal Plasma System for Continuous On-Site Production of Nitrogen Fertilizer. AgriEngineering, 8(1), 20. https://doi.org/10.3390/agriengineering8010020

