Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (452)

Search Parameters:
Keywords = nitrate reductases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6398 KB  
Article
Integration of Non-Invasive Micro-Test Technology and 15N Tracing Reveals the Impact of Nitrogen Forms at Different Concentrations on Respiratory and Primary Metabolism in Glycyrrhiza uralensis
by Ying Chen, Yisu Cao, Yuan Jiang, Yanjun Wang, Zhengru Zhang, Yuanfan Zhang and Zhirong Sun
Int. J. Mol. Sci. 2026, 27(1), 317; https://doi.org/10.3390/ijms27010317 - 27 Dec 2025
Viewed by 180
Abstract
Glycyrrhiza uralensis is a highly valued medicinal species worldwide. However, a paradox arises in its cultivation in that high nitrogen fertilization boosts yield at the expense of root quality, a problem linked to nitrogen’s regulation of tricarboxylic acid (TCA) cycle-driven respiration. It remains [...] Read more.
Glycyrrhiza uralensis is a highly valued medicinal species worldwide. However, a paradox arises in its cultivation in that high nitrogen fertilization boosts yield at the expense of root quality, a problem linked to nitrogen’s regulation of tricarboxylic acid (TCA) cycle-driven respiration. It remains unclear how different nitrogen forms coordinate respiratory and primary metabolism. We examined the regulatory mechanisms of nitrate (NO3) versus ammonium (NH4+) on these processes in cultivated G. uralensis by supplying seedlings with varying concentrations of K15NO3 or (15NH4)2SO4 in a modified Hoagland solution (HNS). Using non-invasive micro-test technology (NMT) and 15N tracing, we found that G. uralensis employs distinct nitrogen acquisition strategies: sustaining uptake at optimal NH4+ and low-to-moderate NO3, while declining uptake under high NO3. These strategies drove form-specific differences in the activity of key nitrogen assimilation enzymes, nitrate reductase and nitrite reductase (NR/NiR), as well as glutamine synthetase and glutamate synthase (GS/GOGAT), and subsequent glutamate and glutamine accumulation. Ammonium nutrition enhanced primary ammonia assimilation and gamma-aminobutyric acid (GABA) metabolism, leading to greater glutamate and endogenous GABA levels. In contrast, nitrate nutrition preferentially stimulated the TCA cycle, resulting in higher accumulation of α-ketoglutarate (KGA) and succinate. The concomitant increase in GABA catabolism supported this nitrogen-responsive respiratory metabolism, acting as a compensatory mechanism to maintain KGA homeostasis. Our findings inform nitrogen form strategies for G. uralensis cultivation. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 4718 KB  
Article
Managing Nitrogen Sources in Soybean–Rhizobium Symbiosis During Reproductive Phenological Stage: Partitioning Symbiotic and Supplemental N with 15N
by Nicolas Braga Casarin, Cássio Carlette Thiengo, Carlos Alcides Villalba Algarin, Maria Clara Faria Chaves, Gil Miguel de Sousa Câmara, Valter Casarin, Fernando Shintate Galindo and José Lavres
Nitrogen 2026, 7(1), 1; https://doi.org/10.3390/nitrogen7010001 - 22 Dec 2025
Viewed by 355
Abstract
Understanding how supplemental nitrogen (N) interacts with biological N2 fixation (BNF) in modern soybean cultivars is essential for designing fertilization strategies that avoid unnecessary N inputs. We investigated N partitioning among soil, fertilizer and symbiotic sources in soybean grown in a greenhouse [...] Read more.
Understanding how supplemental nitrogen (N) interacts with biological N2 fixation (BNF) in modern soybean cultivars is essential for designing fertilization strategies that avoid unnecessary N inputs. We investigated N partitioning among soil, fertilizer and symbiotic sources in soybean grown in a greenhouse pot experiment on a tropical Oxisol. Plants were inoculated with Bradyrhizobium and subjected to four N managements: no external N, soil-applied 15N-urea (20 kg N ha−1), foliar 15N-urea (2 kg N ha−1, 0.7% w/v), and the combination of soil + foliar N. Using 15N isotope dilution, we quantified N derived from the atmosphere (NDFA), fertilizer (NDFF) and soil (NDFS) at organ and whole-plant scales, and related these fractions to nodulation, nitrogenase activity and yield. In the absence of external N, NDFA exceeded 97% in all organs, indicating a strong reliance on BNF and efficient internal N remobilization during grain filling, accompanied by higher leaf nitrate reductase activity. Soil and soil + foliar N markedly increased NDFF and NDFS while suppressing nodulation (particularly at V4) and reducing nitrogenase activity, yet they did not improve grain yield or vegetative biomass. Foliar N alone had only modest effects on N partitioning and did not enhance yield. Under these tropical soil conditions, symbiotic fixation and internal N remobilization were sufficient to meet grain N demand, highlighting the limited agronomic benefit and potential ecological cost of supplemental N during reproductive growth. Full article
Show Figures

Figure 1

15 pages, 1047 KB  
Article
Disruption of the Nitric Oxide Reductase Operon via norD Deletion Does Not Affect Brucella abortus 2308W Virulence
by Faisal Rasheed, Amaia Zúñiga-Ripa, Miriam Salvador-Bescós, Hamid Irshad, Raquel Peña-Villafruela, Pilar M. Muñoz, María Jesús de Miguel, Qurban Ali, Raquel Conde-Álvarez and Saeed-ul-Hassan Khan
Microorganisms 2025, 13(12), 2875; https://doi.org/10.3390/microorganisms13122875 - 18 Dec 2025
Viewed by 270
Abstract
Brucella are intracellular pathogens that use flexible respiratory strategies to adapt to oxygen-limited conditions. The nor operon encodes components of nitric oxide reductase (Nor), which are involved in denitrification and nitric oxide (NO) detoxification. In this study, the role of the norD gene [...] Read more.
Brucella are intracellular pathogens that use flexible respiratory strategies to adapt to oxygen-limited conditions. The nor operon encodes components of nitric oxide reductase (Nor), which are involved in denitrification and nitric oxide (NO) detoxification. In this study, the role of the norD gene in nitrate-dependent respiration, resistance to nitrosative stress, and intracellular persistence in B. abortus was evaluated. A non-polar ΔnorD mutant was generated in strain 2308W and its survival and growth under aerobic and anaerobic conditions, with and without nitrate, as well as its tolerance to NO donors, were analyzed. In addition, its behavior was evaluated in activated and non-activated murine RAW264.7 and human THP-1 macrophages and in a murine infection model. The deletion of norD did not affect viability or growth under any of the conditions tested, nor did it alter resistance to NO in vitro or within activated macrophages. Furthermore, the mutant showed virulence comparable to the wild-type strain in BALB/c mice. These results contrast with those described for other Brucella species, suggesting that norD is dispensable in B. abortus 2308W virulence and that in the Brucella genus, there are species-specific differences in the role of the nor operon during infection. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

17 pages, 6990 KB  
Article
Comparative Physiological and Transcriptomic Characterisation of Two Japonica Rice Cultivars Under Low Nitrogen Stress
by Yu Zou, Yi Ren, Shuxin Jiang, Xinchun Zhan, Peijiang Zhang, Shaojie Song and Ending Xu
Plants 2025, 14(24), 3836; https://doi.org/10.3390/plants14243836 - 16 Dec 2025
Viewed by 273
Abstract
Nitrogen (N) is an essential nutrient for the growth and development of rice. However, excessive N fertiliser application and low N Use Efficiency (NUE) have led to serious environmental problems and threatened agricultural sustainability. In this study, we compared the physiological and transcriptomic [...] Read more.
Nitrogen (N) is an essential nutrient for the growth and development of rice. However, excessive N fertiliser application and low N Use Efficiency (NUE) have led to serious environmental problems and threatened agricultural sustainability. In this study, we compared the physiological and transcriptomic profiles of roots of two cultivars exposed to normal nitrogen (NN) and low nitrogen (LN). The results showed that the LN treatment suppressed root growth and severely affected enzymatic activities in the roots of both rice cultivars compared to the NN treatment. Moreover, HJ753 exhibited significantly higher activities of NITRATE REDUCTASE (NR) and GLUTAMINE SYNTHETASE (GS) in its roots than DJ8 under both LN and NN conditions. Transcriptomic analysis identified 23,205 genes across all samples, with more than 5000 differentially expressed genes (DEGs) detected in response to LN stress in both cultivars. The KEGG analysis revealed that the DEGs were primarily involved in DNA replication, tryptophan metabolism, phenylpropanoid biosynthesis, plant hormone signal transduction, and N metabolism. Under LN stress, most genes associated with tryptophan metabolism and phenylpropanoid biosynthesis pathways remained stable or were upregulated in both cultivars. In contrast, genes related to auxin signalling transduction, N metabolism, and N utilisation exhibited significant genotype-specific expression patterns between HJ753 and DJ8. In conclusion, this study elucidated the genotypic differences in root development and N response mechanisms under LN stress at the molecular level, providing new insights into the regulatory mechanisms of N efficiency that may be used to develop and support the breeding of N-efficient rice cultivars. Full article
(This article belongs to the Special Issue Plant Organ Development and Stress Response)
Show Figures

Figure 1

14 pages, 1227 KB  
Article
Effects of Copper Stress on Nitrogen Metabolism-Related Enzymes in Nymphoides peltata
by Simeng Qiu, Chengxia Jia, Shuangyue Luo, Liye Liang, Yanfei Wu, Ruijun Ren, Jing Xu and Qingjing Zhang
Water 2025, 17(24), 3558; https://doi.org/10.3390/w17243558 - 15 Dec 2025
Viewed by 281
Abstract
Copper (Cu) pollution poses environmental and health risks. Owing to its adaptability and potential for water purification, Nymphoides peltata (N. peltata) is being considered for use in the remediation of Cu pollution. However, the feasibility of using N. peltata for the [...] Read more.
Copper (Cu) pollution poses environmental and health risks. Owing to its adaptability and potential for water purification, Nymphoides peltata (N. peltata) is being considered for use in the remediation of Cu pollution. However, the feasibility of using N. peltata for the remediation of Cu-polluted water bodies has not yet been assessed. Here, the physiological response of N. peltata to Cu stress was determined. N. peltata samples were exposed to varying Cu concentrations (0.2, 0.4, 0.6 and 0.8 mg∙L−1), and the activities of glutamine synthetase (GS), nitrate reductase (NR), nitrite reductase (NiR), ribulose-1,5-diphosphate carboxylase (Rubisco), and glycolate oxidase (GO) were measured together with the concentrations of photosynthetic pigments. The results revealed that under Cu stress, NR and GS activities significantly decreased, while NiR activity significantly increased. Exposure to 0.2 mg∙L−1 Cu promoted chlorophyll synthesis and enhanced Rubisco and GO activities; in contrast, exposure to Cu concentrations above 0.4 mg∙L−1 significantly inhibited the aforementioned parameters. These findings indicate that Cu stress, regardless of concentration, significantly affects nitrogen metabolism in N. peltata by decelerating nitrate reduction and impairing the ammonification process. Meanwhile, only high Cu concentrations significantly affected photosynthesis. N. peltata can survive low Cu stress by regulating its photosynthetic enzymes. Therefore, N. peltata has potential for the ecological restoration of water bodies polluted with low Cu concentrations. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

17 pages, 3174 KB  
Article
Silicon-Mediated Mitigation of Moderate Ammonium Stress in Maize Seedlings
by Hilário Júnior de Almeida, Anelisa de Aquino Vidal Lacerda Soares, Victor Manuel Vergara Carmona and Renato de Mello Prado
Plants 2025, 14(24), 3793; https://doi.org/10.3390/plants14243793 - 12 Dec 2025
Viewed by 296
Abstract
Intensive irrigated agriculture relies heavily on nitrogen fertilization, which may cause ammonium accumulation, highly detrimental to sensitive seedlings. Silicon application has emerged as a potential strategy to mitigate this stress, although the underlying mechanisms remain poorly understood. To evaluate this effect, maize seedlings [...] Read more.
Intensive irrigated agriculture relies heavily on nitrogen fertilization, which may cause ammonium accumulation, highly detrimental to sensitive seedlings. Silicon application has emerged as a potential strategy to mitigate this stress, although the underlying mechanisms remain poorly understood. To evaluate this effect, maize seedlings were grown in nutrient solution under five N concentrations (1.4, 3.6, 7.1, 14.3, and 28.6 mmol L−1), applied in the presence or absence of silicon (1.8 mmol L−1 Si). The nitrogen source was a mixture of nitrate and ammonium in a N-NO3: N-NH4+ ratio of 4:5. Silicon was supplied as monosilicic acid (H2SiO3). Plant growth, leaf area, root morphology (length, diameter, density), N and Si accumulation, uptake and utilization efficiency, SPAD index, nitrate reductase activity, and proline content were evaluated. Silicon supplementation enhanced nitrate reductase activity, SPAD values, leaf area, and root traits, reduced proline in roots and shoots, and improved N uptake and partitioning. Among the tested N concentrations, 14.3 mmol L−1 achieved the highest efficiency of nutrient absorption and biomass production, highlighting silicon as a sustainable strategy to mitigate ammonium stress in maize seedlings. Full article
(This article belongs to the Special Issue Silicon and Its Physiological Role in Plant Growth and Development)
Show Figures

Figure 1

20 pages, 1656 KB  
Communication
Impact of Aphis fabae Scopoli Infestation on Biochemical and Physiological Stress Markers in Faba Bean (Vicia faba L.)
by Svetlana M. Tošić, Nataša Joković, Jelena Vitorović, Marijana Ilić Milošević, Milica Stojković and Nikola Jovanović
Crops 2025, 5(6), 88; https://doi.org/10.3390/crops5060088 - 5 Dec 2025
Viewed by 306
Abstract
Vicia faba is an agriculturally and nutritionally important legume whose growth and productivity are strongly influenced by biotic stress factors. Understanding the mechanisms by which plants respond to stress is therefore essential for improving agricultural productivity and enabling the selection of stress-tolerant cultivars. [...] Read more.
Vicia faba is an agriculturally and nutritionally important legume whose growth and productivity are strongly influenced by biotic stress factors. Understanding the mechanisms by which plants respond to stress is therefore essential for improving agricultural productivity and enabling the selection of stress-tolerant cultivars. This study evaluated whether biochemical and physiological parameters can serve as early indicators of stress induced by Aphis fabae infestation in young V. faba plants. Plants were exposed to two levels of aphid infestation (low- and high-stress) and compared with aphid-free controls. Low stress caused minimal alterations in antioxidant responses: catalase (CAT) activity increased by 9.9%, glutathione (GSH) content by 20%, and malondialdehyde (MDA) levels decreased by 17.6% relative to controls. Under high stress, oxidative damage and antioxidant activation were pronounced, with CAT activity rising 2.4-fold, GSH content increasing 2.6-fold, and MDA accumulating 2.6-fold compared to control plants. Superoxide dismutase (SOD) activities increased under both stress levels, though without large differences, while nitrate reductase (NR) activity showed non-significant variation. Proline accumulation remained largely unchanged, showing only a slight 13–15% increase relative to controls. Photosynthetic pigment analysis revealed that low stress reduced contents of chlorophyll a and total chlorophyll, while increasing contents of chlorophyll b and carotenoids. Stress markedly altered pigment balance, yielding a 25.4% higher chlorophyll a/b ratio compared with control plants. The results indicate that V. faba plants can tolerate low-intensity aphid stress with minimal biochemical disturbance, whereas high infestation elicits strong oxidative stress and significant physiological changes. The measured biochemical markers, particularly CAT, MDA, and GSH, proved sensitive to early stress onset, offering valuable tools for early detection of biotic stress before visible symptoms appear. The research contributes to a better understanding of plant responses to stress, enables early detection of stress factors affecting plant physiology, facilitates the assessment of their adaptive potential, and may aid in the development of strategies to improve faba bean resistance to pest infestations. This research enhances understanding of V. faba stress responses, enabling early detection of stress factors and assessment of the plant’s adaptive potential. The insights gained may support the development of strategies to improve faba bean resistance to pest infestations and contribute to more sustainable agricultural productivity. Full article
Show Figures

Figure 1

24 pages, 8229 KB  
Article
Effect of Biochar and Well-Rotted Manure on Maize Yield in Intercropping Systems Based on High-Throughput Sequencing Technology
by Hui Liu, Wenlong Zhang, Wanyu Dou, Yutao Li, Guoxin Shi and Wei Pei
Plants 2025, 14(24), 3696; https://doi.org/10.3390/plants14243696 - 5 Dec 2025
Viewed by 419
Abstract
Biochar and well-rotted manure are commonly employed materials for sustainable agricultural development, possessing the potential to consistently enhance the yield of monoculture crops. However, their impact on the stability of crop yields in intercropping systems, as well as the microenvironment of the border-row [...] Read more.
Biochar and well-rotted manure are commonly employed materials for sustainable agricultural development, possessing the potential to consistently enhance the yield of monoculture crops. However, their impact on the stability of crop yields in intercropping systems, as well as the microenvironment of the border-row rhizosphere, remains inadequately understood. Consequently, this study utilized corn stover biochar and well-rotted pig manure while minimizing the application of chemical fertilizers to investigate the synergistic effects of biochar and composted manure in augmenting maize yield within a soybean–maize intercropping system and regulating the nitrogen cycle in the border-row rhizosphere under reduced fertilization conditions. In comparison to traditional fertilization, the combination of biochar and manure under reduced fertilization conditions significantly increased the contents of ammonium nitrogen (55%), dissolved organic nitrogen (523%), and particulate organic nitrogen (833%) while simultaneously decreasing the content of mineral-associated organic nitrogen (60%). Additionally, this combination synergistically reduced urease activity (22%) while enhancing the activities of nitrogenase (11%), nitrate reductase (297%), and hydroxylamine reductase (20%). This study establishes a theoretical foundation for elucidating how organically amended materials consistently enhance productivity in intercropping systems and alter nitrogen ecology in border-row rhizospheres, offering new perspectives on sustainable fertilization strategies and crop patterns. Full article
(This article belongs to the Special Issue Biochar–Soil–Plant Interactions)
Show Figures

Graphical abstract

21 pages, 4280 KB  
Article
Functional Insights into SlNPF, SlNRT2, and SlAMT Gene Families in Tomato: Leaf Metabolic Performance Controls Root-to-Shoot Nitrogen Partitioning
by Juan Pablo Ledesma-Valladolid, Mayra Isabel Niño-González, Guadalupe Xóchitl Malda-Barrera, Ángel Ramón Flores-Sosa, Juan Ramiro Pacheco-Aguilar, Gerardo Manuel Nava-Morales and Edmundo Mateo Mercado-Silva
Plants 2025, 14(23), 3642; https://doi.org/10.3390/plants14233642 - 29 Nov 2025
Viewed by 387
Abstract
Low Nitrogen Use Efficiency (NUE) remains a critical agricultural challenge, as an estimated 50–70% of applied nitrogen (N) is lost, resulting in negative environmental impacts and reduced crop production. To elucidate molecular mechanism controlling NUE in tomato (Solanum lycopersicum), we conducted [...] Read more.
Low Nitrogen Use Efficiency (NUE) remains a critical agricultural challenge, as an estimated 50–70% of applied nitrogen (N) is lost, resulting in negative environmental impacts and reduced crop production. To elucidate molecular mechanism controlling NUE in tomato (Solanum lycopersicum), we conducted a comprehensive genomic, transcriptomic, and functional analysis of the NPF, NRT2, and AMT transporter families under high-N commercial supply conditions. Our integrated analysis identified a shoot-to-root signaling mechanism where the plant’s metabolic performance systematically regulates N transport capacity. Under N sufficiency, the shoot exhibited reduced N assimilation, evidenced by NO3 accumulation (increased by 55.7%) and reduced Nitrate Reductase (NR) and Glutamine Synthetase (GS) activities (54.0% and 43.2% reduction, respectively), which correlated with a 42.3% reduction in chlorophyll synthesis capacity. This reduction in metabolic demand systematically triggered the downregulation of the key long-distance SlNPF transporters, SlNPF2.13 and SlNPF7.3, restricting N translocation and promoting significant root N accumulation (increased by 41.8%). Our data established that the leaf metabolic state is the systemic regulator of N transport and identified SlNPF2.13 and SlNPF7.3 as pivotal molecular checkpoints. These findings indicate that the manipulation of these transporters could serve as a valuable tool in molecular breeding programs to significantly enhance NUE in commercial tomato varieties. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

20 pages, 3516 KB  
Article
Supplementation with Mo, Co, and Ni Enhances the Effectiveness of Co-Inoculation with the Rhizobacteria Azospirillum brasilense and Bradyrhizobium diazoefficiens in Soybean
by Mateus Neri Oliveira Reis, Luciana Cristina Vitorino, Marialva Alvarenga Moreira, Alex Santos Macedo, Letícia Ferreira de Sousa, Lucas Loram Lourenço and Layara Alexandre Bessa
Microorganisms 2025, 13(12), 2680; https://doi.org/10.3390/microorganisms13122680 - 25 Nov 2025
Viewed by 428
Abstract
Efficient biological nitrogen fixation (BNF) is crucial for sustainable soybean productivity. Current strategies involve the use of Bradyrhizobium diazoefficiens and co-inoculation with plant growth-promoting bacteria like Azospirillum brasilense. To further optimize BNF and plant performance, we investigated the effect of co-inoculation with [...] Read more.
Efficient biological nitrogen fixation (BNF) is crucial for sustainable soybean productivity. Current strategies involve the use of Bradyrhizobium diazoefficiens and co-inoculation with plant growth-promoting bacteria like Azospirillum brasilense. To further optimize BNF and plant performance, we investigated the effect of co-inoculation with A. brasilense and B. diazoefficiens combined with the strategic application of the micronutrients Molybdenum (Mo), Cobalt (Co), and Nickel (Ni) on soybean grown under greenhouse conditions. We evaluated plant growth, photosynthetic parameters, accumulation of N, nitrate reductase activity, and nifH gene expression at the R1 reproductive stage. Our main finding was that the co-inoculation combined with the simultaneous application of Mo, Co, and Ni significantly maximized vegetative growth, photochemical efficiency, and BNF. Specifically, this triple supplementation increased nifH gene expression (0.22) compared to the inoculated control (0.003), leading to a substantial enhancement of photosynthetic parameters, including photosystem II (PSII) efficiency and net carbon assimilation (A). For example, the total dry mass was 14.36 g in the Mo + Co + Ni + AZO + BRADY combination and 6.50 g in the non-inoculated and non-micronutrient-treated plants. The total N content was also higher in the plants treated with Mo + Co + Ni + AZO + BRADY (73.20 g kg−1). Crucially, the data also demonstrated that excessive levels of Co impaired the symbiosis, underscoring the necessity of precise dose management. These results confirm the strong synergistic potential of combining microbial co-inoculation with targeted mineral nutrition as a high-impact, sustainable strategy for boosting soybean productivity. Full article
(This article belongs to the Special Issue Molecular Studies of Microorganisms in Plant Growth and Utilization)
Show Figures

Graphical abstract

18 pages, 2094 KB  
Article
Influence of Nitrogen Addition on the Physicochemical Properties and Microbial Diversity of Spring Wheat Soil in the Loess Plateau
by Jingbo Li and Guang Li
Agronomy 2025, 15(11), 2584; https://doi.org/10.3390/agronomy15112584 - 10 Nov 2025
Viewed by 461
Abstract
Excessive nitrogen addition in farmland on the Loess Plateau reduces soil quality and endangers the atmospheric environment. We designed an experiment to investigate the effects of different nitrogen application rates on the soil physicochemical properties and microbial diversity of spring wheat fields on [...] Read more.
Excessive nitrogen addition in farmland on the Loess Plateau reduces soil quality and endangers the atmospheric environment. We designed an experiment to investigate the effects of different nitrogen application rates on the soil physicochemical properties and microbial diversity of spring wheat fields on the Loess Plateau, aiming to identify the optimal nitrogen application rate and avoid the detrimental effects of excessive nitrogen addition. A field experiment was conducted from 2022 to 2023 with four nitrogen (N) application rates (0, 55, 110, and 220 kg·N·ha−1·y−1). This study aimed to assess the changes in soil properties, nutrient contents, enzyme activities, and bacterial community structure. The results showed that increasing N application generally enhanced soil bulk density, nitrate nitrogen (NO3-N), ammonium nitrogen (NH4+-N), and microbial biomass nitrogen (MBN) (p < 0.05). In contrast, soil water content initially increased and then decreased. Soil organic carbon and total nitrogen rose markedly with higher N inputs, particularly in the 0–20 cm layer, whereas total phosphorus was less affected. Nitrogen addition stimulated soil enzyme activities (protease, urease, nitrate reductase, and nitrite reductase), though excessive input (220 kg·N·ha−1·y−1) produced inhibitory effects. Actinobacteria (relative abundance: 29–35%) and Proteobacteria (relative abundance: 14–22%) were the dominant phyla in all treatments. Alpha diversity peaked at low nitrogen input (55 kg·N·ha−1·y−1), while high N level reduced evenness and species richness (p < 0.05). Principle Coordinate Analysis (PCoA) revealed that both N application and soil depth shaped microbial community assembly, with deeper layers (20–40 cm) being more sensitive to N input. Correlation analysis indicated that soil moisture, bulk density, and C:N:P stoichiometry were key drivers of bacterial community variation. Overall, moderate nitrogen input (110 kg·N·ha−1·y−1) improved soil fertility and supported microbial functionality, whereas excessive application degraded soil structure and reduced biodiversity. These findings highlight the need for balanced N management strategies in rain-fed agriculture of the Loess Plateau to sustain both productivity and ecological stability. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 2185 KB  
Article
Identification and Expression Patterns of Four Key Nitrogen Assimilation Enzyme Gene Families in Malus domestica
by Tong Li, Longxin Luo, Zhi Li, Ziquan Feng, Qi Zhang, Shuo Ma, Xinyi Li, Huaina Gao, Minmin Zhou, Shang Wu, Yali Zhang, Han Jiang and Yuanyuan Li
Nitrogen 2025, 6(4), 99; https://doi.org/10.3390/nitrogen6040099 - 5 Nov 2025
Viewed by 444
Abstract
Nitrogen assimilation is vital for apple growth, yield, and quality, with nitrate reductase (NIA), nitrite reductase (NIR), glutamine synthetase (GS), and glutamate synthase (GOGAT) serving as key regulatory enzymes. This study systematically identified these four gene families in apple (Malus domestica) [...] Read more.
Nitrogen assimilation is vital for apple growth, yield, and quality, with nitrate reductase (NIA), nitrite reductase (NIR), glutamine synthetase (GS), and glutamate synthase (GOGAT) serving as key regulatory enzymes. This study systematically identified these four gene families in apple (Malus domestica) through genome-wide analysis and examined their expression patterns under nitrate treatment. In total, 13 genes were identified, 2 MdNIAs, 1 MdNIR, 7 MdGSs, and 3 MdGOGATs, with gene lengths ranging from 2577 to 27736 base pairs (bp); MdGLT1A had the longest coding sequence (6627 bp). The encoded proteins contained 355–2208 amino acids, with predicted isoelectric points (pIs) between 5.55 and 6.63. Subcellular localization analysis predicted distinct compartmentalization: MdNIA1A in peroxisomes; MdGS1 in the cytosol; MdNIR1, MdGS2, and MdGLU1 in chloroplasts; and MdGLT1 in mitochondria/chloroplasts. Functional site prediction revealed multiple phosphorylation and glycosylation sites, with ATP/GTP-binding motifs present only in certain MdGOGAT proteins. Protein interaction analysis suggested close associations among these genes and possible interactions with NRT2.1/2.2. Chromosomal mapping showed their distribution across eight chromosomes, while promoter analysis identified diverse cis-acting regulatory elements (e.g., ABRE and G-box). Under nitrate treatment (0–12 h), these genes exhibited distinct expression dynamics: MdNIA1A and B were rapidly induced (0–6 h) and maintained high expression; MdNIR1 peaked at 6 h and then declined; MdGS1.1B was activated after 6 h; and MdGS2A, MdGLU1, and MdGLT1A/B peaked at 6 h before decreasing. Therefore, these results elucidate the structural and functional divergence of nitrogen assimilation genes in apple and provide a basis for understanding nitrogen utilization mechanisms and developing nitrogen-efficient breeding strategies. Full article
Show Figures

Figure 1

18 pages, 11519 KB  
Article
Physiological Mechanisms Underlying Maize Yield Enhancement by Straw Return in the Thin-Layer Mollisol Region of the Songnen Plain
by Chenglong Guan, Tai Ma, Ming Miao, Jiuhui Chen, Zhicheng Bao, Baoyu Chen, Jingkun Lu, Fangming Liu, Nan Wang, Hongjun Wang and Zhian Zhang
Plants 2025, 14(21), 3331; https://doi.org/10.3390/plants14213331 - 31 Oct 2025
Viewed by 521
Abstract
Long-term intensive cultivation has caused soil fertility decline and structural degradation in the Songnen Plain, thereby constraining maize root development and yield formation. As a fundamental conservation tillage practice, straw return enhances soil function by incorporating exogenous organic matter and regulating root-shoot physiological [...] Read more.
Long-term intensive cultivation has caused soil fertility decline and structural degradation in the Songnen Plain, thereby constraining maize root development and yield formation. As a fundamental conservation tillage practice, straw return enhances soil function by incorporating exogenous organic matter and regulating root-shoot physiological processes. However, the mechanism underlying yield improvement through root–photosynthesis–nitrogen synergy remains insufficiently understood. A field experiment was conducted to assess the effects of conventional tillage (CT), straw incorporation (SI), straw mulching (SM), and deep straw incorporation (DF) on maize physiological traits and yield. Compared with CT, DF markedly enhanced root morphology and physiology, increasing the root length, surface area, volume, and root-shoot ratio by 16.46%, 23.87%, 26.64%, and 51.34%, respectively. The root bleeding intensity increased by 23.63%, whereas amino acid and nitrate contents in the bleeding sap increased by 29.20% and 65.93%, respectively, indicating improved root nutrient transport capacity. The enhanced root system positively influenced shoot photosynthesis by increasing the chlorophyll SPAD value by 16.05%, net photosynthetic rate (Pn) by 11.28%, and the activities of RuBP, PEP, nitrate reductase (NR), and glutamine synthetase (GS) by 10.59%, 24.36%, 29.94%, and 12.47%, respectively. These synergistic improvements significantly promoted post-anthesis biomass accumulation and yield formation. DF increased nitrogen and dry matter accumulation at the R3 stage by 26.61% and 15.67%, respectively, and resulted in an average yield increase of 8.34%, which was primarily due to an 11.96% increase in 100-grain weight. Although SI and SM also improved certain physiological indices, their effects were weaker than those of DF. RF analysis identified sap nitrate content (RNO), bleeding intensity (RBI), root length (RL), and root volume (RV) as key yield determinants. PLS-SEM further revealed that straw return enhanced root morphology and bleeding traits (path coefficients: 0.96 and 0.82), which subsequently improved leaf photosynthetic traits (path coefficients: 0.52 and 0.39) and biomass accumulation (path coefficient: 0.71). Collectively, these improvements promoted post-anthesis nitrogen accumulation and dry matter partitioning into grains. These findings elucidated the physiological mechanism by which deep straw incorporation increased maize yield through root system optimization, providing a theoretical basis for conservation tillage optimization in the thin-layer Mollisol region of the Songnen Plain. Full article
(This article belongs to the Special Issue Physiological Ecology and Regulation of High-Yield Maize Cultivation)
Show Figures

Figure 1

21 pages, 4392 KB  
Article
Efficient Room-Temperature Storage of Toona sinensis with Salicylic Acid Treatment: Enhancing Postharvest Quality Through Antioxidant and Nitrogen Metabolism Modulation
by Hu Zhao, Xiaopu Shi, Zilu Zhao, Juan Wang, Baul Ko, Jong Hyang Bae, Yang Gyu Ku, Ho Cheol Kim and Chul Min Kim
Horticulturae 2025, 11(11), 1292; https://doi.org/10.3390/horticulturae11111292 - 28 Oct 2025
Viewed by 812
Abstract
Young leaves and sprouts of Toona sinensis are widely consumed throughout Asia. However, they are highly perishable, resulting in a short shelf life and limited marketability. Low-temperature storage can extend shelf life but is energy-intensive, restricting large-scale use. Salicylic acid (SA) exhibits preservative [...] Read more.
Young leaves and sprouts of Toona sinensis are widely consumed throughout Asia. However, they are highly perishable, resulting in a short shelf life and limited marketability. Low-temperature storage can extend shelf life but is energy-intensive, restricting large-scale use. Salicylic acid (SA) exhibits preservative properties, representing a promising alternative. In this study, we investigated the effects of 250 μmol SA treatment on postharvest T. sinensis buds and leaves stored at 20 °C for 7 days and compared it to low-temperature storage (4 °C). SA treatment delayed wilting, reduced water loss, suppressed total soluble solid accumulation, and inhibited active oxygen free radical and malondialdehyde production compared to the untreated controls at room temperature while outperforming low-temperature storage. The treated buds also maintained higher antioxidant enzyme activity and preserved non-enzymatic antioxidant compounds, including ascorbic acid, polyphenols, and flavonoids. Although total amino acid content steadily increased under SA treatment, individual amino acids greatly fluctuated. SA treatment reduced nitrate reductase and glutamate dehydrogenase activities, as well as NO2 levels, indicating its effects on nitrogen metabolism. Our findings indicate that SA improves the postharvest quality of T. sinensis buds during room-temperature storage, providing a theoretical basis for applying SA as a storage agent for T. sinensis buds. Full article
Show Figures

Figure 1

20 pages, 2106 KB  
Article
Coupling Effects of Organic Fertilizer Substituting Chemical Fertilizer on Potato Yield, Quality and Soil Nitrogen Content in the Erhai Lake Basin of China
by Xuemei Sun, Wenmei Zhang, Ting Wang, Wanting Li, Yongmei Li, Benshuai Yan, Mengge Zhang, Jixia Zhao and Maopan Fan
Agronomy 2025, 15(11), 2470; https://doi.org/10.3390/agronomy15112470 - 24 Oct 2025
Viewed by 631
Abstract
Rational fertilization boosts crop yields and enhances nutritional value, but over-fertilization is counterproductive. Furthermore, water eutrophication caused by excessive use of nitrogen fertilizers has become a major agricultural non-point source pollution problem in the Erhai Lake Basin of China. This study took high-fertility [...] Read more.
Rational fertilization boosts crop yields and enhances nutritional value, but over-fertilization is counterproductive. Furthermore, water eutrophication caused by excessive use of nitrogen fertilizers has become a major agricultural non-point source pollution problem in the Erhai Lake Basin of China. This study took high-fertility soil as the research object and set up six treatments: no fertilization (CK), local recommended fertilization (T1), optimized chemical fertilizer (T2), organic fertilizer replacing 20% (T3), 40% (T4), 60% (T5) of chemical fertilizer with equal nitrogen. The results show that replacement of chemical nitrogen fertilizers with organic nitrogen fertilizers at an appropriate ratio can optimize soil nitrogen supply, enhance the activity of soil nitrogen cycle enzymes, thereby promoting the activity of nitrogen metabolism enzymes and nitrogen assimilation capacity in potato plants, and ultimately achieve a synergistic effect of increased yield, improved quality and higher fertilizer use efficiency. Among the treatments, the nitrate reductase (S-NR) activity in potato leaves was 36.74% and 41.66% higher under T3 than T1 and T4, respectively. For potato quality, Vitamin C (VC) content was 17.41% higher under T3 than T2; soluble protein content was 11.44%, 10.63%, and 9.44% higher under T3 than T1, T2, and T4, respectively. The replacement of chemical fertilizers with organic fertilizers mainly enhances the protein content in potato tubers by increasing soil urease (S-URE) activity and leaf relative chlorophyll content (SPAD) value. Based on the comprehensive differential combination evaluation model, considering potato metabolic absorption, yield, quality, and soil nitrogen content, the T3 treatment is the optimal fertilization method in the Erhai Lake Basin of China. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

Back to TopTop