Identification and Expression Patterns of Four Key Nitrogen Assimilation Enzyme Gene Families in Malus domestica
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification of Apple Nitrogen Key Enzyme Genes
2.2. Characteristic Analysis of Protein
2.3. Subcellular Localization and Signal Peptide Prediction of Protein
2.4. Active Site Prediction of Protein
2.5. Protein Interaction Network
2.6. Gene Structure Analysis of Apple Nitrogen Key Enzyme Genes
2.7. Chromosome Localizations of Apple Nitrogen Key Enzyme Genes
2.8. Promoter Cis-Acting Element Prediction of Apple Nitrogen Key Enzyme Genes
2.9. Expression of Key Apple Nitrogen Enzyme Genes Under Different Nitrate Treatments (Including Nitrogen Starvation Treatment)
2.10. Statistical Analysis
3. Results
3.1. Identification and Basic Information of Apple Nitrogen Assimilation Enzyme Genes
3.2. Active Site Prediction of Apple Nitrogen Assimilation Enzymes
3.3. Prediction of Subcellular Localization and Signal Peptide Prediction of Apple Nitrogen Assimilation Enzyme Genes
3.4. Construction of Interaction Protein Network for Nitrogen Assimilation Enzymes in Apple
3.5. Chromosome Localization and Gene Structural Analysis of Apple Nitrogen Assimilation Enzyme Genes
3.6. Analysis of Cis-Acting Elements in the Promoter of Apple Nitrogen Assimilation Enzyme Genes
3.7. Expression Analysis of Apple Nitrogen Assimilation Enzyme Genes Under Nitrate Nitrogen Treatment
4. Discussion
4.1. Gene Identification and Subcellular Localization Analysis
4.2. Regulatory Networks and Expression Dynamics
4.3. Gene Function Comparison and Interaction Networks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tegeder, M.; Masclaux-Daubresse, C. Source and Sink Mechanisms of Nitrogen Transport and Use. New Phytol. 2018, 217, 35–53. [Google Scholar] [CrossRef]
- Xu, G.; Fan, X.; Miller, A.J. Plant Nitrogen Assimilation and Use Efficiency. Annu. Rev. Plant Biol. 2012, 63, 153–182. [Google Scholar] [CrossRef]
- Lea, P.J.; Miflin, B.J. Nitrogen Assimilation and Its Relevance to Crop Improvement. In Annual Plant Reviews, Volume 42: Nitrogen Metabolism in Plants in the Post-Genomic Era; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Aslam, M.; Huffaker, R.C. Role of Nitrate and Nitrite in the Induction of Nitrite Reductase in Leaves of Barley Seedlings 1. Plant Physiol. 1989, 91, 1152–1156. [Google Scholar] [CrossRef]
- Stitt, M.; Müller, C.; Matt, P.; Gibon, Y.; Carillo, P.; Morcuende, R.; Scheible, W.; Krapp, A. Steps towards an Integrated View of Nitrogen Metabolism. J. Exp. Bot. 2002, 53, 959–970. [Google Scholar] [CrossRef]
- Solomonson, L.P.; Spehar, A.M. Model for the Regulation of Nitrate Assimilation. Nature 1977, 265, 373–375. [Google Scholar] [CrossRef]
- Yu, X.; Sukumaran, S.; Márton, L. Differential Expression of the Arabidopsis Nia1 andNia2 Genes1: Cytokinin-Induced Nitrate Reductase Activity Is Correlated With Increased Nia1 Transcription and mRNA Levels. Plant Physiol. 1998, 116, 1091–1096. [Google Scholar] [CrossRef]
- Kolbert, Z.; Bartha, B.; Erdei, L. Exogenous Auxin-Induced NO Synthesis Is Nitrate Reductase-Associated in Arabidopsis thaliana Root Primordia. J. Plant Physiol. 2008, 165, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.Q.; Crawford, N.M. Identification and Characterization of a Chlorate-Resistant Mutant of Arabidopsis thaliana with Mutations in Both Nitrate Reductase Structural Genes NIA1 and NIA2. Mol. Gen. Genet. MGG 1993, 239, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Jia, L.; Li, Y.; Smith, S.J.; Miller, A.J.; Shen, Q. Comparing Nitrate Storage and Remobilization in Two Rice Cultivars That Differ in Their Nitrogen Use Efficiency. J. Exp. Bot. 2007, 58, 1729–1740. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, Y.; Chen, G.; Zhang, A.; Yang, S.; Shang, L.; Wang, D.; Ruan, B.; Liu, C.; Jiang, H.; et al. The Indica Nitrate Reductase Gene OsNR2 Allele Enhances Rice Yield Potential and Nitrogen Use Efficiency. Nat. Commun. 2019, 10, 5207. [Google Scholar] [CrossRef] [PubMed]
- Costa-Broseta, Á.; Castillo, M.; León, J. Nitrite Reductase 1 Is a Target of Nitric Oxide-Mediated Post-Translational Modifications and Controls Nitrogen Flux and Growth in Arabidopsis. Int. J. Mol. Sci. 2020, 21, 7270. [Google Scholar] [CrossRef]
- Yu, J.; Xuan, W.; Tian, Y.; Fan, L.; Sun, J.; Tang, W.; Chen, G.; Wang, B.; Liu, Y.; Wu, W.; et al. Enhanced OsNLP4-OsNiR Cascade Confers Nitrogen Use Efficiency by Promoting Tiller Number in Rice. Plant Biotechnol. J. 2021, 19, 167–176. [Google Scholar] [CrossRef]
- Cao, X.; Lu, X.; Xiong, J.; Li, J.; Xie, S. The Poncirus trifoliata (L.) Raf. NIN-Like Protein Transcription Factors Responses to Drought Stress and Bind the Nitrate-Responsive Cis-Element. Sci. Agric. Sin. 2018, 51, 3370–3378. [Google Scholar]
- Hirel, B.; Krapp, A. Nitrogen Utilization in Plants I Biological and Agronomic Importance. In Encyclopedia of Biochemistry; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Ghoshroy, S.; Binder, M.; Tartar, A.; Robertson, D.L. Molecular Evolution of Glutamine Synthetase II: Phylogenetic Evidence of a Non-Endosymbiotic Gene Transfer Event Early in Plant Evolution. BMC Evol. Biol. 2010, 10, 198. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, R.D.; Murray, A.J.S.; Lea, P.J. Inhibition of Photosynthesis in Barley with Decreased Levels of Chloroplastic Glutamine Synthetase Activity. J. Exp. Bot. 1987, 38, 1799–1809. [Google Scholar] [CrossRef]
- Wallsgrove, R.M.; Turner, J.C.; Hall, N.P.; Kendall, A.C.; Bright, S.W.J. Barley Mutants Lacking Chloroplast Glutamine Synthetase—Biochemical and Genetic Analysis. Plant Physiol. 1987, 83, 155–158. [Google Scholar] [CrossRef]
- Lal, S.K.; Mehta, S.; Raju, D.; Achary, V.M.M.; Venkatapuram, A.K.; Yadav, S.K.; Parmar, H.; Pandey, R.; Panditi, V.; Sheri, V.; et al. Concurrent Overexpression of Rice GS1;1 and GS2 Genes to Enhance the Nitrogen Use Efficiency (NUE) in Transgenic Rice. J. Plant Growth Regul. 2023, 42, 6699–6720. [Google Scholar] [CrossRef]
- Martin, A.; Lee, J.; Kichey, T.; Gerentes, D.; Zivy, M.; Tatout, C.; Dubois, F.; Balliau, T.; Valot, B.; Davanture, M.; et al. Two Cytosolic Glutamine Synthetase Isoforms of Maize Are Specifically Involved in the Control of Grain Production. Plant Cell 2006, 18, 3252–3274. [Google Scholar] [CrossRef]
- Li, Q.; Gao, Y.; Wang, K.; Feng, J.; Sun, S.; Lu, X.; Liu, Z.; Zhao, D.; Li, L.; Wang, D. Transcriptome Analysis of the Effects of Grafting Interstocks on Apple Rootstocks and Scions. Int. J. Mol. Sci. 2023, 24, 807. [Google Scholar] [CrossRef]
- van den Heuvel, R.H.H.; Ferrari, D.; Bossi, R.T.; Ravasio, S.; Curti, B.; Vanoni, M.A.; Florencio, F.J.; Mattevi, A. Structural Studies on the Synchronization of Catalytic Centers in Glutamate Synthase. J. Biol. Chem. 2002, 277, 24579–24583. [Google Scholar] [CrossRef]
- Bowsher, C.G.; Lacey, A.E.; Hanke, G.T.; Clarkson, D.T.; Saker, L.R.; Stulen, I.; Emes, M.J. The Effect of Glc6P Uptake and Its Subsequent Oxidation within Pea Root Plastids on Nitrite Reduction and Glutamate Synthesis. J. Exp. Bot. 2007, 58, 1109–1118. [Google Scholar] [CrossRef]
- Suzuki, A. Glutamate Synthase and Amino Acid Synthesis in Higher Plants. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2021; Volume 100, pp. 129–144. [Google Scholar]
- Zeng, D.-D.; Qin, R.; Li, M.; Alamin, M.; Jin, X.-L.; Liu, Y.; Shi, C.-H. The Ferredoxin-Dependent Glutamate Synthase (OsFd-GOGAT) Participates in Leaf Senescence and the Nitrogen Remobilization in Rice. Mol. Genet. Genom. 2017, 292, 385–395. [Google Scholar] [CrossRef]
- Yamaya, T.; Obara, M.; Nakajima, H.; Sasaki, S.; Hayakawa, T.; Sato, T. Genetic Manipulation and Quantitative-trait Loci Mapping for Nitrogen Recycling in Rice. J. Exp. Bot. 2002, 53, 917–925. [Google Scholar] [CrossRef]
- Lyu, M.; Liu, J.; Xu, X.; Liu, C.; Qin, H.; Zhang, X.; Tian, G.; Jiang, H.; Jiang, Y.; Zhu, Z.; et al. Magnesium Alleviates Aluminum-Induced Growth Inhibition by Enhancing Antioxidant Enzyme Activity and Carbon–Nitrogen Metabolism in Apple Seedlings. Ecotoxicol. Environ. Saf. 2023, 249, 114421. [Google Scholar] [CrossRef]
- Su, H.; Li, L.; Ma, H.; Lyu, D.; Sun, J. Calcium Alleviates Temperature Stress by Regulating Nitrogen and Respiratory Metabolism in Malus baccata Roots. IJAB 2016, 18, 286–292. [Google Scholar] [CrossRef]
- Daccord, N.; Celton, J.-M.; Linsmith, G.; Becker, C.; Choisne, N.; Schijlen, E.; Van de Geest, H.; Bianco, L.; Micheletti, D.; Velasco, R. High-Quality de Novo Assembly of the Apple Genome and Methylome Dynamics of Early Fruit Development. Nat. Genet. 2017, 49, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent Updates, New Developments and Status in 2020. Nucleic Acids Res. 2021, 49, D458–D460. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, H.; Brunak, S.; von Heijne, G. Machine Learning Approaches for the Prediction of Signal Peptides and Other Protein Sorting Signals. Protein Eng. 1999, 12, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Hulo, N.; Sigrist, C.J.; Le Saux, V.; Langendijk-Genevaux, P.S.; Bordoli, L.; Gattiker, A.; De Castro, E.; Bucher, P.; Bairoch, A. Recent Improvements to the PROSITE Database. Nucleic Acids Res. 2004, 32, D134–D137. [Google Scholar] [CrossRef]
- Blom, N.; Gammeltoft, S.; Brunak, S. Sequence and Structure-Based Prediction of Eukaryotic Protein Phosphorylation Sites. J. Mol. Biol. 1999, 294, 1351–1362. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; He, Y.; Xia, R. TBtools, a Toolkit for Biologists Integrating Various Biological Data Handling Tools with a User-Friendly Interface. BioRxiv 2018. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, H.; Cui, T. Identification of a Strain Degrading Ammonia Nitrogen, Optimization of Ammonia Nitrogen Degradation Conditions, and Gene Expression of Key Degrading Enzyme Nitrite Reductase. Fermentation 2023, 9, 397. [Google Scholar] [CrossRef]
- Valderrama-Martín, J.M.; Ortigosa, F.; Ávila, C.; Cánovas, F.M.; Hirel, B.; Cantón, F.R.; Cañas, R.A. A Revised View on the Evolution of Glutamine Synthetase Isoenzymes in Plants. Plant J. 2022, 110, 946–960. [Google Scholar] [CrossRef] [PubMed]
- Masclaux-Daubresse, C.; Reisdorf-Cren, M.; Pageau, K.; Lelandais, M.; Grandjean, O.; Kronenberger, J.; Valadier, M.H.; Feraud, M.; Jouglet, T.; Suzuki, A. Glutamine Synthetase-Glutamate Synthase Pathway and Glutamate Dehydrogenase Play Distinct Roles in the Sink-Source Nitrogen Cycle in Tobacco. Plant Physiol. 2020, 140, 444–456. [Google Scholar] [CrossRef]





| Gene Name | Gene ID | Gene Length/bp | CDS Length/bp | Protein Size/aa | Molecular Weight/Da | pI Values (pH) | Best Hits |
|---|---|---|---|---|---|---|---|
| NIA | |||||||
| MdNIA1A | MD08G1172400 | 5403 | 2709 | 902 | 101,608.70 | 6.24 | AT1G77760.1 |
| MdNIA1B | MD15G1357900 | 5127 | 2712 | 903 | 101,635.65 | 6.30 | AT1G77760.1 |
| NIR | |||||||
| MdNIR1 | MD05G1081500 | 2907 | 1758 | 585 | 65,321.14 | 6.63 | AT2G15620.1 |
| GS | |||||||
| MdGS1.1A | MD09G1270600 | 2577 | 1071 | 356 | 38,971.02 | 5.78 | AT5G37600.1 |
| MdGS1.1B | MD14G1238700 | 2994 | 1071 | 356 | 39,282.35 | 5.87 | AT5G37600.1 |
| MdGS1.1C | MD17G1268700 | 3954 | 1071 | 356 | 38,968.06 | 5.94 | AT5G37600.1 |
| MdGS1.4A | MD13G1006600 | 3314 | 1068 | 355 | 38,892.80 | 5.55 | AT5G16570.1 |
| MdGS1.4B | MD16G1001400 | 4271 | 1068 | 355 | 38,845.92 | 6.10 | AT5G16570.1 |
| MdGS2A | MD13G1180400 | 4493 | 1263 | 420 | 46,237.29 | 6.63 | AT5G35630.3 |
| MdGS2B | MD16G1181300 | 4434 | 1263 | 420 | 46,219.18 | 6.37 | AT5G35630.3 |
| GOGAT | |||||||
| MdGLU1 | MD14G1087500 | 27,736 | 4887 | 1628 | 176,921.12 | 6.16 | AT5G04140.1 |
| MdGLT1A | MD01G1219500 | 10,822 | 6627 | 2208 | 242,608.82 | 6.08 | AT5G53460.3 |
| MdGLT1B | MD07G1290500 | 10,264 | 6564 | 2187 | 240,431.50 | 6.21 | AT5G53460.3 |
| Protein Name | PS00001 | PS00004 | PS00005 | PS00006 | PS00007 | PS00008 | PS00009 | PS00017 |
|---|---|---|---|---|---|---|---|---|
| N- Glycosylation Sites | cAMP and cGMP- Dependent Protein Kinase Phosphorylation Sites | Protein Kinase C Phosphorylation Site | Casein Kinase II Phosphorylation Site | Tyrosine Kinase Phosphorylation Site | N- Myristoylation Site | Amidation Site | ATP/GTP-Binding Positioning Point Motif A (P Ring) | |
| MdNIA1A | 9 | 3 | 8 | 16 | 12 | 1 | ||
| MdNIA1B | 10 | 3 | 7 | 17 | 13 | 1 | ||
| MdNIR1 | 1 | 3 | 6 | 2 | 7 | |||
| MdGS1.1A | 2 | 1 | 8 | 5 | 2 | 6 | ||
| MdGS1.1B | 3 | 1 | 7 | 4 | 2 | 7 | ||
| MdGS1.1C | 2 | 1 | 8 | 5 | 2 | 7 | ||
| MdGS1.4A | 4 | 1 | 5 | 4 | 1 | 8 | ||
| MdGS1.4B | 3 | 1 | 7 | 4 | 1 | 6 | ||
| MdGS2A | 3 | 1 | 10 | 5 | 2 | 7 | ||
| MdGS2B | 3 | 1 | 10 | 5 | 2 | 7 | ||
| MdGLU1 | 6 | 2 | 21 | 13 | 1 | 28 | 2 | 1 |
| MdGLT1A | 2 | 3 | 37 | 34 | 3 | 40 | 2 | 1 |
| MdGLT1B | 2 | 2 | 34 | 34 | 3 | 41 | 3 | 1 |
| Protein Name | Peroxisome | Mitochondria | Chloroplast | Cellular | Cell Skeleton_Cell Membrane | Cell Membrane | Cell Skeleton | Cell Nucleus | Cytoplasm_ Mitochondria | Chloroplasts_Mitochondria |
|---|---|---|---|---|---|---|---|---|---|---|
| MdNIA1A | 7 | 4 | 2 | |||||||
| MdNIA1B | 2 | 7 | 2 | 1.5 | 1.5 | 1 | ||||
| MdNIR1 | 13 | |||||||||
| MdGS1.1A | 14 | |||||||||
| MdGS1.1B | 14 | |||||||||
| MdGS1.1C | 14 | |||||||||
| MdGS1.4A | 14 | |||||||||
| MdGS1.4B | 14 | |||||||||
| MdGS2A | 13 | |||||||||
| MdGS2B | 12 | 1 | ||||||||
| MdGLU1 | 14 | |||||||||
| MdGLT1A | 7.5 | 6 | 4.5 | |||||||
| MdGLT1B | 4 | 8.5 | 2.83333 | 6.83333 |
| Cis- Acting Elements | Md NIA1A | Md NIA1B | MdNIR1 | Md GS1.1A | Md GS1.1B | Md GS1.1C | Md GS1.4A | Md GS1.4B | Md GS2A | Md GS2B | MdGLU1 | MdGLT1A | MdGLT1B |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ABRE | 3 | 10 | 4 | 5 | 3 | 1 | 3 | 5 | 3 | 2 | 5 | 3 | |
| ARE | 2 | 2 | 1 | 3 | 3 | 1 | 2 | 2 | 1 | 2 | 1 | 3 | |
| CAT-box | 1 | 3 | 1 | 1 | |||||||||
| CGTCA-motif | 2 | 1 | 3 | 1 | 1 | 1 | 3 | 3 | 1 | 2 | 3 | 5 | |
| ERE | 5 | 6 | 1 | 2 | 1 | 2 | 2 | 1 | |||||
| G-box | 2 | 9 | 3 | 1 | 3 | 2 | 3 | 2 | 3 | 3 | 3 | ||
| LTR | 2 | 3 | 1 | 2 | 1 | 1 | 14 | ||||||
| P-box | 1 | 1 | 1 | ||||||||||
| TATC-box | 1 | 1 | |||||||||||
| TC-rich repeats | 3 | 1 | 1 | 1 | 2 | 2 | 1 | ||||||
| TCA- element | 1 | 2 | 1 | 1 | |||||||||
| TGA- element | 1 | 1 | 1 | 1 | 2 | 1 | |||||||
| TGACG-motif | 2 | 1 | 3 | 1 | 1 | 1 | 3 | 3 | 1 | 2 | 3 | 5 | |
| W-box | 1 | 1 | 1 | 3 | 2 | 1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Luo, L.; Li, Z.; Feng, Z.; Zhang, Q.; Ma, S.; Li, X.; Gao, H.; Zhou, M.; Wu, S.; et al. Identification and Expression Patterns of Four Key Nitrogen Assimilation Enzyme Gene Families in Malus domestica. Nitrogen 2025, 6, 99. https://doi.org/10.3390/nitrogen6040099
Li T, Luo L, Li Z, Feng Z, Zhang Q, Ma S, Li X, Gao H, Zhou M, Wu S, et al. Identification and Expression Patterns of Four Key Nitrogen Assimilation Enzyme Gene Families in Malus domestica. Nitrogen. 2025; 6(4):99. https://doi.org/10.3390/nitrogen6040099
Chicago/Turabian StyleLi, Tong, Longxin Luo, Zhi Li, Ziquan Feng, Qi Zhang, Shuo Ma, Xinyi Li, Huaina Gao, Minmin Zhou, Shang Wu, and et al. 2025. "Identification and Expression Patterns of Four Key Nitrogen Assimilation Enzyme Gene Families in Malus domestica" Nitrogen 6, no. 4: 99. https://doi.org/10.3390/nitrogen6040099
APA StyleLi, T., Luo, L., Li, Z., Feng, Z., Zhang, Q., Ma, S., Li, X., Gao, H., Zhou, M., Wu, S., Zhang, Y., Jiang, H., & Li, Y. (2025). Identification and Expression Patterns of Four Key Nitrogen Assimilation Enzyme Gene Families in Malus domestica. Nitrogen, 6(4), 99. https://doi.org/10.3390/nitrogen6040099

