Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = next-generation lithography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
62 pages, 5074 KB  
Review
Advancements in Two-Photon Polymerization (2PP) for Micro and Nanoscale Fabrication
by Prithvi Basu
Nanomanufacturing 2026, 6(1), 1; https://doi.org/10.3390/nanomanufacturing6010001 - 23 Dec 2025
Viewed by 510
Abstract
Two-photon polymerization (2PP) is revolutionizing micro- and nanoscale manufacturing by enabling true 3D fabrication with feature sizes far below the diffraction limit—capabilities that traditional lithography cannot match. By using ultrafast femtosecond laser pulses and nonlinear absorption, 2PP initiates polymerization only at the laser’s [...] Read more.
Two-photon polymerization (2PP) is revolutionizing micro- and nanoscale manufacturing by enabling true 3D fabrication with feature sizes far below the diffraction limit—capabilities that traditional lithography cannot match. By using ultrafast femtosecond laser pulses and nonlinear absorption, 2PP initiates polymerization only at the laser’s focal point, offering unmatched spatial precision. This paper highlights key advancements driving the field forward: the development of new materials engineered for 2PP with improved sensitivity, mechanical strength, and the introduction of high-speed, parallelized fabrication strategies that significantly enhance throughput. These innovations are shifting 2PP from a prototyping tool to a viable method for scalable production. Applications now range from custom biomedical scaffolds to complex photonic and metamaterial structures, demonstrating their growing real-world impact. We also address persistent challenges—including slow writing speeds and limited material options—and explore future directions to overcome these barriers. With continued progress in materials and hardware, 2PP is well positioned to become a cornerstone of next-generation additive manufacturing. Full article
Show Figures

Figure 1

14 pages, 3206 KB  
Article
Microstructured Coatings and Surface Functionalization of Poly(caprolactone-co-lactide) Using Gas-Permeable Mold
by Mano Ando, Naoto Sugino, Yoshiyuki Yokoyama, Nur Aliana Hidayah Mohamed and Satoshi Takei
Coatings 2026, 16(1), 10; https://doi.org/10.3390/coatings16010010 - 20 Dec 2025
Viewed by 284
Abstract
Low-melting bioabsorbable polymers, such as poly(caprolactone-co-lactide) (PCLA), hold significant promise for biomedical applications. However, achieving high-precision micro- and nanotopographical functionalization remains a formidable challenge due to the material’s susceptibility to thermal deformation during conventional thermal molding processes. In this study, functional microstructured PCLA [...] Read more.
Low-melting bioabsorbable polymers, such as poly(caprolactone-co-lactide) (PCLA), hold significant promise for biomedical applications. However, achieving high-precision micro- and nanotopographical functionalization remains a formidable challenge due to the material’s susceptibility to thermal deformation during conventional thermal molding processes. In this study, functional microstructured PCLA coatings were engineered via low-temperature nanoimprint lithography utilizing a TiO2–SiO2 gas-permeable mold. These molds were synthesized via a sol–gel method utilizing titanium dioxide and silicon precursors. The gas-permeable nature of the mold facilitated the efficient evacuation of trapped air and volatiles during the imprinting process, enabling the high-fidelity replication of microstructures (1.3 μm height, 3 μm pitch) and nanostructured PCLA coatings featuring linewidths as narrow as 600 nm. The resultant microstructured PCLA coatings demonstrated modulated surface wettability, evidenced by an increase in water contact angles from 70.1° to 91.4°, and exhibited enhanced FD4 elution kinetics. These results confirm morphology-driven functionalities, specifically hydrophobicity and controlled release capabilities. Collectively, these findings underscore the efficacy of this microfabrication approach for polycaprolactone-based materials and highlight its potential to catalyze the development of high-value-added biomaterials for advanced medical and life science applications. This study establishes a foundational framework for the practical deployment of next-generation bioabsorbable materials and is anticipated to drive innovation in precision medical manufacturing. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

9 pages, 4610 KB  
Article
A Single-Layer Full-Color Diffractive Waveguide by Lithography
by Yong Li, Fei Wu, Huihui Li, Haitao Yang, Mengguang Wang and Zhenrong Zheng
Nanomaterials 2026, 16(1), 6; https://doi.org/10.3390/nano16010006 - 19 Dec 2025
Viewed by 382
Abstract
Augmented reality (AR) near-eye displays (NEDs) couple microdisplay image light to the human eye via integrated optical modules, enabling seamless virtual–real fusion. As core components that synergistically transmit and diffract light, diffractive waveguides are promising for next-generation AR NEDs but face two bottlenecks: [...] Read more.
Augmented reality (AR) near-eye displays (NEDs) couple microdisplay image light to the human eye via integrated optical modules, enabling seamless virtual–real fusion. As core components that synergistically transmit and diffract light, diffractive waveguides are promising for next-generation AR NEDs but face two bottlenecks: compromised full-color performance in single-layer structures caused by grating dispersion and lack of scalable fabrication technologies. To address these, we first propose a mass-production-compatible workflow based on deep ultraviolet (DUV) lithography for large-area nanostructured optics. This workflow enables high-precision wafer-level production with 200 mm wafers and nine dies per wafer, overcomes scalability issues, and is fully compatible with straight-configuration nanostructures to ensure manufacturing feasibility. Leveraging this workflow, we develop a single-layer diffractive waveguide system for AR NEDs, which comprises a thin glass substrate, a broadband high-efficiency multi-layer dielectric in-coupler, and a 2D out-coupler that concurrently expands and out-couples light. Rigorous coupled wave analysis (RCWA) optimized coupler diffraction, while ray tracing refined guided light intensity and significantly improved exit pupil uniformity. This work establishes a foundation for full-color, high-efficiency AR waveguides and provides a scalable paradigm for large-area nanostructured optical systems such as telescopes and lithography equipment. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

36 pages, 6926 KB  
Review
AI-Integrated Micro/Nanorobots for Biomedical Applications: Recent Advances in Design, Fabrication, and Functions
by Prashant Kishor Sharma and Chia-Yuan Chen
Biosensors 2025, 15(12), 793; https://doi.org/10.3390/bios15120793 - 2 Dec 2025
Viewed by 1664
Abstract
The integration of artificial intelligence (AI) and micro/nanorobotics is fundamentally reshaping biosensing by enabling autonomous, adaptive, and high-resolution biological analysis. These miniaturized robotic systems fabricated using advanced techniques such as photolithography, soft lithography, nanoimprinting, 3D printing, and self-assembly can navigate complex biological environments [...] Read more.
The integration of artificial intelligence (AI) and micro/nanorobotics is fundamentally reshaping biosensing by enabling autonomous, adaptive, and high-resolution biological analysis. These miniaturized robotic systems fabricated using advanced techniques such as photolithography, soft lithography, nanoimprinting, 3D printing, and self-assembly can navigate complex biological environments to perform targeted sensing, diagnostics, and therapeutic delivery. AI-driven algorithms, mainly those in machine learning (ML) and deep learning (DL), act as the brains of the operation, allowing for sophisticated modeling, genuine real-time control, and complex signal interpretation. This review focuses recent advances in the design, fabrication, and functional integration of AI-enabled micro/nanorobots for biomedical sensing. Applications that demonstrate their potential range from quick point-of-care diagnostics and in vivo biosensing to next-generation organ-on-chip systems and truly personalized medicine. We also discuss key challenges in scalability, energy autonomy, data standardization, and closed-loop control. Collectively, these advancements are paving the way for intelligent, responsive, and clinically transformative biosensing systems. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

23 pages, 3243 KB  
Entry
Nanoimprint—Mo(o)re than Lithography
by Helmut Schift
Encyclopedia 2025, 5(4), 197; https://doi.org/10.3390/encyclopedia5040197 - 21 Nov 2025
Viewed by 2489
Definition
Nanoimprint lithography (NIL) is a high-resolution parallel patterning method based on molding. It has proven resolution down to the nanometer range and can be scaled up for large areas and high throughput. Its main characteristic is that the surface pattern of a mold [...] Read more.
Nanoimprint lithography (NIL) is a high-resolution parallel patterning method based on molding. It has proven resolution down to the nanometer range and can be scaled up for large areas and high throughput. Its main characteristic is that the surface pattern of a mold is imprinted on a material that is displaced locally by using the difference in hardness of the mold and the moldable material, thus replicating its surface topography. This can be achieved by shaping a thermoplastic film by heating and cooling (T-NIL) or a photosensitive resin followed by a curing process for hardening (UV-NIL). In lithography, the local thickness contrast of the thin molded film can be used as a masking layer to transfer the pattern onto the underlying substrate. Therefore, NIL will be an alternative in fields in which electron-beam lithography and photolithography do not provide sufficient resolution at reasonable throughput. Direct imprint enables applications where a modified functional surface is needed without pattern transfer. NIL is currently used for high-volume manufacturing in different applications, like patterned sapphire substrates, wire grid polarizers, photonic devices, lightguides for AR/VR devices, metalenses, and biosensors for DNA analysis, and is being tested for semiconductor integrated circuit chips. Full article
(This article belongs to the Collection Encyclopedia of Engineering)
Show Figures

Graphical abstract

18 pages, 3764 KB  
Article
The Research on Multi-Process Collaborative Manufacturing and Characterization Methods of Micro–Nano-Composite Layered Structures
by Shibo Xu, Shaobo Ge, Zehua Sun, Junyan Li, Ronghua Shi, Lujun Shen, Jin Zhang and Yingxue Xi
Nanomaterials 2025, 15(22), 1716; https://doi.org/10.3390/nano15221716 - 13 Nov 2025
Viewed by 574
Abstract
This paper innovatively proposes a high-precision fabrication strategy for silicon-based micro–nano-composite layered structures composed of micron-scale platforms and nanopillars, effectively addressing the challenges of alignment errors and material mismatch during manufacturing. By integrating electron beam lithography (EBL), inductively coupled plasma (ICP) etching, and [...] Read more.
This paper innovatively proposes a high-precision fabrication strategy for silicon-based micro–nano-composite layered structures composed of micron-scale platforms and nanopillars, effectively addressing the challenges of alignment errors and material mismatch during manufacturing. By integrating electron beam lithography (EBL), inductively coupled plasma (ICP) etching, and ultraviolet nanoimprint lithography (NIL) into a unified multi-step workflow, the method achieves exceptional precision and efficiency in producing complex micro–nano-composite architectures. Comprehensive structural characterization is performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM), with probe convolution effects carefully corrected to ensure accurate dimensional analysis. Experimental results confirm the outstanding stability and uniformity of the fabricated structures, exhibiting minimal deviations in both feature size and spatial layout. Nanopillars with diameters ranging from 50 to 200 nm are successfully integrated onto 1-µm square platforms, with the lateral deviation of 50 nm features maintained within 5% or less. Furthermore, the method effectively mitigates thermal stress-induced misalignment during the fabrication of multi-material layers, demonstrating strong potential for scalable production of advanced photonic devices and integrated nanophotonic systems. Overall, this work establishes a robust and versatile technical pathway for the precise manufacturing and quantitative characterization of micro–nano-composite structures, providing a key foundation for the next generation of photonic integration technologies. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

17 pages, 3501 KB  
Article
Analysis of Dynamic Stability Control of Light Source in Immersion DUV Lithography
by Yihua Zhu, Dandan Han, Chuang Wu, Sen Deng and Yayi Wei
Micromachines 2025, 16(11), 1207; https://doi.org/10.3390/mi16111207 - 23 Oct 2025
Viewed by 933
Abstract
Immersion deep ultraviolet (DUV) lithography remains an indispensable core technology in advanced integrated circuit manufacturing, particularly when combined with multiple patterning techniques to achieve sub-10 nm feature patterning. However, at advanced technology nodes, dynamic instabilities of DUV light sources—including spectral characteristics (bandwidth fluctuations, [...] Read more.
Immersion deep ultraviolet (DUV) lithography remains an indispensable core technology in advanced integrated circuit manufacturing, particularly when combined with multiple patterning techniques to achieve sub-10 nm feature patterning. However, at advanced technology nodes, dynamic instabilities of DUV light sources—including spectral characteristics (bandwidth fluctuations, and center wavelength drift), coherence variations, and pulse-to-pulse energy instability—can adversely affect imaging contrast, normalized image log-slope (NILS), and critical dimension (CD) uniformity. To quantitatively assess the impact of laser parameter fluctuations on NILS and CD, this work establishes systematic physical models for imaging perturbations caused by multi-parameter laser output instabilities under immersion DUV lithography. Through simulations, we evaluate the influence of laser parameter variations on the imaging fidelity of representative line/space (L/S) and tip-to-line (T2L) structures, thereby validating the proposed perturbation model. Research demonstrates that the spectral attributes (bandwidth fluctuation and center wavelength drift), coherence variations, and pulse energy instability collectively induce non-uniform electric field intensity distribution within photoresist, degrading NILS, and amplifying CD variation, which ultimately compromise pattern fidelity and chip yield. Notably, at advanced nodes, pulse energy fluctuation exerts a significantly greater influence on imaging errors compared to bandwidth and wavelength variations. To satisfy the 10% process window requirement for 45 nm linewidths, pulse energy fluctuations should be rigorously confined within 1%. This research provides theoretical foundations and practical insights for the design of dynamic stability control of light source and process optimization of next-generation DUV light sources. Full article
(This article belongs to the Special Issue Recent Advances in Lithography)
Show Figures

Figure 1

13 pages, 3442 KB  
Article
Patterning Fidelity Enhancement and Aberration Mitigation in EUV Lithography Through Source–Mask Optimization
by Qi Wang, Qiang Wu, Ying Li, Xianhe Liu and Yanli Li
Micromachines 2025, 16(10), 1166; https://doi.org/10.3390/mi16101166 - 14 Oct 2025
Cited by 1 | Viewed by 1377
Abstract
Extreme ultraviolet (EUV) lithography faces critical challenges in aberration control and patterning fidelity as technology nodes shrink below 3 nm. This work demonstrates how Source–Mask Optimization (SMO) simultaneously addresses both illumination and mask design to enhance pattern transfer accuracy and mitigate aberrations. Through [...] Read more.
Extreme ultraviolet (EUV) lithography faces critical challenges in aberration control and patterning fidelity as technology nodes shrink below 3 nm. This work demonstrates how Source–Mask Optimization (SMO) simultaneously addresses both illumination and mask design to enhance pattern transfer accuracy and mitigate aberrations. Through a comprehensive optimization framework incorporating key process metrics, including critical dimension (CD), exposure latitude (EL), and mask error factor (MEF), we achieve significant improvements in imaging quality and process window for 40 nm minimum pitch patterns, representative of 2 nm node back-end-of-line (BEOL) requirements. Our analysis reveals that intelligent SMO implementation not only enables robust patterning solutions but also compensates for inherent EUV aberrations by balancing source characteristics with mask modifications. On average, our results show a 4.02% reduction in CD uniformity variation, concurrent with a 1.48% improvement in exposure latitude and a 5.45% reduction in MEF. The proposed methodology provides actionable insights for aberration-aware SMO strategies, offering a pathway to maintain lithographic performance as feature sizes continue to scale. These results underscore SMO’s indispensable role in advancing EUV lithography capabilities for next-generation semiconductor manufacturing. Full article
(This article belongs to the Special Issue Recent Advances in Lithography)
Show Figures

Figure 1

27 pages, 3687 KB  
Review
Functionalized Magnetic Nanoparticles: Can They Revolutionize the Treatment of Neurodegenerative Disorders?
by Nikolay Zahariev, Radka Boyuklieva, Dimitar Penkov, Paolina Lukova and Plamen Katsarov
Materials 2025, 18(18), 4302; https://doi.org/10.3390/ma18184302 - 14 Sep 2025
Cited by 1 | Viewed by 1601
Abstract
Neurodegenerative disorders (NDs), including Alzheimer’s disease and Parkinson’s disease, pose a significant global health challenge characterized by progressive neuronal loss and limited therapeutic options. Early diagnosis remains a considerable hurdle due to the absence of reliable biomarkers and the restrictive nature of the [...] Read more.
Neurodegenerative disorders (NDs), including Alzheimer’s disease and Parkinson’s disease, pose a significant global health challenge characterized by progressive neuronal loss and limited therapeutic options. Early diagnosis remains a considerable hurdle due to the absence of reliable biomarkers and the restrictive nature of the blood–brain barrier (BBB), which complicates effective drug delivery. Magnetic nanoparticles (MNPs), particularly those based on iron oxide, have emerged as promising tools for both diagnostic and therapeutic applications in NDs, thanks to their superparamagnetism, biocompatibility, and customizable surfaces. This review examines various synthesis strategies for MNPs, encompassing physical methods (such as lithography, ball milling, and laser ablation) and chemical approaches (co-precipitation, thermal decomposition, hydrothermal synthesis, sol–gel processes, and polyacrylamide gel techniques), while highlighting how these techniques influence particle properties. This review also explores recent advancements in surface functionalization using polymers and coatings to enhance circulation time in the bloodstream and improve BBB penetration for targeted delivery. Furthermore, it emphasizes both in vitro and in vivo applications, showcasing MNPs’ effectiveness in enhancing imaging sensitivity and enabling targeted drug and gene delivery. By linking synthesis methods, functionalization techniques, and biomedical outcomes, this review illustrates the transformative potential of MNPs as next-generation theranostic agents in precision medicine for neurodegenerative diseases. Full article
Show Figures

Figure 1

32 pages, 2548 KB  
Review
Interference Field Control for High-Uniformity Nanopatterning: A Review
by Jingwen Li and Xinghui Li
Sensors 2025, 25(18), 5719; https://doi.org/10.3390/s25185719 - 13 Sep 2025
Cited by 2 | Viewed by 1878
Abstract
Interference lithography (IL) offers high throughput, excellent uniformity, and maskless patterning capabilities. Compared to other methods, IL enables large-area, cost-effective fabrication of periodic structures with subwavelength resolution, which is particularly valuable for sensing applications, enabling the development of more sensitive, high-resolution, and reliable [...] Read more.
Interference lithography (IL) offers high throughput, excellent uniformity, and maskless patterning capabilities. Compared to other methods, IL enables large-area, cost-effective fabrication of periodic structures with subwavelength resolution, which is particularly valuable for sensing applications, enabling the development of more sensitive, high-resolution, and reliable sensors. This review provides a comprehensive analysis of IL from the perspective of optical field control. We first introduce the principles of interference field formation and summarize key system architectures, including Mach–Zehnder and Lloyd’s mirror configurations, as well as advanced schemes such as multi-beam interference and multi-step exposure for complex pattern generation. We then examine how wavefront engineering, polarization modulation, and phase stabilization influence pattern morphology, contrast, and large-area uniformity. To address dynamic drifts caused by environmental perturbations, both passive vibration isolation and active fringe-locking techniques are discussed. For fringe-locking systems, we review methods for drift monitoring, control algorithms, and feedback implementation. These developments enhance the capability of IL systems to deliver nanoscale accuracy under dynamic conditions, which is essential for stable and high-performance sensing. Looking ahead, IL is evolving into a versatile platform for sensor-oriented nanofabrication. By integrating physical modeling, precision optics, and real-time control, IL provides a robust foundation for advancing next-generation sensing technologies with higher sensitivity, resolution, and reliability. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

9 pages, 3634 KB  
Article
Van Der Waals Mask-Assisted Strategy for Deterministic Fabrication of Two-Dimensional Organic−Inorganic Hybrid Perovskites Lateral Heterostructures
by Bin Han, Mengke Lin, Yanren Tang, Xingyu Liu, Bingtao Lian, Qi Qiu, Shukai Ding and Bingshe Xu
Inorganics 2025, 13(8), 266; https://doi.org/10.3390/inorganics13080266 - 14 Aug 2025
Viewed by 896
Abstract
Two-dimensional (2D) organic−inorganic hybrid perovskites (OIHPs) have emerged as promising candidates for next-generation optoelectronic applications. While vertical heterostructures of 2D OIHPs have been explored through mechanical stacking, the controlled fabrication of lateral heterostructures remains a significant challenge. Here, we present a lithography-free, van [...] Read more.
Two-dimensional (2D) organic−inorganic hybrid perovskites (OIHPs) have emerged as promising candidates for next-generation optoelectronic applications. While vertical heterostructures of 2D OIHPs have been explored through mechanical stacking, the controlled fabrication of lateral heterostructures remains a significant challenge. Here, we present a lithography-free, van der Waals mask-assisted strategy for the deterministic fabrication of 2D OIHP lateral heterostructures. Mechanically exfoliated 2D materials such as graphene serve as removable masks that enable selective conversion of unmasked perovskite regions via ion exchange reaction. This technique enables the fabrication of various lateral heterostructures, such as BA2MA2Pb3I10/MAPbI3, PEAPbI4/MAPbI3, as well as BA2MAPb2I7/MAPbBr3. Furthermore, complex multiheterostructures and superlattices can be constructed through sequential masking and conversion processes. Moreover, to investigate the electronic properties and demonstrate potential device applications of the lateral heterostructures, we have fabricated an electrical diode based on a BA2MA2Pb3I10/MAPbI3 lateral heterostructure. Stable electrical rectifying behavior with a rectification ratio of around 10 was observed. This general and flexible approach provides a robust platform for constructing 2D OIHPs lateral heterostructures and opens new pathways for their integration into high-performance optoelectronic devices. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

45 pages, 5794 KB  
Review
Nanophotonic Materials and Devices: Recent Advances and Emerging Applications
by Yuan-Fong Chou Chau
Micromachines 2025, 16(8), 933; https://doi.org/10.3390/mi16080933 - 13 Aug 2025
Cited by 6 | Viewed by 5107
Abstract
Nanophotonics, the study of light–matter interactions at the nanometer scale, has emerged as a transformative field that bridges photonics and nanotechnology. Using engineered nanomaterials—including plasmonic metals, high-index dielectrics, two-dimensional (2D) materials, and hybrid systems—nanophotonics enables light manipulation beyond the diffraction limit, unlocking novel [...] Read more.
Nanophotonics, the study of light–matter interactions at the nanometer scale, has emerged as a transformative field that bridges photonics and nanotechnology. Using engineered nanomaterials—including plasmonic metals, high-index dielectrics, two-dimensional (2D) materials, and hybrid systems—nanophotonics enables light manipulation beyond the diffraction limit, unlocking novel applications in sensing, imaging, and quantum technologies. This review provides a comprehensive overview of recent advances (post-2020) in nanophotonic materials, fabrication methods, and their cutting-edge applications. We first discuss the fundamental principles governing nanophotonic phenomena, such as localized surface plasmon resonances (LSPRs), Mie resonances, and exciton–polariton coupling, highlighting their roles in enhancing light–matter interactions. Next, we examine state-of-the-art fabrication techniques, including top-down (e.g., electron beam lithography and nanoimprinting) and bottom-up (e.g., chemical vapor deposition and colloidal synthesis) approaches, as well as hybrid strategies that combine scalability with nanoscale precision. We then explore emerging applications across diverse domains: quantum photonics (single-photon sources, entangled light generation), biosensing (ultrasensitive detection of viruses and biomarkers), nonlinear optics (high-harmonic generation and wave mixing), and integrated photonic circuits. Special attention is given to active and tunable nanophotonic systems, such as reconfigurable metasurfaces and hybrid graphene–dielectric devices. Despite rapid progress, challenges remain, including optical losses, thermal management, and scalable integration. We conclude by outlining future directions, such as machine learning-assisted design, programmable photonics, and quantum-enhanced sensing, and offering insights into the next generation of nanophotonic technologies. This review serves as a timely resource for researchers in photonics, materials science, and nanotechnology. Full article
Show Figures

Figure 1

13 pages, 4277 KB  
Article
Advancing Nanoscale Copper Deposition Through Ultrafast-Laser-Activated Surface Chemistry
by Modestas Sadauskas, Romualdas Trusovas, Evaldas Kvietkauskas, Viktorija Vrubliauskaitė, Ina Stankevičienė, Aldona Jagminienė, Tomas Murauskas, Dainius Balkauskas, Alexandr Belosludtsev and Karolis Ratautas
Nanomaterials 2025, 15(11), 830; https://doi.org/10.3390/nano15110830 - 30 May 2025
Cited by 1 | Viewed by 1330
Abstract
Direct-writing submicron copper circuits on glass with laser precision—without lithography, vacuum deposition, or etching—represents a transformative step in next-generation microfabrication. We present a high-resolution, maskless method for metallizing glass using ultrashort pulse Bessel beam laser processing, followed by silver ion activation and electroless [...] Read more.
Direct-writing submicron copper circuits on glass with laser precision—without lithography, vacuum deposition, or etching—represents a transformative step in next-generation microfabrication. We present a high-resolution, maskless method for metallizing glass using ultrashort pulse Bessel beam laser processing, followed by silver ion activation and electroless copper plating. The laser-modified glass surface hosts nanoscale chemical defects that promote the in situ reduction of Ag+ to metallic Ag0 upon exposure to AgNO3 solution. These silver seeds act as robust catalytic and adhesion sites for subsequent copper growth. Using this approach, we demonstrate circuit traces as narrow as 0.7 µm, featuring excellent uniformity and adhesion. Compared to conventional redistribution-layer (RDL) and under-bump-metallization (UBM) techniques, this process eliminates multiple lithographic and vacuum-based steps, significantly reducing process complexity and production time. The method is scalable and adaptable for applications in transparent electronics, fan-out packaging, and high-density interconnects. Full article
Show Figures

Figure 1

12 pages, 3536 KB  
Article
Rapid Assembly of Block Copolymer Thin Films via Accelerating the Swelling Process During Solvent Annealing
by Tian-en Shui, Tongxin Chang, Zhe Wang and Haiying Huang
Polymers 2025, 17(9), 1242; https://doi.org/10.3390/polym17091242 - 2 May 2025
Cited by 1 | Viewed by 1754
Abstract
Block copolymer (BCP) lithography is widely regarded as a promising next-generation nanolithography technique. However, achieving rapid assembly with defect-free morphology remains a significant challenge for its practical application. In this study, we presented a facile and efficient solvent annealing method for fabricating well-ordered [...] Read more.
Block copolymer (BCP) lithography is widely regarded as a promising next-generation nanolithography technique. However, achieving rapid assembly with defect-free morphology remains a significant challenge for its practical application. In this study, we presented a facile and efficient solvent annealing method for fabricating well-ordered BCP thin films within minutes on both flat and topographically patterned substrates. By accelerating the swelling process, rapid film swelling was observed within just 10 s of annealing, leading to well-ordered morphologies in 1~3 min. Furthermore, we systematically investigated the influence of swelling ratio (SR) on film morphology by precisely tuning solvent vapor pressure. For cylinder-forming poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) films, we identified three distinct SR-dependent ordering regimes: (I) Excessive SR led to a disordered morphology; (II) near-optimal SR balanced long-range and short-range orders, and a slight increase in SR enhanced the long-range order but introduced short-range defects. (III) Insufficient SR failed to provide adequate chain mobility, limiting long-range order development. These findings highlight the critical role of SR in controlling defect density in nanopatterned surfaces. Long-range-ordered BCP nanopatterns can only be achieved under optimal SR conditions that ensure sufficient chain mobility. We believe this rapid annealing strategy, which is also applicable to other solvent-based annealing systems for BCP films, may contribute to next-generation nanolithography for microfabrication. Full article
Show Figures

Figure 1

14 pages, 6170 KB  
Article
Vortex Domain Wall Thermal Pinning and Depinning in a Constricted Magnetic Nanowire for Storage Memory Nanodevices
by Mohammed Al Bahri, Salim Al-Kamiyani and Al Maha Al Habsi
Nanomaterials 2024, 14(18), 1518; https://doi.org/10.3390/nano14181518 - 19 Sep 2024
Cited by 2 | Viewed by 1595
Abstract
In this study, we investigate the thermal pinning and depinning behaviors of vortex domain walls (VDWs) in constricted magnetic nanowires, with a focus on potential applications in storage memory nanodevices. Using micromagnetic simulations and spin transfer torque, we examine the impacts of device [...] Read more.
In this study, we investigate the thermal pinning and depinning behaviors of vortex domain walls (VDWs) in constricted magnetic nanowires, with a focus on potential applications in storage memory nanodevices. Using micromagnetic simulations and spin transfer torque, we examine the impacts of device temperature on VDW transformation into a transverse domain wall (TDW), mobility, and thermal strength pinning at the constricted area. We explore how thermal fluctuations influence the stability and mobility of domain walls within stepped nanowires. The thermal structural stability of VDWs and their pinning were investigated considering the effects of the stepped area depth (d) and its length (λ). Our findings indicate that the thermal stability of VDWs in magnetic stepped nanowires increases with decreasing the depth of the stepped area (d) and increasing nanowire thickness (th). For th ≥ 50 nm, the stability is maintained at temperatures ≥ 1200 K. In the stepped area, VDW thermal pinning strength increases with increasing d and decreasing λ. For values of d ≥ 100 nm, VDWs depin from the stepped area at temperatures ≥ 1000 K. Our results reveal that thermal effects significantly influence the pinning strength at constricted sites, impacting the overall performance and reliability of magnetic memory devices. These insights are crucial for optimizing the design and functionality of next-generation nanodevices. The stepped design offers numerous advantages, including simple fabrication using a single electron beam lithography exposure step on the resist. Additionally, adjusting λ and d allows for precise control over the pinning strength by modifying the dimensions of the stepped areas. Full article
Show Figures

Figure 1

Back to TopTop