Functionalized Magnetic Nanoparticles: Can They Revolutionize the Treatment of Neurodegenerative Disorders?
Abstract
1. Introduction
2. Neurodegeneration Mechanism and Types of Neurodegenerative Disorders
2.1. Oxidative Stress and Mitochondrial Dysfunction
2.2. Protein Misfolding and Aggregation
2.3. Neuroinflammation
3. Magnetic Nanoparticles: Fundamentals and Biomedical Potential
4. Methods for Preparing Magnetic Nanoparticles
4.1. Physical Methods
4.2. Chemical Methods
Method | Key Features | Pros | Cons | Comments | Ref. |
---|---|---|---|---|---|
Physical Methods | |||||
Lithography | Patterning using light/electron beams; top-down precision | High control over size/shape; reproducible nanostructures | Expensive, low throughput, limited scalability | Useful for biosensors and electronic applications, less common in biomedicine | [67] |
Ball milling | Mechanical grinding of bulk precursors | Simple, low cost, scalable | Broad size distribution; contamination from milling media | Better suited for large-scale powder production, less for biomedical quality | [71] |
Laser ablation | High-energy laser irradiation of bulk target; bottom-up route | High purity; excellent control over composition | Requires complex, costly instrumentation; limited scalability | Suitable for research-grade materials, less practical for routine synthesis | [72] |
Wire explosion | NP generation from exploding metal wires under high voltage | Clean, eco-friendly; no need for solvents | Poor size control; irregular morphology | Attractive for rapid synthesis but lacks uniformity for biomedical use | [73] |
Gas-phase methods | Vapor condensation under inert/reducing gases | Good structural control; high-purity NPs | Requires high temperatures; specialized equipment | Promising for metal-based NPs, less common in bioapplications | [74] |
Chemical Methods | |||||
Co-precipitation | Simultaneous precipitation of Fe2+/Fe3+ in alkaline medium | Easy, cost-effective, scalable, adjustable parameters | Tends to produce aggregation; broad size distribution | Widely used for biomedical Fe3O4 NPs | [76] |
Thermal decomposition | High-T decomposition of organometallic precursors in organic solvents | Monodisperse, highly crystalline NPs with tunable size/morphology | Toxic solvents; expensive precursors; purification required | Suitable for precision applications (MRI contrast, drug delivery) | [77] |
Hydrothermal | High-T, high-P reactions in sealed reactors | Produces uniform particles with good crystallinity; can tune morphology | Requires autoclaves; longer reaction times | Used for Fe3O4, doped ferrites, coating integration | [84] |
Polyol method | Polyols act as solvent, reducing and stabilizing agents | Eco-friendly, scalable; versatile morphologies (spheres, flowers, hollow) | Reaction conditions can be complex; requires careful control | Industrially promising and environmentally safer | [77] |
Sol–gel | Hydrolysis and polycondensation of metal alkoxides | Fine control over structure; homogeneous products | Multi-step; high calcination T; risk of particle growth | Good for complex oxides, less for biomedical-grade MNPs | [92] |
Microemulsion | Thermodynamically stable oil–water–surfactant mixtures | Precise control over particle size/shape | Low yield; large solvent use; difficult scale-up | Useful for research-scale synthesis of uniform NPs | [76] |
Chemical reduction | Mild reducing agents for NP formation at ambient conditions | Simple; preserves surface features | Limited to certain metal salts; stability issues | Useful for biocompatible coatings | [95] |
Electrochemical | Electrolysis-based control of NP formation | Precise size/morphology control | Requires specialized equipment; low yield | Good for experimental fine-tuning | [96] |
Microwave-assisted | Uniform, rapid heating with microwaves | Fast, energy-efficient; higher yields | Limited penetration depth; uneven heating in bulk | Scalable for small-batch synthesis | [97] |
Ultrasound-assisted | Acoustic cavitation promotes nucleation and mixing | Improves reaction kinetics, particle uniformity | Equipment cost; potential for uncontrolled local heating | Useful as a supporting/combined method | [98] |
Polyacrylamide gel | Metal precursors embedded in polymer gel, thermally treated | Monodisperse, crystalline; reproducible; scalable; cost-effective | Requires calcination; some risk of organic residue | Promising alternative for ferrites (MgFe2O4, CaFe2O4, BaFe2O4, Ba/SrFe12O19) | [99] |
5. Surface Functionalization and Polymer Coatings
5.1. Polymer-Based Coatings
5.1.1. Dextran
5.1.2. Chitosan
5.1.3. Polyethylene Glycol
5.1.4. Lipid Coatings
5.2. Advanced Functional Coating
Type of Carrier | Coating Agent | Application | Ref. |
---|---|---|---|
Polymer Coating | |||
Protein A conjugated Dextran-coated MNPs | Dextran | Separation of cells, cell membranes, and receptors | [104] |
Dextran sulfate-coated SPIONs loaded with Quercetin | Dextran sulfate | Low toxicity in PC12 cells; antioxidant delivery | [105] |
Dextran-coated SPIONs | Dextran | Beta-amyloid detection; reduced cytotoxicity in SH-SY5Y cells | [106] |
Dextran-coated MNPs | Dextran | Promotion of hMSC migration and dopaminergic neuron regeneration in PD model | [36] |
Chitosan-coated MNPs with tacrine | Chitosan | Improved spatial learning and memory in rats; increased Seladin-1 expression | [34] |
PEG-coated MNPs | Poly (Ethylene Glycol) | Increased physical stability; increase in blood circulation; targeted delivery | [110] |
PEG-coated SPIONs | Poly (Ethylene Glycol) | Enhanced circulation, stability, and targeted delivery | [37] |
siRNA-loaded PEGylated SPIONs | Poly (Ethylene Glycol) | BACE1 gene silencing in fibroblast cells; improved cellular uptake | [42] |
PEG-block-allyl glycidyl ether (PEG-b-AGE)-SPIONs | Poly (Ethylene Glycol) | Improved sensitivity and specificity for amyloid-beta and tau detection | [111] |
Lipid coating | |||
Congo Red/Rutin-loaded (DSPE)–PEG-coated MNPs | DSPE-PEG-Congo red; DSPE-PEG-phenylboronic acid | Amyloid plaque detection by MRI; targeted delivery of AD therapeutic agents; drug-controlled release by H2O2 response; prevention of oxidative stress | [113] |
Curcumin-loaded DSPE-PEG functionalized with (CRTIGPSVC) and QSH (QSHYRHISPAQV) | DSPE-PEG | Curcumin delivery to the brain; inhibition of amyloid-beta aggregation via NLRP3 suppression | [114] |
Advanced functional coating | |||
Iron oxide (γ-Fe2O3) nanoparticles conjugated with fibrin γ377–395 peptide | Fibrin γ377–395 peptide | Targeted inhibition of microglial cells in the tauopathy mouse model | [116] |
Protein-capped (PC-Fe3O4/(PC-CdS) metal NPs | Peptides | Inhibition and disassembly of tau fibrils (in vitro) | [117] |
Fe3O4 NPs with NIPAAm derivative | N-isopropylacrylamide derivative | Controlled shRNA release targeting alpha-synuclein; enhanced uptake via NGF receptors | [30] |
6. Biomedical Application of Magnetic Nanoparticles
6.1. In Vitro
6.2. In Vivo
7. Applications in Alzheimer’s and Parkinson’s Disease
7.1. Alzheimer’s Disease
7.2. Parkinson’s Disease
8. Challenges and Future Perspectives
9. Materials and Methods
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
BBB | Blood–brain barrier |
CNS | Central nervous system |
DSPE-PEG | 1,2-dioleoyl-sn-glycero-3-phosphoethanolaminen-[poly(ethylene glycol)] |
EVs | Extracellular vesicles |
IONPs | Iron oxide nanoparticles |
MNPs | Magnetic nanoparticles |
MRI | Magnetic resonance imaging |
NDs | Neurodegenerative disorders |
NGF | Nerve growth factor |
NIPAAM | poly-N-isopropylacrylamide |
NPs | Nanoparticles |
PC-CdS | Protein-capped cadmium sulfide |
PC-Fe3O4 | Protein-capped Fe3O4 |
PC-NPs | Protein-capped nanoparticles |
PD | Parkinson’s disease |
PEG | Polyetylenglycol |
PLA | Polylactic acid |
RNS | Reactive nitrogen species |
ROS | Reactive oxygen species |
SPION | Superparamagnetic iron oxide nanoparticles |
TEM | Transmission electron microscopy |
References
- Kumar, A.; Mirza, M. Exploring the Neurodegenerative Landscape: Understanding the Burden of Disease. In The Neurodegeneration Revolution; Elsevier: Amsterdam, The Netherlands, 2025; pp. 477–495. ISBN 978-0-443-28822-7. [Google Scholar]
- Wei, D.; Freydenzon, A.; Guinebretiere, O.; Zaidi, K.; Yang, F.; Ye, W.; Hammar, N.; Modig, K.; Wray, N.R.; Feychting, M.; et al. Ten Years Preceding a Diagnosis of Neurodegenerative Disease in Europe and Australia: Medication Use, Health Conditions, and Biomarkers Associated with Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis. eBioMedicine 2025, 113, 105585. [Google Scholar] [CrossRef]
- Jurcau, A. Insights into the Pathogenesis of Neurodegenerative Diseases: Focus on Mitochondrial Dysfunction and Oxidative Stress. Int. J. Mol. Sci. 2021, 22, 11847. [Google Scholar] [CrossRef]
- Rauf, A.; Badoni, H.; Abu-Izneid, T.; Olatunde, A.; Rahman, M.M.; Painuli, S.; Semwal, P.; Wilairatana, P.; Mubarak, M.S. Neuroinflammatory Markers: Key Indicators in the Pathology of Neurodegenerative Diseases. Molecules 2022, 27, 3194. [Google Scholar] [CrossRef]
- Bucchia, M.; Ramirez, A.; Parente, V.; Simone, C.; Nizzardo, M.; Magri, F.; Dametti, S.; Corti, S. Therapeutic Development in Amyotrophic Lateral Sclerosis. Clin. Ther. 2015, 37, 668–680. [Google Scholar] [CrossRef]
- Emamzadeh, F.N.; Surguchov, A. Parkinson’s Disease: Biomarkers, Treatment, and Risk Factors. Front. Neurosci. 2018, 12, 612. [Google Scholar] [CrossRef]
- Choonara, Y.E.; Pillay, V.; Du Toit, L.C.; Modi, G.; Naidoo, D.; Ndesendo, V.M.K.; Sibambo, S.R. Trends in the Molecular Pathogenesis and Clinical Therapeutics of Common Neurodegenerative Disorders. Int. J. Mol. Sci. 2009, 10, 2510–2557. [Google Scholar] [CrossRef]
- Zeng, J.; Wu, J.; Li, M.; Wang, P. A Novel Magnetic Nanoparticle for Early Detection of Amyloid Plaques in Alzheimer’s Disease. Arch. Med. Res. 2018, 49, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Lapchuk, A.S.; Gorbov, I.V.; Prygun, A.V.; Balagura, I.V.; Morozov, Y.M. Combined Small and Large Magnetic Nanoparticle Extraction and Concentration from Biofluids for Non-Toxic Detection of Biomarkers. Sens. Diagn. 2022, 1, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Cabada, T.; Ramos-Gómez, M. A Novel Contrast Agent Based on Magnetic Nanoparticles for Cholesterol Detection as Alzheimer’s Disease Biomarker. Nanoscale Res. Lett. 2019, 14, 36. [Google Scholar] [CrossRef] [PubMed]
- Gessner, I.; Fries, J.W.U.; Brune, V.; Mathur, S. Magnetic Nanoparticle-Based Amplification of microRNA Detection in Body Fluids for Early Disease Diagnosis. J. Mater. Chem. B 2021, 9, 9–22. [Google Scholar] [CrossRef]
- Chen, C.-H.; Liang, H.-H.; Wang, C.-C.; Yang, Y.-T.; Lin, Y.-H.; Chen, Y.-L. Unlocking Early Detection of Alzheimer’s Disease: The Emerging Role of Nanomaterial-Based Optical Sensors. J. Food Drug Anal. 2024, 32, 296–324. [Google Scholar] [CrossRef]
- Sharma, B.; Pervushin, K. Magnetic Nanoparticles as In Vivo Tracers for Alzheimer’s Disease. Magnetochemistry 2020, 6, 13. [Google Scholar] [CrossRef]
- Unnisa, A.; Greig, N.H.; Kamal, M.A. Nanotechnology: A Promising Targeted Drug Delivery System forBrain Tumours and Alzheimer’s Disease. Curr. Med. Chem. 2023, 30, 255–270. [Google Scholar] [CrossRef]
- Chaparro, C.I.P.; Simões, B.T.; Borges, J.P.; Castanho, M.A.R.B.; Soares, P.I.P.; Neves, V. A Promising Approach: Magnetic Nanosystems for Alzheimer’s Disease Theranostics. Pharmaceutics 2023, 15, 2316. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.; Eldin, M.H.; El-Sherbiny, I.M. Metallic Nanomaterials in Parkinson’s Disease: A Transformative Approach for Early Detection and Targeted Therapy. J. Mater. Chem. B 2025, 13, 3806–3830. [Google Scholar] [CrossRef]
- Thakur, S.; Dhapola, R.; Sarma, P.; Medhi, B.; Reddy, D.H. Neuroinflammation in Alzheimer’s Disease: Current Progress in Molecular Signaling and Therapeutics. Inflammation 2023, 46, 1–17. [Google Scholar] [CrossRef]
- Givian, H.; Calbimonte, J.-P.; For the Alzheimer’s Disease Neuroimaging Initiative. Early Diagnosis of Alzheimer’s Disease and Mild Cognitive Impairment Using MRI Analysis and Machine Learning Algorithms. Discov. Appl. Sci. 2024, 7, 27. [Google Scholar] [CrossRef]
- Giorelli, M. Current and Future Perspectives of an Early Diagnosis of Cognitive Impairment. Front. Neurol. 2023, 14, 1171681. [Google Scholar] [CrossRef] [PubMed]
- Öksüz, N.; Ghouri, R.; Taşdelen, B.; Uludüz, D.; Özge, A. Mild Cognitive Impairment Progression and Alzheimer’s Disease Risk: A Comprehensive Analysis of 3553 Cases over 203 Months. J. Clin. Med. 2024, 13, 518. [Google Scholar] [CrossRef] [PubMed]
- Surpi, A.; Murgia, M.; López-Amoedo, S.; González-Gómez, M.A.; Piñeiro, Y.; Rivas, J.; Perugini, V.; Santin, M.; Sobrino, T.; Greco, P.; et al. Magnetic Separation and Concentration of Aβ 1–42 Molecules Dispersed at the Threshold Concentration for Alzheimer’s Disease Diagnosis in Clinically-Relevant Volumes of Sample. J. Nanobiotechnol. 2023, 21, 329. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, X.; Zheng, T. Recent Advances in Nanomaterial-Based Biosensors for Alzheimer’s Disease Diagnosis: A Review. Chem. Commun. 2025. [Google Scholar] [CrossRef]
- Jang, Y.O.; Roh, Y.; Shin, W.; Jo, S.; Koo, B.; Liu, H.; Kim, M.G.; Lee, H.J.; Qiao, Z.; Lee, E.Y.; et al. Transferrin-Conjugated Magnetic Nanoparticles for the Isolation of Brain-Derived Blood Exosomal MicroRNAs: A Novel Approach for Parkinson’s Disease Diagnosis. Anal. Chim. Acta 2024, 1306, 342623. [Google Scholar] [CrossRef] [PubMed]
- Teleanu, D.M.; Niculescu, A.-G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef]
- Sabnam, S.; Kumar, R.; Tiwari, P. Biofunctionalized Nanomaterials for Parkinson’s Disease Theranostics: Potential for Efficient PD Biomarker Detection and Effective Therapy. Biomater. Sci. 2025, 13, 2201–2234. [Google Scholar] [CrossRef]
- Pan, H.; Balbirnie, M.; Hou, K.; Sta Maria, N.S.; Sahay, S.; Denver, P.; Lepore, S.; Jones, M.; Zuo, X.; Zhu, C.; et al. Liganded Magnetic Nanoparticles for Magnetic Resonance Imaging of α-Synuclein. Npj Park. Dis. 2025, 11, 88. [Google Scholar] [CrossRef]
- Sun, X.; Badachhape, A.; Bhandari, P.; Chin, J.; Annapragada, A.; Tanifum, E. A Dual Target Molecular Magnetic Resonance Imaging Probe for Noninvasive Profiling of Pathologic Alpha-Synuclein and Microgliosis in a Mouse Model of Parkinson’s Disease. Front. Neurosci. 2024, 18, 1428736. [Google Scholar] [CrossRef]
- Das, S.; Lyon, C.J.; Hu, T. A Panorama of Extracellular Vesicle Applications: From Biomarker Detection to Therapeutics. ACS Nano 2024, 18, 9784–9797. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Tsantilas, K.A.; Park, J.; Plubell, D.; Sanders, J.A.; Naicker, P.; Govender, I.; Buthelezi, S.; Stoychev, S.; Jordaan, J.; et al. Enrichment of Extracellular Vesicles Using Mag-Net for the Analysis of the Plasma Proteome. Nat. Commun. 2025, 16, 5447. [Google Scholar] [CrossRef]
- Niu, S.; Zhang, L.-K.; Zhang, L.; Zhuang, S.; Zhan, X.; Chen, W.-Y.; Du, S.; Yin, L.; You, R.; Li, C.-H.; et al. Inhibition by Multifunctional Magnetic Nanoparticles Loaded with Alpha-Synuclein RNAi Plasmid in a Parkinson’s Disease Model. Theranostics 2017, 7, 344–356. [Google Scholar] [CrossRef] [PubMed]
- Bors, L.A.; Erdő, F. Overcoming the Blood–Brain Barrier. Challenges and Tricks for CNS Drug Delivery. Sci. Pharm. 2019, 87, 6. [Google Scholar] [CrossRef]
- Chen, J.; Yuan, M.; Madison, C.A.; Eitan, S.; Wang, Y. Blood-Brain Barrier Crossing Using Magnetic Stimulated Nanoparticles. J. Control. Release 2022, 345, 557–571. [Google Scholar] [CrossRef] [PubMed]
- Manek, E.; Darvas, F.; Petroianu, G.A. Use of Biodegradable, Chitosan-Based Nanoparticles in the Treatment of Alzheimer’s Disease. Molecules 2020, 25, 4866. [Google Scholar] [CrossRef]
- Hassanzadeh, G.; Fallahi, Z.; Khanmohammadi, M.; Elmizadeh, H.; Sharifzadeh, M.; Mahakizadeh, S.; Zendedel, A.; Beyer, C.; Kouchesfahani, H.M. Effect of Magnetic Tacrine-Loaded Chitosan Nanoparticles on Spatial Learning, Memory, Amyloid Precursor Protein and Seladin-1 Expression in the Hippocampus Of Streptozotocin-Exposed Rats. Int. Clin. Neurosci. J. 2016, 3, 25–31. [Google Scholar] [CrossRef]
- Abbas, H.; Refai, H.; El Sayed, N.; Rashed, L.A.; Mousa, M.R.; Zewail, M. Superparamagnetic Iron Oxide Loaded Chitosan Coated Bilosomes for Magnetic Nose to Brain Targeting of Resveratrol. Int. J. Pharm. 2021, 610, 121244. [Google Scholar] [CrossRef]
- Chung, T.-H.; Hsu, S.-C.; Wu, S.-H.; Hsiao, J.-K.; Lin, C.-P.; Yao, M.; Huang, D.-M. Dextran-Coated Iron Oxide Nanoparticle-Improved Therapeutic Effects of Human Mesenchymal Stem Cells in a Mouse Model of Parkinson’s Disease. Nanoscale 2018, 10, 2998–3007. [Google Scholar] [CrossRef]
- Mirsadeghi, S.; Shanehsazzadeh, S.; Atyabi, F.; Dinarvand, R. Effect of PEGylated Superparamagnetic Iron Oxide Nanoparticles (SPIONs) under Magnetic Field on Amyloid Beta Fibrillation Process. Mater. Sci. Eng. C 2016, 59, 390–397. [Google Scholar] [CrossRef]
- Zhu, N.; Ji, H.; Yu, P.; Niu, J.; Farooq, M.U.; Akram, M.W.; Udego, I.O.; Li, H.; Niu, X. Surface Modification of Magnetic Iron Oxide Nanoparticles. Nanomaterials 2018, 8, 810. [Google Scholar] [CrossRef]
- Asefy, Z.; Hoseinnejhad, S.; Ceferov, Z. Nanoparticles Approaches in Neurodegenerative Diseases Diagnosis and Treatment. Neurol. Sci. 2021, 42, 2653–2660. [Google Scholar] [CrossRef]
- Krsek, A.; Baticic, L. Nanotechnology-Driven Therapeutic Innovations in Neurodegenerative Disorders: A Focus on Alzheimer’s and Parkinson’s Disease. Future Pharmacol. 2024, 4, 352–379. [Google Scholar] [CrossRef]
- Luo, S.; Ma, C.; Zhu, M.-Q.; Ju, W.-N.; Yang, Y.; Wang, X. Application of Iron Oxide Nanoparticles in the Diagnosis and Treatment of Neurodegenerative Diseases With Emphasis on Alzheimer’s Disease. Front. Cell. Neurosci. 2020, 14, 21. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Barbosa, N.; Garcia, J.G.; Cifuentes, J.; Castro, L.M.; Vargas, F.; Ostos, C.; Cardona-Gomez, G.P.; Hernandez, A.M.; Cruz, J.C. Multifunctional Magnetite Nanoparticles to Enable Delivery of siRNA for the Potential Treatment of Alzheimer’s. Drug Deliv. 2020, 27, 864–875. [Google Scholar] [CrossRef] [PubMed]
- Horák, D.; Rittich, B.; Šafář, J.; Španová, A.; Lenfeld, J.; Beneš, M.J. Properties of RNase A Immobilized on Magnetic Poly(2-hydroxyethyl Methacrylate) Microspheres. Biotechnol. Prog. 2001, 17, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Adeeyo, A.O.; Alabi, M.A.; Oyetade, J.A.; Nkambule, T.T.I.; Mamba, B.B.; Oladipo, A.O.; Makungo, R.; Msagati, T.A.M. Magnetic Nanoparticles: Advances in Synthesis, Sensing, and Theragnostic Applications. Magnetochemistry 2025, 11, 9. [Google Scholar] [CrossRef]
- Gadhave, D.G.; Sugandhi, V.V.; Jha, S.K.; Nangare, S.N.; Gupta, G.; Singh, S.K.; Dua, K.; Cho, H.; Hansbro, P.M.; Paudel, K.R. Neurodegenerative Disorders: Mechanisms of Degeneration and Therapeutic Approaches with Their Clinical Relevance. Ageing Res. Rev. 2024, 99, 102357. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, G. Molecular Pathological Classification of Neurodegenerative Diseases: Turning towards Precision Medicine. Int. J. Mol. Sci. 2016, 17, 189. [Google Scholar] [CrossRef]
- Dugger, B.N.; Hoffman, B.R.; Scroggins, A.; Serrano, G.E.; Adler, C.H.; Shill, H.A.; Belden, C.M.; Sabbagh, M.N.; Caviness, J.N.; Driver Dunckley, E.; et al. Tau Immunoreactivity in Peripheral Tissues of Human Aging and Select Tauopathies. Neurosci. Lett. 2019, 696, 132–139. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative Stress, Aging, and Diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef]
- Nakamura, T.; Lipton, S.A. S-Nitrosylation of Critical Protein Thiols Mediates Protein Misfolding and Mitochondrial Dysfunction in Neurodegenerative Diseases. Antioxid. Redox Signal. 2011, 14, 1479–1492. [Google Scholar] [CrossRef]
- Becher, B.; Spath, S.; Goverman, J. Cytokine Networks in Neuroinflammation. Nat. Rev. Immunol. 2017, 17, 49–59. [Google Scholar] [CrossRef]
- Watts, M.E.; Pocock, R.; Claudianos, C. Brain Energy and Oxygen Metabolism: Emerging Role in Normal Function and Disease. Front. Mol. Neurosci. 2018, 11, 216. [Google Scholar] [CrossRef]
- Casanova, A.; Wevers, A.; Navarro-Ledesma, S.; Pruimboom, L. Mitochondria: It Is All about Energy. Front. Physiol. 2023, 14, 1114231. [Google Scholar] [CrossRef]
- Shen, X.; Sun, P.; Zhang, H.; Yang, H. Mitochondrial Quality Control in the Brain: The Physiological and Pathological Roles. Front. Neurosci. 2022, 16, 1075141. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, F.; Ma, X.; Perry, G.; Zhu, X. Mitochondria Dysfunction in the Pathogenesis of Alzheimer’s Disease: Recent Advances. Mol. Neurodegener. 2020, 15, 30. [Google Scholar] [CrossRef]
- Khanam, H.; Ali, A.; Asif, M. Neurodegenerative Diseases Linked to Misfolded Proteins and Their Therapeutic Approaches: A Review. Eur. J. Med. Chem. 2016, 124, 1121–1141. [Google Scholar] [CrossRef]
- Gulisano, W.; Maugeri, D.; Baltrons, M.A.; Fà, M.; Amato, A.; Palmeri, A.; D’Adamio, L.; Grassi, C.; Devanand, D.P.; Honig, L.S.; et al. Role of Amyloid-β and Tau Proteins in Alzheimer’s Disease: Confuting the Amyloid Cascade. J. Alzheimers Dis. 2018, 64, S611–S631. [Google Scholar] [CrossRef] [PubMed]
- Jo, M.; Lee, S.; Jeon, Y.-M.; Kim, S.; Kwon, Y.; Kim, H.-J. The Role of TDP-43 Propagation in Neurodegenerative Diseases: Integrating Insights from Clinical and Experimental Studies. Exp. Mol. Med. 2020, 52, 1652–1662. [Google Scholar] [CrossRef]
- Tanaka, M.; Battaglia, S.; Liloia, D. Navigating Neurodegeneration: Integrating Biomarkers, Neuroinflammation, and Imaging in Parkinson’s, Alzheimer’s, and Motor Neuron Disorders. Biomedicines 2025, 13, 1045. [Google Scholar] [CrossRef]
- Subhramanyam, C.S.; Wang, C.; Hu, Q.; Dheen, S.T. Microglia-Mediated Neuroinflammation in Neurodegenerative Diseases. Semin. Cell Dev. Biol. 2019, 94, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-G.; Lee, J.-H.; Flausino, L.E.; Quintana, F.J. Neuroinflammation: An Astrocyte Perspective. Sci. Transl. Med. 2023, 15, eadi7828. [Google Scholar] [CrossRef] [PubMed]
- Filgueira, L.; Larionov, A.; Lannes, N. The Influence of Virus Infection on Microglia and Accelerated Brain Aging. Cells 2021, 10, 1836. [Google Scholar] [CrossRef]
- Römer, C. Viruses and Endogenous Retroviruses as Roots for Neuroinflammation and Neurodegenerative Diseases. Front. Neurosci. 2021, 15, 648629. [Google Scholar] [CrossRef]
- Huang, J.; Wang, L.; Zhong, X.; Li, Y.; Yang, L.; Mao, H. Facile Non-Hydrothermal Synthesis of Oligosaccharide Coated Sub-5 Nm Magnetic Iron Oxide Nanoparticles with Dual MRI Contrast Enhancement Effects. J. Mater. Chem. B 2014, 2, 5344–5351. [Google Scholar] [CrossRef]
- Gvozdeva, Y. Nanotechnology-Based Delivery Systems for Enhanced Targeting of Tyrosine Kinase Inhibitors: Exploring Inorganic and Organic Nanoparticles as Targeted Carriers. Kinases Phosphatases 2025, 3, 9. [Google Scholar] [CrossRef]
- Gvozdeva, Y.; Staynova, R. pH-Dependent Drug Delivery Systems for Ulcerative Colitis Treatment. Pharmaceutics 2025, 17, 226. [Google Scholar] [CrossRef]
- Goswami, S.; Samanta, P.; Adhikari, M.D. Nanobiotechnology: A Smart Platform of the Future Transform Liquid Biopsy Era. J. Liq. Biopsy 2024, 3, 100137. [Google Scholar] [CrossRef]
- Stiufiuc, G.F.; Stiufiuc, R.I. Magnetic Nanoparticles: Synthesis, Characterization, and Their Use in Biomedical Field. Appl. Sci. 2024, 14, 1623. [Google Scholar] [CrossRef]
- Alvino, L.; Pacheco-Herrero, M.; López-Lorente, Á.I.; Quiñones, Z.; Cárdenas, S.; González-Sánchez, Z.I. Toxicity Evaluation of Barium Ferrite Nanoparticles in Bacteria, Yeast and Nematode. Chemosphere 2020, 254, 126786. [Google Scholar] [CrossRef]
- Mittal, A.; Roy, I.; Gandhi, S. Magnetic Nanoparticles: An Overview for Biomedical Applications. Magnetochemistry 2022, 8, 107. [Google Scholar] [CrossRef]
- Habibullah, G.; Viktorova, J.; Ruml, T. Current Strategies for Noble Metal Nanoparticle Synthesis. Nanoscale Res. Lett. 2021, 16, 47. [Google Scholar] [CrossRef] [PubMed]
- Fecht, H.J.; Hellstern, E.; Fu, Z.; Johnson, W.L. Nanocrystalline Metals Prepared by High-Energy Ball Milling. Metall. Trans. A 1990, 21, 2333–2337. [Google Scholar] [CrossRef]
- Biehl, P.; Von Der Lühe, M.; Dutz, S.; Schacher, F. Synthesis, Characterization, and Applications of Magnetic Nanoparticles Featuring Polyzwitterionic Coatings. Polymers 2018, 10, 91. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, G.; Alvarez, S.; Stewart, I.E.; Catenacci, M.; Chen, Z.; Ha, Y.-C. Production of Oxidation-Resistant Cu-Based Nanoparticles by Wire Explosion. Sci. Rep. 2015, 5, 18333. [Google Scholar] [CrossRef]
- Grammatikopoulos, P.; Steinhauer, S.; Vernieres, J.; Singh, V.; Sowwan, M. Nanoparticle Design by Gas-Phase Synthesis. Adv. Phys. X 2016, 1, 81–100. [Google Scholar] [CrossRef]
- Hammad, M.; Hardt, S.; Mues, B.; Salamon, S.; Landers, J.; Slabu, I.; Wende, H.; Schulz, C.; Wiggers, H. Gas-Phase Synthesis of Iron Oxide Nanoparticles for Improved Magnetic Hyperthermia Performance. J. Alloys Compd. 2020, 824, 153814. [Google Scholar] [CrossRef]
- Flores-Rojas, G.G.; López-Saucedo, F.; Vera-Graziano, R.; Mendizabal, E.; Bucio, E. Magnetic Nanoparticles for Medical Applications: Updated Review. Macromol 2022, 2, 374–390. [Google Scholar] [CrossRef]
- Kritika; Roy, I. Therapeutic Applications of Magnetic Nanoparticles: Recent Advances. Mater. Adv. 2022, 3, 7425–7444. [Google Scholar] [CrossRef]
- Ali, A.; Shah, T.; Ullah, R.; Zhou, P.; Guo, M.; Ovais, M.; Tan, Z.; Rui, Y. Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front. Chem. 2021, 9, 629054. [Google Scholar] [CrossRef]
- Chen, J.P.; Sorensen, C.M.; Klabunde, K.J.; Hadjipanayis, G.C.; Devlin, E.; Kostikas, A. Size-Dependent Magnetic Properties of MnFe2O4 Fine Particles Synthesized by Coprecipitation. Phys. Rev. B 1996, 54, 9288–9296. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, A.-G.; Chircov, C.; Grumezescu, A.M. Magnetite Nanoparticles: Synthesis Methods—A Comparative Review. Methods 2022, 199, 16–27. [Google Scholar] [CrossRef]
- Stojanovic, B.D.; Dzunuzovic, A.S.; Ilic, N.I. Review of Methods for the Preparation of Magnetic Metal Oxides. In Magnetic, Ferroelectric, and Multiferroic Metal Oxides; Elsevier: Amsterdam, The Netherlands, 2018; pp. 333–359. ISBN 978-0-12-811180-2. [Google Scholar]
- Patsula, V.; Kosinová, L.; Lovrić, M.; Ferhatovic Hamzić, L.; Rabyk, M.; Konefal, R.; Paruzel, A.; Šlouf, M.; Herynek, V.; Gajović, S.; et al. Superparamagnetic Fe3 O4 Nanoparticles: Synthesis by Thermal Decomposition of Iron(III) Glucuronate and Application in Magnetic Resonance Imaging. ACS Appl. Mater. Interfaces 2016, 8, 7238–7247. [Google Scholar] [CrossRef]
- Jana, N.R.; Chen, Y.; Peng, X. Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach. Chem. Mater. 2004, 16, 3931–3935. [Google Scholar] [CrossRef]
- Cheah, P.; Qu, J.; Li, Y.; Cao, D.; Zhu, X.; Zhao, Y. The Key Role of Reaction Temperature on a Polyol Synthesis of Water-Dispersible Iron Oxide Nanoparticles. J. Magn. Magn. Mater. 2021, 540, 168481. [Google Scholar] [CrossRef]
- Materón, E.M.; Miyazaki, C.M.; Carr, O.; Joshi, N.; Picciani, P.H.S.; Dalmaschio, C.J.; Davis, F.; Shimizu, F.M. Magnetic Nanoparticles in Biomedical Applications: A Review. Appl. Surf. Sci. Adv. 2021, 6, 100163. [Google Scholar] [CrossRef]
- Gan, Y.X.; Jayatissa, A.H.; Yu, Z.; Chen, X.; Li, M. Hydrothermal Synthesis of Nanomaterials. J. Nanomater. 2020, 2020, 1–3. [Google Scholar] [CrossRef]
- Reddy, L.H.; Arias, J.L.; Nicolas, J.; Couvreur, P. Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chem. Rev. 2012, 112, 5818–5878. [Google Scholar] [CrossRef]
- Li, J.; Zheng, L.; Cai, H.; Sun, W.; Shen, M.; Zhang, G.; Shi, X. Polyethyleneimine-Mediated Synthesis of Folic Acid-Targeted Iron Oxide Nanoparticles for in Vivo Tumor MR Imaging. Biomaterials 2013, 34, 8382–8392. [Google Scholar] [CrossRef]
- Li, G.; Jiang, Y.; Huang, K.; Ding, P.; Chen, J. Preparation and Properties of Magnetic Fe3O4–Chitosan Nanoparticles. J. Alloys Compd. 2008, 466, 451–456. [Google Scholar] [CrossRef]
- Iacovita, C.; Florea, A.; Scorus, L.; Pall, E.; Dudric, R.; Moldovan, A.I.; Stiufiuc, R.; Tetean, R.; Lucaciu, C.M. Hyperthermia, Cytotoxicity, and Cellular Uptake Properties of Manganese and Zinc Ferrite Magnetic Nanoparticles Synthesized by a Polyol-Mediated Process. Nanomaterials 2019, 9, 1489. [Google Scholar] [CrossRef] [PubMed]
- Oh, A.H.; Park, H.-Y.; Jung, Y.-G.; Choi, S.-C.; An, G.S. Synthesis of Fe3O4 Nanoparticles of Various Size via the Polyol Method. Ceram. Int. 2020, 46, 10723–10728. [Google Scholar] [CrossRef]
- Ansari, S.A.M.K.; Ficiarà, E.; Ruffinatti, F.A.; Stura, I.; Argenziano, M.; Abollino, O.; Cavalli, R.; Guiot, C.; D’Agata, F. Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Functionalization for Biomedical Applications in the Central Nervous System. Materials 2019, 12, 465. [Google Scholar] [CrossRef] [PubMed]
- Hasany, S.F.; Ahmed, I.; Rajan, J.; Rehman, A. Systematic Review of the Preparation Techniques of Iron Oxide Magnetic Nanoparticles. Nanosci. Nanotechnol. 2013, 2, 148–158. [Google Scholar] [CrossRef]
- Woodard, A.; Xu, L.; Barragan, A.A.; Nava, G.; Wong, B.M.; Mangolini, L. On the Non-thermal Plasma Synthesis of Nickel Nanoparticles. Plasma Process. Polym. 2018, 15, 1700104. [Google Scholar] [CrossRef]
- Kelgenbaeva, Z.; Murzubraimov, B.; Kozlovsky, A.; Adil Akai Tegin, R.; Turdubai Kyzy, A.; Murzabekova, E.; Aidaraliev, J.; Dyusheeva, B. Magnetic Nanoparticles Preparation by Chemical Reduction for Biomedical Applications. EPJ Web Conf. 2019, 201, 01002. [Google Scholar] [CrossRef]
- Pascal, C.; Pascal, J.L.; Favier, F.; Elidrissi Moubtassim, M.L.; Payen, C. Electrochemical Synthesis for the Control of γ-Fe2O3 Nanoparticle Size. Morphology, Microstructure, and Magnetic Behavior. Chem. Mater. 1999, 11, 141–147. [Google Scholar] [CrossRef]
- Riaz, S.; Ashraf, R.; Akbar, A.; Naseem, S. Microwave Assisted Iron Oxide Nanoparticles—Structural and Magnetic Properties. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Assis, M.B.D.S.; Werneck, I.H.S.R.; De Moraes, G.N.; Semaan, F.S.; Pacheco Pereira, R. Citrate-Capped Iron Oxide Nanoparticles: Ultrasound-Assisted Synthesis, Structure and Thermal Properties. Mater. Res. Express 2019, 6, 045064. [Google Scholar] [CrossRef]
- Wang, S.F.; Lv, H.B.; Zhou, X.S.; Fu, Y.Q.; Zu, X.T. Magnetic Nanocomposites Through Polyacrylamide Gel Route. Nanosci. Nanotechnol. Lett. 2014, 6, 758–771. [Google Scholar] [CrossRef]
- Hassanzadeh Tabrizi, S.A. Synthesis Characterization and Magnetic Properties of NiFe2O4 Nanoparticles. J. Part. Sci. Technol. 2023, 8, 79–85. [Google Scholar] [CrossRef]
- Ling, R.; Yang, X.; Li, Y.; Huan, L.; Cai, Y.; Wang, A.; Tan, X.; Sun, G. Synthesis and Influence of Zn Substitution on Optical and Magnetic Properties of Cobalt Ferrite Nanoparticles by a Polyacrylamide Gel Route. J. Mater Sci. Mater Electron. 2024, 35, 543. [Google Scholar] [CrossRef]
- Wang, S.F.; Zu, X.T.; Sun, G.Z.; Li, D.M.; He, C.D.; Xiang, X.; Liu, W.; Han, S.B.; Li, S. Highly Dispersed Spinel (Mg, Ca, Ba)-Ferrite Nanoparticles: Tuning the Particle Size and Magnetic Properties through a Modified Polyacrylamide Gel Route. Ceram. Int. 2016, 42, 19133–19140. [Google Scholar] [CrossRef]
- Veiseh, O.; Kievit, F.M.; Gunn, J.W.; Ratner, B.D.; Zhang, M. A Ligand-Mediated Nanovector for Targeted Gene Delivery and Transfection in Cancer Cells. Biomaterials 2009, 30, 649–657. [Google Scholar] [CrossRef]
- Molday, R.S.; Mackenzie, D. Immunospecific Ferromagnetic Iron-Dextran Reagents for the Labeling and Magnetic Separation of Cells. J. Immunol. Methods 1982, 52, 353–367. [Google Scholar] [CrossRef]
- Katebi, S.; Esmaeili, A.; Ghaedi, K.; Zarrabi, A. Superparamagnetic Iron Oxide Nanoparticles Combined with NGF and Quercetin Promote Neuronal Branching Morphogenesis of PC12 Cells. Int. J. Nanomed. 2019, 14, 2157–2169. [Google Scholar] [CrossRef]
- Kouyoumdjian, H.; Zhu, D.C.; El-Dakdouki, M.H.; Lorenz, K.; Chen, J.; Li, W.; Huang, X. Glyconanoparticle Aided Detection of β-Amyloid by Magnetic Resonance Imaging and Attenuation of β-Amyloid Induced Cytotoxicity. ACS Chem. Neurosci. 2013, 4, 575–584. [Google Scholar] [CrossRef]
- Poudel, P.; Park, S. Recent Advances in the Treatment of Alzheimer’s Disease Using Nanoparticle-Based Drug Delivery Systems. Pharmaceutics 2022, 14, 835. [Google Scholar] [CrossRef]
- Greeve, I.; Hermans-Borgmeyer, I.; Brellinger, C.; Kasper, D.; Gomez-Isla, T.; Behl, C.; Levkau, B.; Nitsch, R.M. The Human DIMINUTO/DWARF1 Homolog Seladin-1 Confers Resistance to Alzheimer’s Disease-Associated Neurodegeneration and Oxidative Stress. J. Neurosci. 2000, 20, 7345–7352. [Google Scholar] [CrossRef] [PubMed]
- Thapa, B.; Diaz-Diestra, D.; Beltran-Huarac, J.; Weiner, B.R.; Morell, G. Enhanced MRI T 2 Relaxivity in Contrast-Probed Anchor-Free PEGylated Iron Oxide Nanoparticles. Nanoscale Res. Lett. 2017, 12, 312. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, P.; Singh, D.; Sahoo, S.K. PEGYLATED Nanoparticles as a Versatile Drug Delivery System. In Nanoengineering of Biomaterials; Jana, S., Jana, S., Eds.; Wiley: New York, NY, USA, 2022; pp. 309–341. ISBN 978-3-527-34904-3. [Google Scholar]
- Li, Y.; Lim, E.; Fields, T.; Wu, H.; Xu, Y.; Wang, Y.A.; Mao, H. Improving Sensitivity and Specificity of Amyloid-β Peptides and Tau Protein Detection with Antibiofouling Magnetic Nanoparticles for Liquid Biopsy of Alzheimer’s Disease. ACS Biomater. Sci. Eng. 2019, 5, 3595–3605. [Google Scholar] [CrossRef] [PubMed]
- Soenen, S.J.; Velde, G.V.; Ketkar-Atre, A.; Himmelreich, U.; De Cuyper, M. Magnetoliposomes as Magnetic Resonance Imaging Contrast Agents. WIREs Nanomed Nanobiotechnol 2011, 3, 197–211. [Google Scholar] [CrossRef]
- Hu, B.; Dai, F.; Fan, Z.; Ma, G.; Tang, Q.; Zhang, X. Nanotheranostics: Congo Red/Rutin-MNPs with Enhanced Magnetic Resonance Imaging and H2 O2 -Responsive Therapy of Alzheimer’s Disease in APPswe/PS1dE9 Transgenic Mice. Adv. Mater. 2015, 27, 5499–5505. [Google Scholar] [CrossRef]
- Ruan, Y.; Xiong, Y.; Fang, W.; Yu, Q.; Mai, Y.; Cao, Z.; Wang, K.; Lei, M.; Xu, J.; Liu, Y.; et al. Highly Sensitive Curcumin-Conjugated Nanotheranostic Platform for Detecting Amyloid-Beta Plaques by Magnetic Resonance Imaging and Reversing Cognitive Deficits of Alzheimer’s Disease via NLRP3-Inhibition. J. Nanobiotechnol. 2022, 20, 322. [Google Scholar] [CrossRef]
- Zablotskaya, A.; Segal, I.; Lukevics, E.; Maiorov, M.; Zablotsky, D.; Blums, E.; Shestakova, I.; Domracheva, I. Water-Soluble Magnetic Nanoparticles with Biologically Active Stabilizers. J. Magn. Magn. Mater. 2009, 321, 1428–1432. [Google Scholar] [CrossRef]
- Glat, M.; Skaat, H.; Menkes-Caspi, N.; Margel, S.; Stern, E.A. Age-Dependent Effects of Microglial Inhibition in Vivo on Alzheimer’s Disease Neuropathology Using Bioactive-Conjugated Iron Oxide Nanoparticles. J Nanobiotechnol 2013, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Sonawane, S.K.; Ahmad, A.; Chinnathambi, S. Protein-Capped Metal Nanoparticles Inhibit Tau Aggregation in Alzheimer’s Disease. ACS Omega 2019, 4, 12833–12840. [Google Scholar] [CrossRef]
- Salama, M.; Sobh, M.; Emam, M.; Abdalla, A.; Sabry, D.; El-Gamal, M.; Lotfy, A.; El-Husseiny, M.; Sobh, M.; Shalash, A.; et al. Effect of Intranasal Stem Cell Administration on the Nigrostriatal System in a Mouse Model of Parkinson’s Disease. Exp. Ther. Med. 2017, 13, 976–982. [Google Scholar] [CrossRef]
- Mouaziz, H.; Veyret, R.; Theretz, A.; Ginot, F.; Elaissari, A. Aminodextran Containing Magnetite Nanoparticles for Molecular Biology Applications: Preparation and Evaluation. J. Biomed. Nanotechnol. 2009, 5, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Xiaoliang, W.; Xuman, W.; Hong, X.; Hongchen, G. Acute Toxicity and Irritation of Water-based Dextran-coated Magnetic Fluid Injected in Mice. J Biomed. Mater. Res 2008, 85A, 582–587. [Google Scholar] [CrossRef]
- Hatakeyama, M.; Nakamura, K.; Iwato, S.; Handa, H.; Fujimoto, K.; Kawaguchi, H. DNA-Carrying Latex Particles for DNA Diagnosis 2. Distinction of Normal and Point Mutant DNA Using S1 Nuclease. Colloids Surf. B Biointerfaces 1998, 10, 171–178. [Google Scholar] [CrossRef]
- Elaissari, A. Magnetic Latex Particles in Nanobiotechnologies for Biomedical Diagnostic Applications: State of the Art. Macromol. Symp. 2009, 281, 14–19. [Google Scholar] [CrossRef]
- Ugelstad, J.; Mørk, P.C.; Schmid, R.; Ellingsen, T.; Berge, A. Preparation and Biochemical and Biomedical Applications of new Monosized Polymer Particles. Polym. Int. 1993, 30, 157–168. [Google Scholar] [CrossRef]
- Kouassi, G.K.; Irudayaraj, J. A Nanoparticle-Based Immobilization Assay for Prion-Kinetics Study. J. Nanobiotechnol. 2006, 4, 8. [Google Scholar] [CrossRef]
- Kondo, A.; Kamura, H.; Higashitani, K. Development and Application of Thermo-Sensitive Magnetic Immunomicrospheres for Antibody Purification. Appl. Microbiol. Biotechnol. 1994, 41, 99–105. [Google Scholar] [CrossRef]
- Pinto, A.D.; Forte, V.; Guastadisegni, M.C.; Martino, C.; Schena, F.P.; Tantillo, G. A Comparison of DNA Extraction Methods for Food Analysis. Food Control 2007, 18, 76–80. [Google Scholar] [CrossRef]
- Medeiros, S.F.; Santos, A.M.; Fessi, H.; Elaissari, A. Stimuli-Responsive Magnetic Particles for Biomedical Applications. Int. J. Pharm. 2011, 403, 139–161. [Google Scholar] [CrossRef]
- Guo, L.-S.; An, Y.; Zhang, Z.-Y.; Ma, C.-B.; Li, J.-Q.; Dong, Z.; Tian, J.; Liu, Z.-Y.; Liu, J.-G. Exploring the Diagnostic Potential: Magnetic Particle Imaging for Brain Diseases. Mil. Med. Res. 2025, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Aboushoushah, S.F.O. Iron Oxide Nanoparticles Enhancing Magnetic Resonance Imaging: A Review of the Latest Advancements. J. Sci. Adv. Mater. Devices 2025, 10, 100875. [Google Scholar] [CrossRef]
- Lapusan, R.; Borlan, R.; Focsan, M. Advancing MRI with Magnetic Nanoparticles: A Comprehensive Review of Translational Research and Clinical Trials. Nanoscale Adv. 2024, 6, 2234–2259. [Google Scholar] [CrossRef] [PubMed]
- Kost, J.; Wolfrum, J.; Langer, R. Magnetically Enhanced Insulin Release in Diabetic Rats. J. Biomed. Mater. Res. 1987, 21, 1367–1373. [Google Scholar] [CrossRef]
- De Paoli, V.M.; De Paoli Lacerda, S.H.; Spinu, L.; Ingber, B.; Rosenzweig, Z.; Rosenzweig, N. Effect of an Oscillating Magnetic Field on the Release Properties of Magnetic Collagen Gels. Langmuir 2006, 22, 5894–5899. [Google Scholar] [CrossRef]
- Liu, X.-G.; Zhang, L.; Lu, S.; Liu, D.-Q.; Zhang, L.-X.; Yu, X.-L.; Liu, R.-T. Multifunctional Superparamagnetic Iron Oxide Nanoparticles Conjugated with Aβ Oligomer-Specific scFv Antibody and Class A Scavenger Receptor Activator Show Early Diagnostic Potentials for Alzheimer’s Disease. Int. J. Nanomed. 2020, 15, 4919–4932. [Google Scholar] [CrossRef]
- Cui, N.; Lu, H.; Li, M. Magnetic Nanoparticles Associated PEG/PLGA Block Copolymer Targeted with Anti-Transferrin Receptor Antibodies for Alzheimer’s Disease. J. Biomed. Nanotechnol. 2018, 14, 1017–1024. [Google Scholar] [CrossRef]
- Cheng, K.K.; Chan, P.S.; Fan, S.; Kwan, S.M.; Yeung, K.L.; Wáng, Y.-X.J.; Chow, A.H.L.; Wu, E.X.; Baum, L. Curcumin-Conjugated Magnetic Nanoparticles for Detecting Amyloid Plaques in Alzheimer’s Disease Mice Using Magnetic Resonance Imaging (MRI). Biomaterials 2015, 44, 155–172. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Chang, K.-A. Therapeutic Potential of Magnetic Nanoparticle-Based Human Adipose-Derived Stem Cells in a Mouse Model of Parkinson’s Disease. Int. J. Mol. Sci. 2021, 22, 654. [Google Scholar] [CrossRef]
- Hescham, S.-A.; Chiang, P.-H.; Gregurec, D.; Moon, J.; Christiansen, M.G.; Jahanshahi, A.; Liu, H.; Rosenfeld, D.; Pralle, A.; Anikeeva, P.; et al. Magnetothermal Nanoparticle Technology Alleviates Parkinsonian-like Symptoms in Mice. Nat. Commun. 2021, 12, 5569. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, K.; Aizel, K.; Broomhall, T.J.; Secret, E.; Goodman, T.; Rotherham, M.; Telling, N.; Siaugue, J.M.; Ménager, C.; Fresnais, J.; et al. Directional Control of Neurite Outgrowth: Emerging Technologies for Parkinson’s Disease Using Magnetic Nanoparticles and Magnetic Field Gradients. J. R. Soc. Interface 2022, 19, 20220576. [Google Scholar] [CrossRef]
- Levenberg, D.R.; Varon, E.; Indech, G.; Ben Uliel, T.; Geri, L.; Sharoni, A.; Shefi, O. A Streptavidin–Biotin System Combined with Magnetic Actuators for Remote Neuronal Guidance. J. Biol. Eng. 2023, 17, 40. [Google Scholar] [CrossRef] [PubMed]
- Lee, I. In Vivo Magnetic Resonance Tracking of Olfactory Ensheathing Glia Grafted into the Rat Spinal Cord. Exp. Neurol. 2004, 187, 509–516. [Google Scholar] [CrossRef]
- Nam, E.-J.; Kwon, Y.; Ha, Y.; Paik, S.R. Fabrication of a Dual Stimuli-Responsive Assorted Film Comprising Magnetic- and Gold-Nanoparticles with a Self-Assembly Protein of α-Synuclein. ACS Appl. Bio Mater. 2021, 4, 1863–1875. [Google Scholar] [CrossRef]
- Cifuentes, J.; Cifuentes-Almanza, S.; Ruiz Puentes, P.; Quezada, V.; González Barrios, A.F.; Calderón-Peláez, M.-A.; Velandia-Romero, M.L.; Rafat, M.; Muñoz-Camargo, C.; Albarracín, S.L.; et al. Multifunctional Magnetoliposomes as Drug Delivery Vehicles for the Potential Treatment of Parkinson’s Disease. Front. Bioeng. Biotechnol. 2023, 11, 1181842. [Google Scholar] [CrossRef]
- Cortajarena, A.L.; Ortega, D.; Ocampo, S.M.; Gonzalez-García, A.; Couleaud, P.; Miranda, R.; Belda-Iniesta, C.; Ayuso-Sacido, A. Engineering Iron Oxide Nanoparticles for Clinical Settings. Nanobiomedicine 2014, 1, 2. [Google Scholar] [CrossRef]
- Oberdick, S.D.; Jordanova, K.V.; Lundstrom, J.T.; Parigi, G.; Poorman, M.E.; Zabow, G.; Keenan, K.E. Iron Oxide Nanoparticles as Positive T1 Contrast Agents for Low-Field Magnetic Resonance Imaging at 64 mT. Sci. Rep. 2023, 13, 11520. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahariev, N.; Boyuklieva, R.; Penkov, D.; Lukova, P.; Katsarov, P. Functionalized Magnetic Nanoparticles: Can They Revolutionize the Treatment of Neurodegenerative Disorders? Materials 2025, 18, 4302. https://doi.org/10.3390/ma18184302
Zahariev N, Boyuklieva R, Penkov D, Lukova P, Katsarov P. Functionalized Magnetic Nanoparticles: Can They Revolutionize the Treatment of Neurodegenerative Disorders? Materials. 2025; 18(18):4302. https://doi.org/10.3390/ma18184302
Chicago/Turabian StyleZahariev, Nikolay, Radka Boyuklieva, Dimitar Penkov, Paolina Lukova, and Plamen Katsarov. 2025. "Functionalized Magnetic Nanoparticles: Can They Revolutionize the Treatment of Neurodegenerative Disorders?" Materials 18, no. 18: 4302. https://doi.org/10.3390/ma18184302
APA StyleZahariev, N., Boyuklieva, R., Penkov, D., Lukova, P., & Katsarov, P. (2025). Functionalized Magnetic Nanoparticles: Can They Revolutionize the Treatment of Neurodegenerative Disorders? Materials, 18(18), 4302. https://doi.org/10.3390/ma18184302