Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,472)

Search Parameters:
Keywords = next generation sequencing (NGS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 902 KiB  
Case Report
Gene Mutation-Negative Malignant Melanoma in a Prepubertal Patient: A Clinical and Molecular Case Report
by Adrian Guźniczak, Patrycja Sosnowska-Sienkiewicz, Jarosław Szydłowski, Paweł Kurzawa and Danuta Januszkiewicz-Lewandowska
Genes 2025, 16(8), 937; https://doi.org/10.3390/genes16080937 - 6 Aug 2025
Abstract
Conventional melanoma is exceedingly rare in the pediatric population, particularly among prepubescent children, and its diagnosis and management necessitate a multidisciplinary approach. The objective of this present report is to delineate the diagnostic pathway and therapeutic management of a 4-year-old girl with conventional [...] Read more.
Conventional melanoma is exceedingly rare in the pediatric population, particularly among prepubescent children, and its diagnosis and management necessitate a multidisciplinary approach. The objective of this present report is to delineate the diagnostic pathway and therapeutic management of a 4-year-old girl with conventional melanoma, with particular focus on the molecular context. A pigmented lesion located on the auricle was surgically excised, and subsequent histopathological and immunohistochemical analyses confirmed the diagnosis of malignant melanoma (pT3b). Radiologic investigations revealed no evidence of metastatic disease, and comprehensive genetic testing utilizing next-generation sequencing (NGS) identified no pathogenic variants in the germline genes examined, nor in the BRAF, NRAS, KRAS, and TP53 genes within the excised lesion. The patient remains in good general health. This case report adds to the limited body of literature on melanoma in pediatric patients and underscores the importance of thorough diagnostic evaluation in this age group. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

14 pages, 1754 KiB  
Article
Dissecting Tumor Heterogeneity by Liquid Biopsy—A Comparative Analysis of Post-Mortem Tissue and Pre-Mortem Liquid Biopsies in Solid Neoplasias
by Tatiana Mögele, Kathrin Hildebrand, Aziz Sultan, Sebastian Sommer, Lukas Rentschler, Maria Kling, Irmengard Sax, Matthias Schlesner, Bruno Märkl, Martin Trepel, Maximilian Schmutz and Rainer Claus
Int. J. Mol. Sci. 2025, 26(15), 7614; https://doi.org/10.3390/ijms26157614 - 6 Aug 2025
Abstract
Tumor heterogeneity encompasses genetic, epigenetic, and phenotypic diversity, impacting treatment response and resistance. Spatial heterogeneity occurs both inter- and intra-lesionally, while temporal heterogeneity results from clonal evolution. High-throughput technologies like next-generation sequencing (NGS) enhance tumor characterization, but conventional biopsies still do not adequately [...] Read more.
Tumor heterogeneity encompasses genetic, epigenetic, and phenotypic diversity, impacting treatment response and resistance. Spatial heterogeneity occurs both inter- and intra-lesionally, while temporal heterogeneity results from clonal evolution. High-throughput technologies like next-generation sequencing (NGS) enhance tumor characterization, but conventional biopsies still do not adequately capture genetic heterogeneity. Liquid biopsy (LBx), analyzing circulating tumor DNA (ctDNA), provides a minimally invasive alternative, offering real-time tumor evolution insights and identifying resistance mutations overlooked by tissue biopsies. This study evaluates the capability of LBx to capture tumor heterogeneity by comparing genetic profiles from multiple metastatic lesions and LBx samples. Eight patients from the Augsburger Longitudinal Plasma Study with various types of cancer provided 56 postmortem tissue samples, which were compared against pre-mortem LBx-derived circulating-free DNA sequenced by NGS. Tissue analyses revealed significant mutational diversity (4–12 mutations per patient, VAFs: 1.5–71.4%), with distinct intra- and inter-lesional heterogeneity. LBx identified 51 variants (4–17 per patient, VAFs: 0.2–31.1%), which overlapped with mutations from the tissue samples by 33–92%. Notably, 22 tissue variants were absent in LBx, whereas 18 LBx-exclusive variants were detected (VAFs: 0.2–2.8%). LBx effectively captures tumor heterogeneity, but should be used in conjunction with tissue biopsies for comprehensive genetic profiling. Full article
(This article belongs to the Special Issue Liquid Biopsies in Oncology—3rd Edition)
Show Figures

Figure 1

18 pages, 2727 KiB  
Article
Comparative Evaluation of Tongue and Periodontal Pocket Microbiome in Relation to Helicobacter pylori Gastric Disease: 16S rRNA Gene Sequencing Analysis
by Fausto Zamparini, Alessio Buonavoglia, Francesco Pellegrini, Georgia Diakoudi, Matteo Pavoni, Giulia Fiorini, Vittorio Sambri, Andrea Spinelli, Dino Vaira, Maria Giovanna Gandolfi and Carlo Prati
Antibiotics 2025, 14(8), 804; https://doi.org/10.3390/antibiotics14080804 - 6 Aug 2025
Abstract
Objective: To analyze the composition of the oral microbiome in periodontal pocket lesions and on the tongue dorsum of patients with Helicobacter pylori-associated gastric disease. Materials and Methods: Patients diagnosed with gastric disease and H. pylori (HP+) were evaluated in comparison to [...] Read more.
Objective: To analyze the composition of the oral microbiome in periodontal pocket lesions and on the tongue dorsum of patients with Helicobacter pylori-associated gastric disease. Materials and Methods: Patients diagnosed with gastric disease and H. pylori (HP+) were evaluated in comparison to a control group of H. pylori-negative patients without gastric disease (HP−). Periodontal and oral health clinical parameters (PPD, BoP, PSE, plaque score and modified DMFT) were assessed for each patient. Microbiological samples were collected from the deepest periodontal pockets and tongue dorsum, followed by DNA extraction, 16S rRNA PCR amplification, and Next-Generation-Sequencing (NGS) analyses. Results: Sixty-seven patients (27F; 40M, aged 35–85 years) were enrolled. Of these, 52 were HP+ and 15 were HP−. HP+ patients exhibited a significantly higher presence of decayed teeth (p < 0.05) and slightly fewer missing teeth (p > 0.05). The plaque score was significantly higher in HP+ patients (p < 0.05), while PPD and BoP showed no significant differences (p > 0.05). NGS analysis revealed no presence of H. pylori in any samples of both periodontal and tongue sites. HP+ patients showed a distinct microbial composition, including higher prevalence of Capnocytophaga, Fusobacterium, and Peptostreptococcus genera in both locations (pockets and tongue dorsum). Conclusions: The study demonstrated that HP+ patients exhibit distinct oral microbial profiles compared to HP− patients, especially in areas with deeper periodontal pockets. H. pylori was not detected in the oral microbiomes of either group. Full article
(This article belongs to the Special Issue Microbial Biofilms: Identification, Resistance and Novel Drugs)
Show Figures

Figure 1

10 pages, 228 KiB  
Review
A Review of the Latest Updates in Cytogenetic and Molecular Classification and Emerging Approaches in Identifying Abnormalities in Acute Lymphoblastic Leukemia
by Chaimae El Mahdaoui, Hind Dehbi and Siham Cherkaoui
Lymphatics 2025, 3(3), 23; https://doi.org/10.3390/lymphatics3030023 - 5 Aug 2025
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous hematologic malignancy defined by the uncontrolled proliferation of lymphoid precursors. Accurate diagnosis and effective therapeutic strategies hinge on a comprehensive understanding of the genetic and molecular landscape of ALL. This review synthesizes the latest updates in [...] Read more.
Acute lymphoblastic leukemia (ALL) is a heterogeneous hematologic malignancy defined by the uncontrolled proliferation of lymphoid precursors. Accurate diagnosis and effective therapeutic strategies hinge on a comprehensive understanding of the genetic and molecular landscape of ALL. This review synthesizes the latest updates in cytogenetic and molecular classifications, emphasizing the 2022 World Health Organization (WHO) and International Consensus Classification (ICC) revisions. Key chromosomal alterations such as BCR::ABL1 and ETV6::RUNX1 and emerging subtypes including Ph-like ALL, DUX4, and MEF2D rearrangements are examined for their prognostic significance. Furthermore, we assess novel diagnostic tools, notably next-generation sequencing (NGS) and optical genome mapping (OGM). While NGS excels at identifying point mutations and small indels, OGM offers high-resolution structural variant detection with 100% sensitivity in multiple validation studies. These advancements enhance our grasp of leukemogenesis and pave the way for precision medicine in both B- and T-cell ALL. Ultimately, integrating these innovations into routine diagnostics is crucial for personalized patient management and improving clinical outcomes. Full article
(This article belongs to the Collection Acute Lymphoblastic Leukemia (ALL))
14 pages, 2230 KiB  
Article
Complete Mitochondrial (mtDNA) Genome Analysis of Economically Significant Fish Cirrhinus cirrhosus in Bangladesh
by Tajmirul Huda, Md. Alamgir Kabir and Md. Golam Rabbane
Int. J. Mol. Sci. 2025, 26(15), 7473; https://doi.org/10.3390/ijms26157473 - 2 Aug 2025
Viewed by 190
Abstract
Complete mitochondrial DNA genome annotation of an ecologically and commercially important fish species Cirrhinus cirrhosus was executed with next-generation sequencing (NGS) for nucleotide and phylogenetic analyses. The findings of this study showed that the Cirrhinus cirrhosus mitochondrial genome contained 16,593 bp, including 13 [...] Read more.
Complete mitochondrial DNA genome annotation of an ecologically and commercially important fish species Cirrhinus cirrhosus was executed with next-generation sequencing (NGS) for nucleotide and phylogenetic analyses. The findings of this study showed that the Cirrhinus cirrhosus mitochondrial genome contained 16,593 bp, including 13 protein-coding genes, 2 ribosomal RNA genes, 22 tRNA genes, and a D-loop region. The overall base composition was 32% adenine, 25% thiamine, 16% guanine, and 27% cytosine. This mitochondrial DNA exhibits an AT biasness, with 56% AT content in its genome. Significant fluctuations were identified in the AT and GC skew values of the ND6 gene, indicating that the selection and mutation forces acting on this gene might be different from those acting on other genes. The Ka/Ks ratios of most protein-coding genes were less than 1, indicating very strong natural selection pressure. Phylogenetic analysis of Cirrhinus cirrhosus with Cirrhinus mrigala and Bangana tungting suggested a closer evolutionary relationship among these species, which might have shared a more recent common ancestor. It has been also found that the genera Labeo and Cirrhinus are not monophyletic. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 1285 KiB  
Article
Prognostic Relevance of Clinical and Tumor Mutational Profile in High-Grade Serous Ovarian Cancer
by Javier Martín-Vallejo, Juan Ramón Berenguer-Marí, Raquel Bosch-Romeu, Julia Sierra-Roca, Irene Tadeo-Cervera, Juan Pardo, Antonio Falcó, Patricia Molina-Bellido, Juan Bautista Laforga, Pedro Antonio Clemente-Pérez, Juan Manuel Gasent-Blesa and Joan Climent
Int. J. Mol. Sci. 2025, 26(15), 7416; https://doi.org/10.3390/ijms26157416 - 1 Aug 2025
Viewed by 152
Abstract
High-grade serous ovarian cancer (HGSOC) is the most common and aggressive subtype of ovarian cancer, accounting for approximately 70% of cases. This study investigates genetic mutations and their associations with overall survival (OS), complete cytoreduction (R0), and platinum response in patients undergoing either [...] Read more.
High-grade serous ovarian cancer (HGSOC) is the most common and aggressive subtype of ovarian cancer, accounting for approximately 70% of cases. This study investigates genetic mutations and their associations with overall survival (OS), complete cytoreduction (R0), and platinum response in patients undergoing either primary debulking surgery followed by adjuvant chemotherapy (PDS) or neoadjuvant chemotherapy followed by interval debulking surgery (NACT). Genetic analysis was performed on 43 primary HGSOC tumor samples using targeted massive parallel sequencing via next-generation sequencing (NGS). Clinical and molecular data were evaluated collectively and through subgroup comparisons between PDS and NACT cohorts. All analyzed samples harbored genetic alterations. Univariate survival analysis revealed that the total number of mutations (p = 0.0035), as well as mutations in HRAS (p = 0.044), FLT3 (p = 0.023), TP53 (p = 0.03), and ERBB4 (p = 0.007), were significantly associated with poorer OS. Multivariate Cox regression integrating clinical and molecular data confirmed that ERBB4 mutations are independently associated with adverse outcomes. These findings reveal a distinctive mutational landscape between the PDS and NACT groups and suggest that ERBB4 alterations may define a particularly aggressive tumor phenotype. This study contributes to a deeper understanding of HGSOC biology and may support the development of novel therapeutic targets and personalized treatment strategies in the context of precision oncology. Full article
(This article belongs to the Special Issue Molecular Genetics in Ovarian Cancer)
Show Figures

Graphical abstract

13 pages, 2697 KiB  
Article
Integrating Molecular Alterations with Immunophenotype and Clinical Characteristics in Myelodysplastic Syndromes: A Single-Center Study
by Maciej Majcherek, Krzysztof Przeorski, Aleksandra Mroczkowska-Bękarciak, Natalia Nogaj, Donata Szymczak, Anna Kopszak, Krzysztof Kujawa, Paula Jabłonowska-Babij, Maciej Tomasiewicz, Agnieszka Szeremet, Tomasz Wróbel and Anna Czyż
Int. J. Mol. Sci. 2025, 26(15), 7382; https://doi.org/10.3390/ijms26157382 - 30 Jul 2025
Viewed by 277
Abstract
Continuous development of molecular and immunophenotypic techniques enables more precise diagnoses and more accurate assessment of prognosis in myelodysplastic syndromes (MDS). However, the relationship between genetic alterations and immunophenotype remains very poorly understood. The analysis included 30 patients diagnosed at a tertiary center [...] Read more.
Continuous development of molecular and immunophenotypic techniques enables more precise diagnoses and more accurate assessment of prognosis in myelodysplastic syndromes (MDS). However, the relationship between genetic alterations and immunophenotype remains very poorly understood. The analysis included 30 patients diagnosed at a tertiary center who were eligible for azacitidine treatment. Next-generation sequencing (NGS) was performed at the start of the study to assess the mutation status of 40 genes associated with MDS pathogenesis. In addition, multiparametric flow cytometry (MFC) was performed to assess the ELN score (Ogata score) and, additionally, to detect an abnormal CD11b/HLA-DR and CD11b/CD13 expression pattern. In the studied patient population, higher ELN score results were found in patients with mutations in epigenetic modifiers and pathogenic mutations of the tumor suppressor genes. Signal pathway mutations were associated with lower platelet counts at diagnosis. The results of this study indicate a correlation between molecular abnormalities and deviations in cell immunophenotype. Investigating this correlation may, in the future, allow the development of new scales that allow a more sensitive and specific diagnosis of MDS and a more precise prediction of its course. Full article
(This article belongs to the Special Issue Immunophenotyping in Autoimmune Diseases and Cancer, 4th Edition)
Show Figures

Figure 1

28 pages, 3082 KiB  
Article
Genetic Insights and Diagnostic Challenges in Highly Attenuated Lysosomal Storage Disorders
by Elena Urizar, Eamon P. McCarron, Chaitanya Gadepalli, Andrew Bentley, Peter Woolfson, Siying Lin, Christos Iosifidis, Andrew C. Browning, John Bassett, Udara D. Senarathne, Neluwa-Liyanage R. Indika, Heather J. Church, James A. Cooper, Jorge Menendez Lorenzo, Maria Elena Farrugia, Simon A. Jones, Graeme C. Black and Karolina M. Stepien
Genes 2025, 16(8), 915; https://doi.org/10.3390/genes16080915 - 30 Jul 2025
Viewed by 730
Abstract
Background: Lysosomal storage diseases (LSDs) are a genetically and clinically heterogeneous group of inborn errors of metabolism caused by variants in genes encoding lysosomal hydrolases, membrane proteins, activator proteins, or transporters. These disease-causing variants lead to enzymatic deficiencies and the progressive accumulation of [...] Read more.
Background: Lysosomal storage diseases (LSDs) are a genetically and clinically heterogeneous group of inborn errors of metabolism caused by variants in genes encoding lysosomal hydrolases, membrane proteins, activator proteins, or transporters. These disease-causing variants lead to enzymatic deficiencies and the progressive accumulation of undegraded substrates within lysosomes, disrupting cellular function across multiple organ systems. While classical phenotypes typically manifest in infancy or early childhood with severe multisystem involvement, a combination of advances in molecular diagnostics [particularly next-generation sequencing (NGS)] and improved understanding of disease heterogeneity have enabled the identification of attenuated forms characterised by residual enzyme activity and later-onset presentations. These milder phenotypes often evade early recognition due to nonspecific or isolated symptoms, resulting in significant diagnostic delays and missed therapeutic opportunities. Objectives/Methods: This study characterises the clinical, biochemical, and molecular profiles of 10 adult patients diagnosed with LSDs, all representing attenuated forms, and discusses them alongside a narrative review. Results: Enzyme activity, molecular data, and phenotypic assessments are described to explore genotype–phenotype correlations and identify diagnostic challenges. Conclusions: These findings highlight the variable expressivity and organ involvement of attenuated LSDs and reinforce the importance of maintaining clinical suspicion in adults presenting with unexplained cardiovascular, neurological, ophthalmological, or musculoskeletal findings. Enhanced recognition of atypical presentations is critical to facilitate earlier diagnosis, guide management, and enable cascade testing for at-risk family members. Full article
(This article belongs to the Special Issue Molecular Basis and Genetics of Intellectual Disability)
Show Figures

Figure 1

10 pages, 1246 KiB  
Case Report
Synchronous Ovarian Sertoli–Leydig Cell and Clear Cell Papillary Renal Cell Tumors: A Rare Case Without Mutations in Cancer-Associated Genes
by Manuela Macera, Simone Morra, Mario Ascione, Daniela Terracciano, Monica Ianniello, Giovanni Savarese, Carlo Alviggi, Giuseppe Bifulco, Nicola Longo, Annamaria Colao, Paola Ungaro and Paolo Emidio Macchia
Curr. Oncol. 2025, 32(8), 429; https://doi.org/10.3390/curroncol32080429 - 30 Jul 2025
Viewed by 179
Abstract
(1) Background: Sertoli–Leydig cell tumors (SLCTs) are rare ovarian neoplasms that account for less than 0.5% of all ovarian tumors. They usually affect young women and often present with androgenic symptoms. We report a unique case of a 40-year-old woman diagnosed with both [...] Read more.
(1) Background: Sertoli–Leydig cell tumors (SLCTs) are rare ovarian neoplasms that account for less than 0.5% of all ovarian tumors. They usually affect young women and often present with androgenic symptoms. We report a unique case of a 40-year-old woman diagnosed with both SLCT and clear cell papillary renal cell carcinoma (CCP-RCC), a rare tumor association with unclear pathogenesis. (2) Methods: Both tumors were treated surgically. The diagnostic workup included hormonal testing, imaging studies, and extensive genetic testing, including DICER1 mutation analysis and multiplex ligation-dependent probe amplification (MLPA), as well as the examination of a next-generation sequencing (NGS) panel covering ~280 cancer-related genes. (3) Results: Histopathologic examination confirmed a well-differentiated SLCT and CCP-RCC. No pathogenic variants in DICER1 were identified by WES or MLPA. No clinically relevant changes were found in the extended NGS panel either, so a known hereditary predisposition could be ruled out. The synchronous occurrence of both tumors without genomic alterations could indicate a sporadic event or as yet unidentified mechanisms. (4) Conclusions: This case highlights the importance of a multidisciplinary approach in the management of rare tumor compounds. The exclusion of DICER1 mutations and the absence of genetic findings adds new evidence to the limited literature and underscores the importance of long-term surveillance and further research into potential shared oncogenic pathways. Full article
(This article belongs to the Section Gynecologic Oncology)
Show Figures

Figure 1

22 pages, 1703 KiB  
Article
Towards Personalized Precision Oncology: A Feasibility Study of NGS-Based Variant Analysis of FFPE CRC Samples in a Chilean Public Health System Laboratory
by Eduardo Durán-Jara, Iván Ponce, Marcelo Rojas-Herrera, Jessica Toro, Paulo Covarrubias, Evelin González, Natalia T. Santis-Alay, Mario E. Soto-Marchant, Katherine Marcelain, Bárbara Parra and Jorge Fernández
Curr. Issues Mol. Biol. 2025, 47(8), 599; https://doi.org/10.3390/cimb47080599 - 30 Jul 2025
Viewed by 294
Abstract
Massively parallel or next-generation sequencing (NGS) has enabled the genetic characterization of cancer patients, allowing the identification of somatic and germline variants associated with their diagnosis, tumor classification, and therapy response. Despite its benefits, NGS testing is not yet available in the Chilean [...] Read more.
Massively parallel or next-generation sequencing (NGS) has enabled the genetic characterization of cancer patients, allowing the identification of somatic and germline variants associated with their diagnosis, tumor classification, and therapy response. Despite its benefits, NGS testing is not yet available in the Chilean public health system, rendering it both costly and time-consuming for patients and clinicians. Using a retrospective cohort of 67 formalin-fixed, paraffin-embedded (FFPE) colorectal cancer (CRC) samples, we aimed to implement the identification, annotation, and prioritization of relevant actionable tumor somatic variants in our laboratory, as part of the public health system. We compared two different library preparation methodologies (amplicon-based and capture-based) and different bioinformatics pipelines for sequencing analysis to assess advantages and disadvantages of each one. We obtained 80.5% concordance between actionable variants detected in our analysis and those obtained in the Cancer Genomics Laboratory from the Universidad de Chile (62 out of 77 variants), a validated laboratory for this methodology. Notably, 98.4% (61 out of 62) of variants detected previously by the validated laboratory were also identified in our analysis. Then, comparing the hybridization capture-based library preparation methodology with the amplicon-based strategy, we found ~94% concordance between identified actionable variants across the 15 shared genes, analyzed by the TumorSecTM bioinformatics pipeline, developed by the Cancer Genomics Laboratory. Our results demonstrate that it is entirely viable to implement an NGS-based analysis of actionable variant identification and prioritization in cancer samples in our laboratory, being part of the Chilean public health system and paving the way to improve the access to such analyses. Considering the economic realities of most Latin American countries, using a small NGS panel, such as TumorSecTM, focused on relevant variants of the Chilean and Latin American population is a cost-effective approach to extensive global NGS panels. Furthermore, the incorporation of automated bioinformatics analysis in this streamlined assay holds the potential of facilitating the implementation of precision medicine in this geographic region, which aims to greatly support personalized treatment of cancer patients in Chile. Full article
(This article belongs to the Special Issue Linking Genomic Changes with Cancer in the NGS Era, 2nd Edition)
Show Figures

Figure 1

32 pages, 4418 KiB  
Article
The Use of Chitosan/Perlite Material for Microbial Support in Anaerobic Digestion of Food Waste
by Agnieszka A. Pilarska, Anna Marzec-Grządziel, Małgorzata Makowska, Alicja Kolasa-Więcek, Ranjitha Jambulingam, Tomasz Kałuża and Krzysztof Pilarski
Materials 2025, 18(15), 3504; https://doi.org/10.3390/ma18153504 - 26 Jul 2025
Viewed by 378
Abstract
This study aims to evaluate the effect of adding a chitosan/perlite (Ch/P) carrier to anaerobic digestion (AD) on the efficiency and kinetics of the process, as well as the directional changes in the bacterial microbiome. A carrier with this composition was applied in [...] Read more.
This study aims to evaluate the effect of adding a chitosan/perlite (Ch/P) carrier to anaerobic digestion (AD) on the efficiency and kinetics of the process, as well as the directional changes in the bacterial microbiome. A carrier with this composition was applied in the AD process for the first time. A laboratory experiment using wafer waste (WF) and cheese (CE) waste was conducted under mesophilic conditions. The analysis of physico-chemical properties confirmed the suitability of the tested carrier material for anaerobic digestion. Both components influenced the microstructural characteristics of the carrier: perlite contributed to the development of specific surface area, while chitosan determined the porosity of the system. Using next-generation sequencing (NGS), the study examined how the additive affected the genetic diversity of bacterial communities. Fourier-transform infrared spectroscopy (FTIR) revealed that the degradation rate depended on both the carrier and the substrate type. Consequently, the presence of the carrier led to an increase in the volume of biogas and methane produced. The volume of methane for the wafer waste (WF–control) increased from 351.72 m3 Mg−1 (VS) to 410.74 m3 Mg−1 (VS), while for the cosubstrate sample (wafer and cheese, WFC–control), it increased from 476.84 m3 Mg−1 (VS) to 588.55 m3 Mg−1 (VS). Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

18 pages, 3187 KiB  
Article
Real-World Evaluation of Microsatellite Instability Detection via Targeted NGS Panels in Routine Molecular Diagnostics
by Petra Škerl, Vesna Vogrič, Vida Stegel, Vita Šetrajčič Dragoš, Olga Blatnik, Gašper Klančar and Srdjan Novaković
Int. J. Mol. Sci. 2025, 26(15), 7138; https://doi.org/10.3390/ijms26157138 - 24 Jul 2025
Viewed by 266
Abstract
Microsatellite instability (MSI) is a clinically important biomarker for predicting responses to immune checkpoint inhibitors and identifying individuals with Lynch syndrome. Although MSI detection has been incorporated into Illumina’s next-generation tumor sequencing workflows, interpretation of the results remains challenging due to the absence [...] Read more.
Microsatellite instability (MSI) is a clinically important biomarker for predicting responses to immune checkpoint inhibitors and identifying individuals with Lynch syndrome. Although MSI detection has been incorporated into Illumina’s next-generation tumor sequencing workflows, interpretation of the results remains challenging due to the absence of standardized thresholds and reporting criteria. In this retrospective study, we assessed the performance of MSI detection using Illumina’s targeted NGS panels—TruSight Tumor 170 and TruSight Oncology 500. The NGS-based MSI results were compared to those obtained by the reference method, MSI-PCR, across multiple tumor types in a real-world cohort of 331 cancer patients. The NGS method demonstrated high concordance overall (AUC = 0.922), though sensitivity was lower in colorectal cancers (AUC = 0.867) due to broader score variability and overlapping distributions. Our findings support the clinical utility of Illumina’s NGS-derived MSI scores for identifying MSI-H tumors, with a recommended MSI score cut-off value of ≥13.8%. Additionally, a borderline group was introduced, defined by an MSI score ranging from ≥8.7% to <13.8%. Within this range, the integration of TMB into the MSI classification workflow significantly improves diagnostic accuracy. For samples that remain inconclusive, orthogonal confirmation using MSI-PCR is advised to ensure accurate MSI classification. Full article
Show Figures

Figure 1

19 pages, 3031 KiB  
Article
Mutational Profiling Detection in FNAC Samples of Different Types of Thyroid Neoplasms Using Targeted NGS
by Riying Liang, Man Luo, Xinhua Yang, Baoming Luo and Rongbin Liu
Cancers 2025, 17(15), 2429; https://doi.org/10.3390/cancers17152429 - 23 Jul 2025
Viewed by 241
Abstract
Background: Thyroid neoplasms exhibit a diverse molecular landscape, and the 2022 WHO classification emphasizes the critical role of molecular profiling in thyroid cancer management; however, comprehensive mutational data from fine-needle aspiration cytology (FNAC) samples using targeted next-generation sequencing (NGS) are still limited, necessitating [...] Read more.
Background: Thyroid neoplasms exhibit a diverse molecular landscape, and the 2022 WHO classification emphasizes the critical role of molecular profiling in thyroid cancer management; however, comprehensive mutational data from fine-needle aspiration cytology (FNAC) samples using targeted next-generation sequencing (NGS) are still limited, necessitating further investigation to guide clinical practice. Purpose: To characterize the mutational landscape of thyroid neoplasms using targeted NGS of FNAC samples and to assess the clinical implications of molecular profiling. Materials and Methods: This retrospective study included 952 patients with thyroid carcinomaneoplasms who underwent surgery at Sun Yat-sen Memorial Hospital from 2021 to 2023. Preoperative ultrasound, FNAC, and targeted NGS were performed. NGS panels covering 18, 88, and pan-cancer genes were used to analyze FNAC samples. Molecular alterations were correlated with clinical and pathological features. Results: The most frequent mutation was BRAFV600E (84.45%), followed by RET (6.41%), BRCA1/2 (4.41%) and RAS (4.41%). Patients were categorized into BRAF-like (830 cases), RAS-like (36 cases), high-risk mutations (25 cases), and other mutations (28 cases). High-risk mutations were associated with older age and larger tumor size. BRAF-like tumors had a higher lymph node metastasis rate (58.77%) compared to RAS-like tumors (33.33%). Tumor mutation burden varied significantly among different thyroid neoplasm subtypes. Conclusions: Molecular profiling using targeted NGS of FNAC samples provides valuable insights into the genetic landscape of thyroid neoplasms and has significant clinical implications for diagnosis and personalized treatment strategies. Further validation with paired tumor and plasma samples is warranted. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

16 pages, 3017 KiB  
Article
Methods Established for EPSPS Gene Mutation Detection in Glyphosate-Resistant Rice (Oryza sativa L.)
by Xiuping Chen, Huilin Yu, Chunmeng Huang, Chenhui Hou, Haoyuan Guan and Jiajian Xie
Plants 2025, 14(15), 2256; https://doi.org/10.3390/plants14152256 - 22 Jul 2025
Viewed by 269
Abstract
“Rundao118” is a glyphosate-resistant rice; it contains both endogenous wild and mutated 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) genes. Conventional qualitative and quantitative detection methods face significant challenges for direct analysis. Here, we describe five detection methods for identifying EPSPS mutations in this rice line: [...] Read more.
“Rundao118” is a glyphosate-resistant rice; it contains both endogenous wild and mutated 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) genes. Conventional qualitative and quantitative detection methods face significant challenges for direct analysis. Here, we describe five detection methods for identifying EPSPS mutations in this rice line: (1) polymerase chain reaction (PCR) amplification-based Sanger sequencing, (2) next-generation sequencing (NGS) based on PCR amplification, (3) allele-specific PCR (AS-PCR), (4) real-time fluorescent quantitative PCR (qPCR), and (5) blocker displacement amplification (BDA). All five methods effectively identified EPSPS mutations, with the following detection sensitivities: Sanger, 10%; NGS, 1%; AS-PCR, 0.05%; qPCR, 0.01%; and BDA, 0.1%. Among these, the Sanger, NGS, and BDA methods excelled at the rapid identification of single-nucleotide mutations, making them suitable for precise mutation site characterization and identification. In contrast, the AS-PCR and qPCR methods were more appropriate for large-scale rapid screening of known mutation sites. The detection systems established in this study provide a comprehensive technical solution for rapid identification of EPSPS mutations in glyphosate-resistant rice. These methods not only enable accurate determination of mutation sequences but also effectively trace mutation origins, offering crucial technical support for both safety regulations and intellectual property protection. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

14 pages, 787 KiB  
Article
Preimplantation Genetic Testing for Aneuploidy Versus Morphological Selection in Women Aged 35–42: Results of a Pilot Randomized Controlled Trial
by Yusuf Beebeejaun, Daniela Bakalova, Anastasia Mania, Timothy Copeland, Ippokratis Sarris, Kypros Nicolaides, Antonio Capalbo and Sesh K. Sunkara
J. Clin. Med. 2025, 14(14), 5166; https://doi.org/10.3390/jcm14145166 - 21 Jul 2025
Viewed by 516
Abstract
Background/Objectives: Embryo selection in IVF is traditionally based on morphology, yet many high-quality embryos fail to implant. Preimplantation genetic testing for aneuploidy (PGT-A) using next-generation sequencing (NGS) has been proposed to improve selection by identifying euploid embryos. However, its effectiveness in women [...] Read more.
Background/Objectives: Embryo selection in IVF is traditionally based on morphology, yet many high-quality embryos fail to implant. Preimplantation genetic testing for aneuploidy (PGT-A) using next-generation sequencing (NGS) has been proposed to improve selection by identifying euploid embryos. However, its effectiveness in women of advanced maternal age remains unclear due to limited randomized data. This pilot trial assessed the feasibility of a full-scale RCT comparing PGT-A to morphology-based selection in women aged 35–42. Methods: This single-centre, two-arm parallel RCT (NCT05009745) enrolled women aged 35–42 undergoing IVF/ICSI with ≥3 good-quality day-3 embryos. Participants were randomized (1:1) to either embryo selection by morphology with fresh transfer or PGT-A with frozen transfer of a single euploid embryo. Allocation concealment was achieved via a secure web-based randomization platform; patients and clinicians were unblinded, but the biostatistician remained blinded. The primary outcome was feasibility of recruitment, randomization, and adherence. Results: Between June 2021 and January 2023, 138 women consented (recruitment rate: 55.8%, 95% CI: 49.7–62.0%) and 100 were randomized. Protocol adherence was 94%. Barriers to recruitment included preference for private PGT-A (19%) or fresh transfer (6%). Among biopsied embryos, 51.4% were euploid and 6.6% low-level mosaic. Intention-to-treat analysis showed no significant differences between PGT-A and control groups in clinical pregnancy rate (50% vs. 40%), live birth rate (50% vs. 38%), or miscarriage rate (12% vs. 8%). Cumulative live birth rate after up to three SETs was 72% vs. 52%, respectively (p > 0.05). No multiple pregnancies occurred. Conclusions: RCTs of PGT-A in older women are feasible. A multicentre design with broader inclusion criteria could improve recruitment and allow better assessment of clinical benefit. Full article
(This article belongs to the Special Issue Female Infertility: Clinical Diagnosis and Treatment)
Show Figures

Figure 1

Back to TopTop