A Review of the Latest Updates in Cytogenetic and Molecular Classification and Emerging Approaches in Identifying Abnormalities in Acute Lymphoblastic Leukemia
Abstract
1. Introduction
2. Genetic Classification and Subtypes of B-Acute Lymphoblastic Leukemia
Genetic Abnormality | Prognosis | Age Group | Percentage of Cases | Immunophenotyping Biomarkers |
---|---|---|---|---|
High-hyperdiploidy | Very favorable prognosis (>90% long-term survival) | Most frequent in children | 25–35% of B-ALL cases | Typically positive for CD10, CD19, CD22 |
iAMP21 | High relapse risk; intensive therapy improves outcomes | Older children (median age: 9 years) | ~2% of pediatric cases | Positive for CD10, CD19 |
BCR::ABL1 | Historically poor prognosis, improved with TKIs; measurable residual disease (MRD) is a strong predictor | <15 years: 2–4%, 15–39 years: 10%, 40–49 years: 25%, >50 years: 20–40% | Increases with age | Positive for CD34, CD19, BCR::ABL1 fusion |
BCR::ABL1-like features | High-risk; worse overall survival, high MRD likelihood | Varies (higher in older adults) | 10–15% in children, 25–30% in young adults | Similar to BCR::ABL1, may lack IKZF1 alterations |
KMT2A rearrangement | Generally poor prognosis | Infants <1 year, increases with age | 70–80% in infants | Positive for CD10, CD19 |
ETV6::RUNX1 | Very favorable prognosis; often better outcomes than other types | Most common in children (ages 2–10) | ~25% of childhood cases | Positive for CD10, CD19 |
TCF3::PBX1 | Intermediate to favorable prognosis with modern therapy; increased CNS relapse risk | More frequent in children | ~5% of pediatric cases | Positive for CD10, CD19 |
TCF3::HLF | Dismal outcomes; historically considered incurable | Mostly children, rare in adults | <1% of childhood cases | Positive for CD19 |
ETV6::RUNX1-like features | Undefined outcomes; small case series indicate potential for late relapses | More common in childhood | 1–3% of childhood cases | Variable |
Genetic Alteration | Prognosis | Age Group | Percentage of Cases | Immunophenotyping Biomarkers | Therapy and Treatment | Detection Techniques |
---|---|---|---|---|---|---|
DUX4 rearrangement | Best outcome; 5-year event-free survival: 95% (children), 80% (adults) | All ages, better in children | Variable | CD2+ (70%), CD13++, CD34++, CD38++, CD371+ | Standard chemotherapy; tailored based on response | Next-generation sequencing (RNA/DNA) |
MEF2D rearrangement | Intermediate to poor outcome; 5-year overall survival: ~70% (children), ~30% (adults) | All ages | Rare | CD10−, CD5, CD38+, cMu+ | Intensive chemotherapy; potential targeted therapies | RNA sequencing or RT-PCR |
ZNF384 rearrangement | Prognosis varies; monocytic differentiation may influence outcomes | All ages | Rare | CD10− (73%), CD13+, CD33+, CD65−, CD15−, CD25+ (25%), myeloperoxidase− (+ in MPAL) | Standard chemotherapy; consideration of lineage switch | Break-apart FISH or next-generation sequencing (RNA/DNA) |
PAX5alt | Prognosis varies; can be associated with poorer outcomes | All ages | ~7.5% of B-ALL cases | Not specifically defined | Standard chemotherapy; depends on specific alterations | Next-generation sequencing (RNA/DNA) |
PAX5 p.P80R | Poorer prognosis associated with additional PAX5 alterations | All ages | Rare | CD2+, CD33+, CD65−, CD15− | Standard chemotherapy; may involve additional therapies | DNA sequencing methods |
NUTM1 rearrangement | Favorable prognosis; seen in infant cases with germline KMT2A variants | Most frequent in infants | Up to 1/3 in infants | Not specifically defined | Sensitive to histone deacetylase inhibitors | Break-apart FISH or RNA/DNA sequencing |
MYC rearrangement | Poor prognosis in adults (<20% 5-year overall survival); better in children with Burkitt-like therapy | More common in adults | 0.1% in children, 4.3% in adults | Not specifically defined | Burkitt lymphoma therapy for children; intensive chemotherapy for adults | Karyotype or FISH analysis |
3. Genetic Classification and Subtypes of T-Acute Lymphoblastic Leukemia
4. Cytogenetic and Molecular Techniques in the Diagnosis of Acute Lymphoblastic Leukemia (ALL)
5. What’s New in Cytogenetics and Hematology?
Optical Genome Mapping (OGM) and ALL
6. What’s New in Molecular Hematology?
6.1. Next-Generation Sequencing (NGS)
6.2. Genome Reference Overview
6.3. Pangenome Information
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yi, M.; Zhou, L.; Li, A.; Luo, S.; Wu, K. Global burden and trend of acute lymphoblastic leukemia from 1990 to 2017. Aging 2020, 12, 22869–22891. [Google Scholar] [CrossRef]
- Brady, S.W.; Roberts, K.G.; Gu, Z.; Shi, L.; Pounds, S.; Pei, D.; Cheng, C.; Dai, Y.; Devidas, M.; Qu, C.; et al. The genomic landscape of pediatric acute lymphoblastic leukemia. Nat. Genet. 2022, 54, 1376–1389. [Google Scholar] [CrossRef]
- Moore, M.E.; Williams, E.; Pelkey, L.; Courville, E.L. A comparison of WHO-5 and ICC classifications in a series of myeloid neoplasms, considerations for hematopathologists and molecular pathologists. Cancer Genet. 2024, 286–287, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Habeebu, S.S.M.; Li, W. Prognostic and Predictive Biomarkers in Precursor B-cell Acute Lymphoblastic Leukemia. In Leukemia [Internet]; Li, W., Ed.; Exon Publications: Brisbane, Australia, 2022; Chapter 10. Available online: https://www.ncbi.nlm.nih.gov/books/NBK586214/ (accessed on 15 May 2025).
- Jeha, S.; Choi, J.; Roberts, K.G.; Pei, D.; Coustan-Smith, E.; Inaba, H.; Rubnitz, J.E.; Ribeiro, R.C.; Gruber, T.A.; Raimondi, S.C.; et al. Clinical significance of novel subtypes of acute lymphoblastic leukemia in the context of minimal residual disease-directed therapy. Blood Cancer Discov. 2021, 2, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Vairy, S.; Tran, T.H. IKZF1 alterations in acute lymphoblastic leukemia: The good, the bad and the ugly. Blood Rev. 2020, 44, 100677. [Google Scholar] [CrossRef] [PubMed]
- Shahrouzi, P.; Forouz, F.; Mathelier, A.; Kristensen, V.N.; Duijf, P.H. Copy number alterations: A catastrophic orchestration of the breast cancer genome. Trends Mol. Med. 2024, 30, 750–764. [Google Scholar] [CrossRef]
- Harrison, C.J.; Schwab, C. Constitutional abnormalities of chromosome 21 predispose to iAMP21-acute lymphoblastic leukaemia. Eur. J. Med. Genet. 2016, 59, 162–165. [Google Scholar] [CrossRef]
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.D.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef]
- Duffield, A.S.; Mullighan, C.G.; Borowitz, M.J. International Consensus Classification of acute lymphoblastic leukemia/lymphoma. Virchows Arch. 2023, 482, 11–26. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raetz, E.A.; Teachey, D.T. T-cell acute lymphoblastic leukemia. Hematol. Am. Soc. Hematol. Educ. Program 2016, 2016, 580–588. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cordo’, V.; van der Zwet, J.C.G.; Canté-Barrett, K.; Pieters, R.; Meijerink, J.P.P. T-cell Acute Lymphoblastic Leukemia: A Roadmap to Targeted Therapies. Blood Cancer Discov. 2020, 2, 19–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patel, A.A.; Thomas, J.; Rojek, A.E.; Stock, W. Biology and Treatment Paradigms in T Cell Acute Lymphoblastic Leukemia in Older Adolescents and Adults. Curr. Treat. Options Oncol. 2020, 21, 57. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Goyal, A.; Weichenhan, D.; Allemand, E.; Mayakonda, A.; Toprak, U.; Riedel, A.; Balducci, E.; Manojkumar, M.; Pejkovska, A.; et al. TAL1 activation in T-cell acute lymphoblastic leukemia: A novel oncogenic 3′ neo-enhancer. Haematologica 2023, 108, 1259–1271. [Google Scholar] [CrossRef]
- De Bie, J.; Quessada, J.; Tueur, G.; Lefebvre, C.; Luquet, I.; Toujani, S.; Cuccuini, W.; Lafage-Pochitaloff, M.; Michaux, L. Cytogenetics in the management of T-cell acute lymphoblastic leukemia (T-ALL): Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr. Res. Transl. Med. 2023, 71, 103431. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating morphologic, clinical, and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Pan, S.; Xie, T.; Liu, H. MYC in T-cell acute lymphoblastic leukemia: Functional implications and targeted strategies. Blood Sci. 2021, 3, 65–70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cicirò, Y.; Sala, A. MYB oncoproteins: Emerging players and potential therapeutic targets in human cancer. Oncogenesis 2021, 10, 19. [Google Scholar] [CrossRef]
- Iacobucci, I.; Kimura, S.; Mullighan, C.G. Biologic and Therapeutic Implications of Genomic Alterations in Acute Lymphoblastic Leukemia. J. Clin. Med. 2021, 10, 3792. [Google Scholar] [CrossRef]
- Mughal, T.I.; Radich, J.P.; Deininger, M.W.; Apperley, J.F.; Hughes, T.P.; Harrison, C.J.; Gambacorti-Passerini, C.; Saglio, G.; Cortes, J.; Daley, G.Q. Chronic myeloid leukemia: Reminiscences and dreams. Haematologica 2016, 101, 541–558. [Google Scholar] [CrossRef]
- Robbe, P.; Schuh, A. Genomic Stratification of Hematological Malignancies. HemaSphere 2023, 7, e902. [Google Scholar] [CrossRef]
- Mantere, T.; Neveling, K.; Pebrel-Richard, C.; Benoist, M.; van der Zande, G.; Kater-Baats, E.; Baatout, I.; van Beek, R.; Yammine, T.; Oorsprong, M.; et al. Optical genome mapping enables constitutional chromosomal aberration detection. Am. J. Hum. Genet. 2021, 108, 1409–1422. [Google Scholar] [CrossRef]
- Suttorp, J.; Lühmann, J.L.; Behrens, Y.L.; Göhring, G.; Steinemann, D.; Reinhardt, D.; Neuhoff, N.V.; Schneider, M. Optical Genome Mapping as a Diagnostic Tool in Pediatric Acute Myeloid Leukemia. Cancers 2022, 14, 2058. [Google Scholar] [CrossRef]
- Neveling, K.; Mantere, T.; Vermeulen, S.; Oorsprong, M.; van Beek, R.; Kater-Baats, E.; Pauper, M.; van der Zande, G.; Smeets, D.; Weghuis, D.O.; et al. Next-generation cytogenetics: Comprehensive assessment of 52 hematological malignancy genomes by optical genome mapping. Am. J. Hum. Genet. 2021, 108, 1423–1435. [Google Scholar] [CrossRef]
- Schneider, V.A.; Graves-Lindsay, T.; Howe, K.; Bouk, N.; Chen, H.C.; Kitts, P.A.; Murphy, T.D.; Pruitt, K.D.; Thibaud-Nissen, F.; Albracht, D.; et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res. 2017, 27, 849–864. [Google Scholar] [CrossRef]
- Kwon, R.; Yeung, C.C. Advances in next-generation sequencing and emerging technologies for hematologic malignancies. Haematologica 2024, 109, 379–387. [Google Scholar] [CrossRef]
- Nurk, S.; Koren, S.; Rhie, A.; Rautiainen, M.; Bzikadze, A.V.; Mikheenko, A.; Vollger, M.R.; Altemose, N.; Uralsky, L.; Gershman, A.; et al. The complete sequence of a human genome. Science 2022, 376, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Zhang, G. A complete, telomere-to-telomere human genome sequence presents new opportunities for evolutionary genomics. Nat. Methods 2022, 19, 635–638, Erratum in Nat. Methods 2022, 19, 899. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.W.; Asri, M.; Ebler, J.; Doerr, D.; Haukness, M.; Hickey, G.; Lu, S.; Lucas, J.K.; Monlong, J.; Abel, H.J.; et al. A draft human pangenome reference. Nature 2023, 617, 312–324. [Google Scholar] [CrossRef]
- Wang, T.; Antonacci-Fulton, L.; Howe, K.; Lawson, H.A.; Lucas, J.K.; Phillippy, A.M.; Popejoy, A.B.; Asri, M.; Carson, C.; Chaisson, M.J.; et al. The Human Pangenome Project: A global resource to map genomic diversity. Nature 2022, 604, 437–446. [Google Scholar] [CrossRef]
- Frazer, K.A.; Schork, N.J. The human pangenome reference anticipates equitable and fundamental genomic insights. Cell Genom. 2023, 3, 100360. [Google Scholar] [CrossRef]
- Eizenga, J.M.; Novak, A.M.; Sibbesen, J.A.; Heumos, S.; Ghaffaari, A.; Hickey, G.; Chang, X.; Seaman, J.D.; Rounthwaite, R.; Ebler, J.; et al. Pangenome Graphs. Annu. Rev. Genom. Hum. Genet. 2020, 21, 139–162. [Google Scholar] [CrossRef] [PubMed]
Genetic Abnormality | Prognosis | Age Group | Percentage of Cases | Pathway |
---|---|---|---|---|
NOTCH1 mutations | Better outcomes associated | All age groups | >75% activation | NOTCH signaling |
FBXW7 mutations | Better outcomes associated | All age groups | 30% (loss-of-function) | NOTCH signaling |
EZH2 mutations | Poor prognosis | All age groups | Rare | Epigenetic regulation |
SUZ12 mutations | Poor prognosis | All age groups | Rare | Epigenetic regulation |
EED mutations | Poor prognosis | All age groups | Rare | Epigenetic regulation |
PHF6 mutations | Poor prognosis | All age groups | Rare | Chromatin modification |
KDM6A mutations | Poor prognosis | All age groups | Rare | Chromatin modification |
IL7R mutations | Poor prognosis if mutated | All age groups | Common in T-ALL | JAK/STAT |
JAK1 mutations | Poor prognosis with activating mutations | All age groups | Common in T-ALL | JAK/STAT |
JAK3 mutations | Poor prognosis if mutated | All age groups | Rare | JAK/STAT |
CDKN2A deletions | Poor prognosis | All age groups | ~30% (deletion) | Cell-cycle regulation |
TAL1 rearrangements | Poor prognosis | All age groups | 20–30% | Various pathways |
TLX1 rearrangements | Generally favorable prognosis | All age groups | Common in translocations | Various pathways |
TLX3 rearrangements | Poor prognosis | All age groups | Common in translocations | Various pathways |
HOXA gene rearrangements | Poor prognosis | All age groups | Common in translocations | Various pathways |
BCL11B deletions | Poor prognosis | All age groups | Rare | Tumor suppressor |
ETV6 mutations | Associated with ETP-ALL phenotype | Typically younger patients | Rare | Tumor suppressor |
KMT2A rearrangements | Poor prognosis | All age groups | Rare | Various pathways |
NUP98 rearrangements | Poor prognosis | All age groups | Rare | Various pathways |
Karyotype Results | FISH Results | CNV-Microarray Results [Aberrant Cell Fraction] | Optical Mapping Results (SV Tool and/or CNV Tool) | Aberrations Beyond Scope of Optical Mapping | Result |
---|---|---|---|---|---|
45, XY, der (18;22) (q10;q10) [2]/45, X, -Y, der (18;22) (q10;q10), +22 [6]/46, XY [2] | BCR-ABL1/t(9;22) (q34;q11.2): wt KMT2A (11q23): wt BCR (22q11) gain [96/100] | 9p21.3 (21976766_22009308) × 1 [0.4] 9p13.2 (36915132_37070373) × 3 [0.9] 11q23.3 (118358115_118470528) × 1 [0.75] 18pterp11.21 (136226_15148589) × 1 [0.9] 22q11.1qter (16888900_51197839) × 3 [0.75] (Y) × 0 [0.6], [Loss of chrY] | 9p21.3 loss: concordant (SV) 9p13.2 gain: concordant (SV) 11q23.3 loss: concordant (SV/CNVe) 18pterp11.21 loss: concordant (CNV) 22q11.1qter gain: concordant (CNVe) ChrY loss: concordant (CNV) | centromeric breakpoints: der (18;22) (q10;q10) | concordant |
Genome Reference | Year Released | Organization | Adoption Status |
---|---|---|---|
GRCh37/hg19 | 2009 | Genome Reference Consortium | Widely adopted in clinical settings |
GRCh38/hg38 | 2013 | Genome Reference Consortium | Limited clinical uptake |
T2T-CHM13 | 2022 | T2T Consortium | Primarily for research use |
Pangenome Status | Organization | Adoption Status |
---|---|---|
Ongoing | Human Pangenome Reference Consortium | Research use |
Advantages | High-quality assemblies from diverse populations; collaboration with T2T Consortium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Mahdaoui, C.; Dehbi, H.; Cherkaoui, S. A Review of the Latest Updates in Cytogenetic and Molecular Classification and Emerging Approaches in Identifying Abnormalities in Acute Lymphoblastic Leukemia. Lymphatics 2025, 3, 23. https://doi.org/10.3390/lymphatics3030023
El Mahdaoui C, Dehbi H, Cherkaoui S. A Review of the Latest Updates in Cytogenetic and Molecular Classification and Emerging Approaches in Identifying Abnormalities in Acute Lymphoblastic Leukemia. Lymphatics. 2025; 3(3):23. https://doi.org/10.3390/lymphatics3030023
Chicago/Turabian StyleEl Mahdaoui, Chaimae, Hind Dehbi, and Siham Cherkaoui. 2025. "A Review of the Latest Updates in Cytogenetic and Molecular Classification and Emerging Approaches in Identifying Abnormalities in Acute Lymphoblastic Leukemia" Lymphatics 3, no. 3: 23. https://doi.org/10.3390/lymphatics3030023
APA StyleEl Mahdaoui, C., Dehbi, H., & Cherkaoui, S. (2025). A Review of the Latest Updates in Cytogenetic and Molecular Classification and Emerging Approaches in Identifying Abnormalities in Acute Lymphoblastic Leukemia. Lymphatics, 3(3), 23. https://doi.org/10.3390/lymphatics3030023