Methods Established for EPSPS Gene Mutation Detection in Glyphosate-Resistant Rice (Oryza sativa L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. DNA Extraction and Sample Preparation
2.3. Sanger Sequencing of PCR Products
2.4. NGS of PCR Products
2.5. AS-PCR
Method | Gene | Primer | Sequence | Product (bp) |
---|---|---|---|---|
Sanger and NGS methods | EPSPS and mEPSPS | Osep-1020F | 5′-GGTTATTAGGGCACAACAGTGG-3′ | 2062 |
Osep-3081R | 5′-GTAGTCAGGACCTTCTTCAACC-3′ | |||
AS-PCR method | mEPSPS | Osep-1075F | 5′-ACATGCTTGAGGCCCTGAAAGG-3′ | 166 |
Osep-m1240R | 5′-GTCAAGGATCGCATTGCAGTCG-3′ | |||
qPCR method | mEPSPS | Osep-1075F | 5′-ACATGCTTGAGGCCCTGAAAGG-3′ | 166 |
Osep-m1240R | 5′-GTCAAGGATCGCATTGCAGTCG-3′ | |||
Osep-1140P | 5′-FAM-GTAGTCGTTGGCTGTGGTGGCAAG-BHQ1-3′ | |||
PLD [24] | KVM159 | 5′-TGGTGAGCGTTTTGCAGTCT-3′ | 68 | |
KVM160 | 5′-CTGATCCACTAGCAGGAGGTCC-3′ | |||
TM013 | 5′-FAM-TGTTGTGCTGCCAATGTGGCCTG-BHQ1-3′ | |||
BDA method | mEPSPS | Osep-1020F | 5′-GGTTATTAGGGCACAACAGTGG-3′ | 228 |
Osep-1257R | 5′-CAGCAGTCACGGCTGCTGTC-3′ | |||
Osep-1140P | 5′-FAM-GTAGTCGTTGGCTGTGGTGGCAAG-BHQ1-3′ | |||
Osep-1247BR | 5′-GGCTGCTGTCAATGGTCGCATTGCAGTTCTTTT-3′ |
2.6. qPCR
2.7. BDA
3. Results
3.1. Sanger Method
3.2. NGS Method
3.3. AS-PCR Method
3.4. qPCR Method
3.5. BDA Method
3.6. Comparison of the Five Detection Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Duke, S.O.; Powles, S.B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 2008, 64, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Schönbrunn, E.; Eschenburg, S.; Shuttleworth, W.A.; Schloss, J.V.; Amrhein, N.; Evans, J.N.; Kabsch, W. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. USA 2001, 98, 1376–1380. [Google Scholar] [CrossRef] [PubMed]
- Funke, T.; Yang, Y.; Han, H.; Healy-Fried, M.; Olesen, S.; Becker, A.; Schönbrunn, E. Molecular basis for the herbicide resistance of Roundup Ready crops. Proc. Natl. Acad. Sci. USA 2006, 103, 13010–13015. [Google Scholar] [CrossRef] [PubMed]
- Achary, V.M.M.; Sheri, V.; Manna, M.; Panditi, V.; Borphukan, B.; Ram, B.; Agarwal, A.; Fartyal, D.; Teotia, D.; Masakapalli, S.K.; et al. Overexpression of improved EPSPS gene results in field level glyphosate tolerance and higher grain yield in rice. Plant Biotechnol. J. 2020, 18, 2504–2519. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Chai, Y.; Qiao, D.; Wang, J.; Xin, C.; Sun, W.; Cao, Z.; Zhang, Y.; Zhou, Y.; Wang, X.C.; et al. Optimized prime editing efficiently generates glyphosate-resistant rice plants carrying homozygous TAP-IVS mutation in EPSPS. Mol. Plant 2022, 15, 1646–1649. [Google Scholar] [CrossRef] [PubMed]
- Sony, S.K.; Kaul, T.; Motelb, K.F.A.; Thangaraj, A.; Bharti, J.; Kaul, R.; Verma, R.; Nehra, M. CRISPR/Cas9-mediated homology donor repair base editing confers glyphosate resistance to rice (Oryza sativa L.). Front. Plant Sci. 2023, 14, 1122926. [Google Scholar] [CrossRef] [PubMed]
- Borphukan, B.; Khatun, M.; Fartyal, D.; James, D.; Reddy, M.K. A gemini virus-derived autonomously replicating system for HDR-mediated genome editing of the EPSPS synthase gene in Indica rice. Plants 2025, 14, 477. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.; Zhang, X.; Wang, F.; Wang, Y.; Wu, W.; Lin, C.; Rao, L.; Wang, Q. Development of a double-antibody sandwich ELISA for quantification of mutated EPSPS gene expression in rice. Anal. Biochem. 2025, 696, 115669. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.X.; Li, J. Method for Generating Glyphosate-Resistant Rice Through Site-Specific Nucleotide Replacement. CN 106467909 A, 1 March 2017. (In Chinese). [Google Scholar]
- Li, J.; Meng, X.; Zong, Y.; Chen, K.; Zhang, H.; Liu, J.; Li, J.; Gao, C. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat. Plants 2016, 2, 16139. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.Q.; Li, J.Y. Method for Obtaining Glyphosate-Resistant Rice by Precisely Editing Endogenous EPSPS Gene and System Used by Method. CN 114591977 B, 16 May 2023. (In Chinese). [Google Scholar]
- Chen, R.; Deng, L.Q.; Lu, Y.G.; Li, L.; Feng, X.R.; Xu, N.F. An EPSPS Mutant Rice Variant, Its Encoding Gene and Applications. CN 106636025 B, 14 November 2017. (In Chinese). [Google Scholar]
- Menon, V.; Brash, D.E. Next-generation sequencing methodologies to detect low-frequency mutations: “Catch me if you can”. Mutat. Res.-Rev. Mutat. Res. 2023, 792, 108471. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.R.; Chen, S.X.; Wu, Y.; Patel, A.A.; Zhang, D.Y. Multiplexed enrichment of rare DNA variants via sequence-selective and temperature-robust amplification. Nat. Biomed. Eng. 2017, 1, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Bullock, M.; O’Neill, C.; Chou, A.; Clarkson, A.; Dodds, T.; Toon, C.; Sywak, M.; Sidhu, S.B.; Delbridge, L.W.; Robinson, B.G.; et al. Utilization of a MAB for BRAF(V600E) detection in papillary thyroid carcinoma. Endocr. Relat. Cancer 2012, 19, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Metzker, M.L. Sequencing technologies—the next generation. Nat. Rev. Genet. 2010, 11, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Heid, C.A.; Stevens, J.; Livak, K.J.; Williams, P.M. Real time quantitative PCR. Genome Res. 1996, 6, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Y.; Chen, S.X.; Yin, P. Optimizing the specificity of nucleic acid hybridization. Nat. Chem. 2012, 4, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.J.; Wang, P.R.; Xu, X.; Wu, S.; Li, C.; Pan, W.Q.; Jiang, Y.T.; Wang, X.F. Quanlitative PCR detection method for transgenic insect-resistant soybean transformant CAL16. J. Biosaf. 2025, 34, 137–144, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wang, P.R.; Lu, J.Y.; Xu, X.; Wu, S.; Li, C.; Hu, X.L.; Pan, W.Q.; Wang, X.F. Establishment of event-specific quantitative detection method of transgenic soybean CAL16. Chin. J. Oil Crop Sci. 2024. (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Fu, F.Q.; Zhang, H.; Chen, Y.F.; Wang, C.Y.; Jiang, H.Y.; Li, Y.H.; Liao, Y.C.; Wang, D.; Sun, Y.; et al. Research of detection method for genetically modified herbicide-tolerant soyabean LP012-1 transformant by quantitative real-time PCR. Curr. Biotech. 2025, 15, 276–286, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Mckenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M. The genome analysis toolkit: A MapReduce framework for analyzing nextgeneration DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wu, G.; Wu, Y.; Nie, S.; Zhang, L.; Lu, C. Characterization of the transgenic rice event TT51–1 and construction of a reference plasmid. J. Agric. Food Chem. 2011, 59, 8550–8559. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Sun, Y.; Yang, Y.; Wang, Z.; Wu, H.; Gu, T.; Zhang, R.; Sun, X.; Yao, B.; Tu, T.; et al. Agricultural biotechnology in China: Product development, commercialization, and perspectives. aBIOTECH 2025, 6, 284–310. [Google Scholar] [CrossRef] [PubMed]
- Minoche, A.E.; Dohm, J.C.; Himmelbauer, H. Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems. Genome Biol. 2011, 12, R112. [Google Scholar] [CrossRef] [PubMed]
- Schirmer, M.; Ijaz, U.Z.; D’Amore, R.; Hall, N.; Sloan, W.T.; Quince, C. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res. 2015, 43, e37. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Oshima, T.; Morimoto, T.; Ikeda, S.; Yoshikawa, H.; Shiwa, Y.; Ishikawa, S.; Linak, M.C.; Hirai, A.; Takahashi, H.; et al. Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res. 2011, 39, e90. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Liang, J.; Wang, F.; Yang, L. Comparative evaluation of gene copy number estimation techniques in genetically modified crops: Insights from Southern blotting, qPCR, dPCR and NGS. Plant Biotechnol. J. 2024, 22, 3456–3458. [Google Scholar] [CrossRef] [PubMed]
- Hindson, B.J.; Ness, K.D.; Masquelier, D.A.; Belgrader, P.; Heredia, N.J.; Makarewicz, A.J.; Bright, I.J.; Lucero, M.Y.; Hiddessen, A.L.; Legler, T.C.; et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 2011, 83, 8604–8610. [Google Scholar] [CrossRef] [PubMed]
- Baker, M. Digital PCR hits its stride. Nat. Methods 2012, 9, 541–544. [Google Scholar] [CrossRef]
- Cheng, L.Y.; Haydu, L.E.; Song, P.; Nie, J.; Tetzlaff, M.T.; Kwong, L.N.; Gershenwald, J.E.; Davies, M.A.; Zhang, D.Y. High sensitivity sanger sequencing detection of BRAF mutations in metastatic melanoma FFPE tissue specimens. Sci. Rep. 2021, 11, 9043. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.X.; Zhang, D.Y.; Seelig, G. Conditionally fluorescent molecular probes for detecting single base changes in double-stranded DNA. Nat. Chem. 2013, 5, 782–789. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.R.; Wang, J.S.; Fang, J.Z.; Evans, E.R.; Pinto, A.; Pekker, I.; Boykin, R.; Ngouenet, C.; Webster, P.J.; Beechem, J.; et al. Continuously tunable nucleic acid hybridization probes. Nat. Methods 2017, 17, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Chen, S.X.; Yan, Y.H.; Pinto, A.; Cheng, L.Y.; Dai, P.; Patel, A.A.; Zhang, D.Y. Selective multiplexed enrichment for the detection and quantitation of low-fraction DNA variants via low-depth sequencing. Nat Biomed. Eng. 2021, 5, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Wang, Z.; Zhang, Z.M.; Peng, X.Z.; Fu, H.B.; Zhu, P.Y.; Huang, C.M.; Zhang, Y.J.; Fu, W. Research on the transgenic threshold system in China based on low-level presence of genetically modified products. J. Agric. Sci. Tech. 2022, 24, 20–27, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
Sample | Rep. | Clean Base (Gb) * | 1096 (G/N †, %) | 1219 (C/N †, %) | 1220 (G/N †, %) | 1233 (T/N †, %) | 1235 (C/N †, %) | 1883 (G/N †, %) | 1993 (C/N †, %) | 2579 (C/N †, %) | Average (%) | Test Value (Mean ± SE, %) | Theoretical Value (%) # |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 (100%) | 1 | 0.79 | 77.18 | 75.87 | 76.16 | 75.76 | 76.35 | 78.87 | 78.44 | 78.62 | 77.16 | 78.11 ± 1.05 | 75.00 |
2 | 0.96 | 79.27 | 78.03 | 78.34 | 77.83 | 78.41 | 80.92 | 80.52 | 80.61 | 79.24 | |||
3 | 0.96 | 77.82 | 76.57 | 77.01 | 76.51 | 77.15 | 79.63 | 79.22 | 79.52 | 77.93 | |||
S2 (10%) | 1 | 0.96 | 22.71 | 21.96 | 22.27 | 22.00 | 22.19 | 23.11 | 22.71 | 22.92 | 22.48 | 23.33 ± 1.06 | 23.08 |
2 | 1.46 | 24.76 | 23.91 | 24.28 | 24.04 | 24.14 | 25.24 | 24.84 | 24.93 | 24.52 | |||
3 | 1.21 | 23.27 | 22.47 | 22.77 | 22.52 | 22.72 | 23.58 | 23.06 | 23.53 | 22.99 | |||
S3 (1%) | 1 | 1.05 | 3.14 | 2.95 | 3.29 | 3.01 | 3.08 | 3.25 | 3.00 | 3.24 | 3.12 | 3.24 ± 0.19 | 2.91 |
2 | 1.07 | 3.41 | 3.23 | 3.52 | 3.30 | 3.37 | 3.75 | 3.45 | 3.69 | 3.47 | |||
3 | 1.26 | 3.08 | 2.94 | 3.29 | 3.02 | 3.05 | 3.35 | 3.16 | 3.29 | 3.15 | |||
S4 (0.1%) | 1 | 0.92 | 0.74 | 0.71 | 1.01 | 0.80 | 0.90 | 0.98 | 0.76 | 0.90 | 0.85 | 0.67 ± 0.16 | 0.30 |
2 | 1.15 | 0.48 | 0.44 | 0.76 | 0.53 | 0.62 | 0.71 | 0.46 | 0.61 | 0.58 | |||
3 | 1.19 | 0.50 | 0.46 | 0.74 | 0.52 | 0.59 | 0.64 | 0.49 | 0.64 | 0.57 | |||
S5 (0.01%) | 1 | 0.97 | 0.75 | 0.69 | 1.03 | 0.76 | 0.84 | 0.86 | 0.66 | 0.90 | 0.81 | 0.53 ± 0.25 | 0.03 |
2 | 0.89 | 0.35 | 0.33 | 0.70 | 0.40 | 0.45 | 0.51 | 0.32 | 0.49 | 0.44 | |||
3 | 1.32 | 0.23 | 0.22 | 0.50 | 0.34 | 0.33 | 0.47 | 0.21 | 0.45 | 0.34 | |||
S6 (0%) | 1 | 1.21 | 0.11 | 0.09 | 0.43 | 0.18 | 0.18 | 0.32 | 0.10 | 0.28 | 0.21 | 0.21 ± 0.02 | 0.00 |
2 | 1.22 | 0.08 | 0.06 | 0.40 | 0.15 | 0.21 | 0.28 | 0.08 | 0.27 | 0.19 | |||
3 | 1.34 | 0.13 | 0.11 | 0.41 | 0.18 | 0.18 | 0.36 | 0.14 | 0.33 | 0.23 |
Rep. | Gene | Ct Value | Copy Number | Content (%) | Average Content * (%) | ||
---|---|---|---|---|---|---|---|
1 | mEPSPS | 30.31 | 30.34 | 30.37 | 408.24 | 2.87 | 2.97 ± 0.26 |
PLD | 27.06 | 27.07 | 27.14 | 14,239.20 | |||
2 | mEPSPS | 30.08 | 30.06 | 30.06 | 414.81 | 2.78 | |
PLD | 26.46 | 26.51 | 26.47 | 14,903.10 | |||
3 | mEPSPS | 30.04 | 29.93 | 30.09 | 457.11 | 3.26 | |
PLD | 26.38 | 26.22 | 26.33 | 14,002.80 |
Methods | Detection Instrument Requirements | Target Region (Number of Mutation Sites) | Sensitivity (%) | Time (h) | Applicable Scenarios |
---|---|---|---|---|---|
Sanger | Conventional PCR Thermocycle | 1020–3081 (8) | 10% | 24~48 | precise mutation site characterization and identification |
NGS | Conventional PCR Thermocycle | 1020–3081 (8) | 1% | ~72 | precise mutation site characterization and identification |
AS-PCR | Conventional PCR Thermocycle | 1075–1240 (5) | 0.05% | 3~6 | large-scale rapid screening of known mutation sites |
qPCR | Real-time PCR System | 1075–1240 (5) | 0.01% | 2~4 | large-scale rapid screening of known mutation sites |
BDA | Real-time PCR System | 1020–1257 (5) | 0.1% | 3~5 | precise mutation site characterization and identification, especially low-frequency mutations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Yu, H.; Huang, C.; Hou, C.; Guan, H.; Xie, J. Methods Established for EPSPS Gene Mutation Detection in Glyphosate-Resistant Rice (Oryza sativa L.). Plants 2025, 14, 2256. https://doi.org/10.3390/plants14152256
Chen X, Yu H, Huang C, Hou C, Guan H, Xie J. Methods Established for EPSPS Gene Mutation Detection in Glyphosate-Resistant Rice (Oryza sativa L.). Plants. 2025; 14(15):2256. https://doi.org/10.3390/plants14152256
Chicago/Turabian StyleChen, Xiuping, Huilin Yu, Chunmeng Huang, Chenhui Hou, Haoyuan Guan, and Jiajian Xie. 2025. "Methods Established for EPSPS Gene Mutation Detection in Glyphosate-Resistant Rice (Oryza sativa L.)" Plants 14, no. 15: 2256. https://doi.org/10.3390/plants14152256
APA StyleChen, X., Yu, H., Huang, C., Hou, C., Guan, H., & Xie, J. (2025). Methods Established for EPSPS Gene Mutation Detection in Glyphosate-Resistant Rice (Oryza sativa L.). Plants, 14(15), 2256. https://doi.org/10.3390/plants14152256